MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1341 December 1991

Natural Language Based Inference Procedures
applied to Schubert’s Steamroller

Robert Givan, David McAllester and Sameer Shalaby

Abstract

We have previously argued that the syntactic structure of natural lan-
guage can be exploited to construct powerful polynomial time inference
procedures. This paper supports the earlier arguments by demonstrat-

ing that a natural language based polynomial time procedure can solve
Schubert’s steamroller in a single step.

Copyright (© Massachusetts Institute of Technology, 1991

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the work described in this paper was provided in part by
Misubishi Electric Research Laboratories, Inc. Support for the laboratory’s artificial intelligence
research is provided in part by the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract N00014-85-K-0124.

1 Introduction

Schubert’s steamroller is a well known challenge problem for automated reasoning
systems [Cohn, 1989], [Cohn, 1984], [Stickel, 1985], [Bibel et al., 1987], [Davies,
1988], [Oppacher and Suen, 1986), and [Walther, 1984]. All previous automated
solutions of Schubert’s steamroller have been based on search procedures — proce-
dures that search for proofs and which are not guaranteed to halt. In this paper we
describe a different kind of solution to Schubert’s steamroller — a solution without
search. Although there is no established technical meaning to the term “search”,
it seems reasonable to assert that a procedure guaranteed to terminate in poly-
nomial time does not search. We present a natural general purpose polynomial
time inference procedure capable of solving Schubert’s steamroller given only the
axioms of the problem plus three user specified “focus terms”.

The polynomial time inference procedure presented in this paper exploits, in
an apparently essential way, aspects of natural language syntax. The inference
procedure is defined by a set of inference rules. If R is a set of inference rules then
we let g be the inference relation generated by R, i.e., for any set of formulas
¥ and formula ® we write ¥ Fpg @ if there exists a derivation of ® from the
formulas in ¥ using the inference rules in R. A rule set R will be called tractable if
Fr is polynomial time decidable, i.e., there exists a procedure that is guaranteed
to terminate in polynomial time in the written length of ¥ and ® and that deter-
mines whether or not ¥ kg ®. There exist useful, though incomplete, tractable
sets of inference rules for first order logic. However, much more powerful tractable
rule sets can be given if first order formulas are written in a non-standard syn-
tax. A “taxonomic syntax” for first order logic is presented in [McAllester et al.,
1989). A more elaborate “Montagovian syntax” for first order logic, incorporating
quantificational aspects of English noun phrases, is presented in [McAllester and
Givan, 1989]. The polynomial time inference procedure used here to solve Schu-
bert’s steamroller is defined by a set of inference rules stated in a Montagovian
syntax. The inference relation defined by these inference rules appears not to be
definable in the classical syntax of first order logic.

2 Montagovian Syntax

In this section we present a Montagovian syntax for first order logic similar to
that described in [McAllester and Givan, 1989]. The classical syntax for first order
logic involves two grammatical categories — formulas and terms. The Montago-
vian syntax presented below also involves two syntactic categories — formulas and
class expressions. Formulas denote truth values and class expressions denote sets.
Constant symbols and variables are treated as class expressions that denote sin-

1

gleton sets. In the following, ® is a formula; C, C;, C, are class expressions; and
R is a binary relation symbol.

® A class expression is one of the following:

— A class symbol (monadic predicate symbol).

— A constant symbol or variable.

— An intersection expression (intersection C; C;).
— A union expression (union C; Cs3).

— A X-expression (A z ®(z)), where z is a variable.

— An expression (R (some C)) or (R (every C)).
e A formula is one of the following:

— A subset formula of the form (every C; Cj).

— An intersection formula of the form (some C; Cs).

— An existence formula of the form (there-exists-a C).
— An at-most-one formula of the form (at-most-one C).

— Any Boolean combination of the above formulas.

Before giving a formal semantics, it is useful to consider some examples of
formulas and their associated meanings. If P and Q are class symbols then (every
P Q) is a formula which is true if the set denoted by P is a subset of the set denoted
by Q. If man is a class symbol that denotes the set of all men, and runs is a class
symbol that denotes the set of all things that run, then the formula (every man
runs) is true if every man runs. The formula (some man runs) is true if some
man runs.

If John is a constant symbol (or variable) then the formulas (every John
runs) and (some John runs) are semantically equivalent and we can use (John
runs) as an abbreviation for either formula. Similarly, we write (1ikes John)
as an abbreviation for either of the class expressions (likes (every John)) or
(likes (some John)).

If owns is a relation symbol, and denotes the predicate which is true of two
objects if the first owns the second, then the class expression (owns (some car))
denotes the set of individuals that own some car. If policeman is a class symbol
that denotes the set of all policemen, then the formula (every policeman (owns
(some car))) is true if every policeman owns a car.

Our formal semantics for the Montagovian syntax is a (drastic) simplification
of Montague’s original semantics for English [Montague, 1973].1 Just as in classical
syntax, a model of our Montagovian language is a first order model, i.e., a domain
D together with an interpretation of constant, class, and relation symbols. Each
first order model interprets each constant symbol as an element of its domain. A
model also interprets each class symbol as a subset of its domain and each relation
symbol as a binary relation on its domain, i.e., a set of pairs of domain elements.

If M is a first order model, and p is a variable interpretation over M, ie., a
mapping from variables to elements of the domain of M, then we write V(e, M, p)
for the semantic value of the expression e in the model M under variable interpre-
tation p. If C' is a class expression then V(C, M, p) is a subset of the domain of
M. If ® is a formula, then V(®, M, p) is a truth value, either T or F.

e For class symbol P, V(P, M, p) is the set M(P).

e For constant ¢, V(c, M, p) is the singleton set {M(c)}.

¢ For variable z, V(z, M, p) is the singleton set {p(z)}.

e V((intersection C; Cy), M, p)is V(C;, M, p) NV(Cy, M, p).
¢ V((union C; C3), M, p) is the set V(Cy, M, p)UV(Ca, M, p).

* V((A z &(z)), M, p) is the set of all d such that V(®(z), M, plz := d]) is T where
plz := d] is the same as p except that it interprets z as d.

e V((R (every C)), M, p) is the set of all d such that for every d’ in V(C, M, p) the pair
<d, d'> is an element of the relation denoted by R. (Consider the class expression (loves
(every child)).)

* V((R (some C)), M, p)is the set of all d such that there exists an element d’ in V(C, M, p)
such that that the pair <d, d'> is an element of the relation denoted by R. (Consider the
class expression (loves (some child)).)

e V((every C W), M, p) is T if the set V(C, M, p) is a subset of V(W, M, p)-
e V((some C W), M, p)is T if the setV(C, M, p) NV(W, M, p) is non-empty.
® V((there-exists-a C), M, p)is T if V(C, M p) is non-empty.

¢ V((at-most-one C), M, p) is T if V(C, M p) has at most one member.

¢ Boolean combinations of atomic formulas have their standard meaning.

Binary relation symbols, in the presence of equality, are in some sense sufficient
to express arbitrary first order facts. We leave it to the reader to verify that, if
we restrict our attention to languages with only constants and unary and binary

1Qur class expressions play the role of both verb phrases, as in (owns (some car)), and of
incomplete noun phrases, as in (brother-of (some policeman)). Montague, of course, treated
these as separate syntactic categories. Montague also treated complete noun phrases, such as
(every policeman), as another syntactic category with its own denotational semantics. The
treatment of propositional attitudes makes Montague’s formal language yet more complex.

3

relation symbols, then every classical first order formula can be translated to a
logically equivalent formula of Montagovian syntax and vice versa. Montagovian
syntax is really just a syntactic variant of first order logic.

3 Schubert’s Steamroller

Schubert’s steamroller is a logical puzzle originally stated in English. Each sentence
of the English statement of the problem is given below along with a translation of
that sentence into a set of formulas in our Montagovian syntax for first order logic.

Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of
each of them.

(every wolf animal) (there-exists-a wolf)
(every fox animal) (there-exists-a fox)

There are some grains, and grains are plants.
(there-exists-a grain) (every grain plant)

Caterpillars and snails are much smaller than birds, which are much smaller than
foxes, which are much smaller than wolves.

(every caterpillar (is-smaller-than (every bird)))
(every snail (is-smaller-than (every bird)))
(every bird (is-smaller-than (every fox)))

(every fox (is-smaller-than (every wolf)))

Wolves do not like to eat foxes or grains, while birds like to eat caterpillars but
not snails.

—(some wolf (eats (some fox))) —(some wolf (eats (some grain)))
(every bird (eats (every caterpillar))) -(some bird (eats (some snail)))

Caterpillars and snails like to eat some plants.

(every caterpillar (eats (some plant)))
(every snail (eats (some plant)))

Every animal either likes to eat all plants or all animals much smaller than itself
that like to eat some plants.

(every animal
(union
(eats (every plant))
(A z (z (eats (every
(intersection
animal
(is-smaller-than z))))))))

Prove there is an animal that likes to eat a grain-eating animal.

(some animal
(eats (some (intersection
animal
(eats (some grain))))))

A formula of Montagovian Syntax is called quantifier-free if it does not contain
any A-expressions. The “quantifiers” some and every that appear in noun phrases
are considered to be quantifier-free combinators. In [McAllester and Givan, 1989]
we show that satisfiability is decidable (NP-complete) for the quantifier-free frag-
ment of the Montagovian syntax presented in that paper. Although the Mon-
tagovian syntax presented here is somewhat more elaborate, we conjecture that
the quantifier-free fragment remains decidable. When translated into our Mon-
tagovian syntax, all of the sentences of Schubert’s steamroller are quantifier-free
except for the second to last sentence above, which involves a single A-expression.

4 Polynomial Time Inference

Figure 1 gives a set of 33 inference rules stated in our Montagovian syntax. We
are actually interested in the rules in figure 1 plus all contrapositives of those rules.
Each inference rule is analogous to an implication of the form YiA--- 0, 5 @
where each U; is an antecedent and @ is the conclusion. A contrapositive of a rule
Uy A---¥,, — ® is a rule of the form

\Ifl/\---/\\I’;_l/\‘I@/\\IfH.l/\---/\‘I’n-—)‘1\1';.

In the contrapositive, the conclusion has been interchanged with one of the an-
tecedents and both of the interchanged formulas have been negated. If a given
rule is semantically sound, then so is each of its contrapositives. We conjecture
that the rule set consisting of the rules in figure 1 plus all contrapositives of those

Y]
(10)

(13)

(16)

(19)
(21)
(23)

(25)

(27)

(29)

31)

(1) ¥, -v 2 v 3 v
® ¥ v
4 o By @ 6) ovve, ¢
vyvo VY v
(every C C) (8) (there-exists-a c) (9) (at-most-ome c)
(there-exists-a C) (11) (some C W) (12) (some C W)
(some C C) (there-exists-a () (some W C)
(every C W) (14) (some C W) (15) (some C W)
(every W 2Z) (every C 2) (at-most-one C)
(every C 7) (some Z W) (every C W)
(at-most-one W) (17) —(at-most-one C) (18) —(every C W)

(every C W)
(at-most-one C)

(every C' (union C W))
(every (intersection C W) C)

(every C Z), (every W Z)
(every (union C W) 2Z)

(some C W)

(there-exists-a (intersection C W))

(every C (union W Z2))
—(some C W)

(every C Z)

(every C W)
(every (R (some C)) (R (some W)))

(some C' W)
(every (R (every C)) (R (some W)))

(20)
(22)
(24)

(26)

(28)

(30)

(32)

(there-exists-a C')

(there-exists-a C)

(every W (union C W))
(every (intersection C W) W)

(every Z C), (every Z W)

(every Z (intersection C W))

- (there-exists-a C)

(every W (R (every C)))

(every C (union W Z))
- (some C Z)

(every C W)
(every C W)

(every (R (every W)) (R (every C)))

(there-exists-a (R (some (C)))

(there-exists-a C)

Figure 1: Some inference rules for Montagovian Syntax. The letters C, W, and Z,

range over class expressions, ¢ ranges over constants and variables, ® and ¥ range
over formulas, and R ranges over relation symbols.

rules is local (see below), and thus generates a polynomial time decidable inference
relation.

The inference rules in figure 1, together with their contrapositives, determine
a sound inference relation for formulas expressed in our Montagovian syntax for
first order logic. This (incomplete) first order inference relation appears not have
any definition in the classical syntax for first order logic. 2 We have constructed a
polynomial time inference procedure based on this set of inference rules. A general
theoretical framework for constructing polynomial time inference procedures is
presented in [McAllester, 1990]. Let R be any set of inference rules. The following
definition is from [McAllester, 1990).

Definition: We write ¥ H g ® if there exists a proof of & from the
premise set ¥ such that every proper suberpression of a formula used
in the proof appears as a proper subexpression of ®, a proper subex-
pression of some formula in X, or as a closed (variable free) expression
in the rule set R.

The following lemma is proved in [McAllester, 1990] .

Lemma: For any given rule set R, there exists a procedure for deter-
mining whether or not £ Hp & which runs in time polynomial in the
written length of ¥ and ®.

The inference relation H p is a restricted version of . For any rule set R,
the relation H g is polynomial time decidable. If the relation F g is intractable,
as is the case for any sound and complete set of rules for first order logic, then
the polynomial time relation H g will be weaker than the relation F r- However,
there is a large class of rule sets for which these two relations are the same. The
following definition is also from [McAllester, 1990] .

Definition: A set R of inference rules is called local if the relation H R
is the same as the relation Fp.

An immediate consequence of the above definitions and lemma is that local rule
sets are tractable, i.e., they generate polynomial time decidable inference relations.
A variety of nontrivial local rule sets is presented in [McAllester, 1990]. Let M
be the set of inference rules in figure 1 together with the contrapositives of those
rules. We conjecture, although we have not yet proved, that M is local. Even if

M is not local, H s is still polynomial time decidable, and it appears to be a very
powerful inference relation.

2This is because the variables in the rules of figure 1 range over class expressions, but there

are no class expressions in classical syntax. Consider for example the classical equivalent of the
Montagovian class expression (brother-of (every man)).

7

5 Socratic Proof Systems

Local rule sets define polynomial time inference procedures. Of course, no poly-
nomial time inference procedure can be complete for first order logic — the 32
inference rules given in the previous section are not complete for our Montagovian
syntax for first order logic. However, it is possible to exploit fast and powerful infer-
ence procedures based on Montagovian syntax in constructing semi-automated ver-
ification systems. In this section we describe a particular kind of semi-automated
verification system called a Socratic Sequent system. A proof in a Socratic sequent
system is a series of lines where each line is a sequent of the form ¥ + & where &
is a set of formulas and ® is a formula.

Definition: A Socratic sequent system is a pair <R, S> where R is a
set of inference rules (deriving formulas from formulas) and S is a set
of sequent rules (deriving sequents from sequents).

Definition: An acceptable derivation in a Socratic sequent system
<R, 5> is a series of sequents where, for each sequent ¥ + &, either
X Fr @ (in which case the sequent is called obvious), or the sequent
follows from earlier sequents using a rule in S.

If the rule set R that defines the obvious sequents is local, then the inference
relation g is polynomial time decidable, and one can therefore determine, in
polynomial time, whether a series of sequents is an acceptable derivation in the
sequent system <R, S>. (Note that finding an acceptable derivation of ® from
% is still an undecidable operation—the critical point is that once we have such a
derivation, we can verify that it is acceptable in polynomial time).

In this section we give a Socratic sequent system that is complete for our
Montagovian syntax for first order logic and show how this Socratic system yields
a one-step solution to Schubert’s steamroller. The sequent rules for our proof
system are given in figure 2. The rules of obviousness of our Socratic system

include all of the inference rules in figure 1 plus the following two rules concerning
A-expressions:

(33) @(y), (focus-on y)
(every y (Az &(z)))

3The term “Socratic proof” was introduced in [Crawford and Kuipers, 1989] to describe any
system in which steps of a proof are verified using an automated reasoning procedure. Our notion
of a Socratic sequent system is a special case of this general concept.

(S1) Tu{¥}t+ @ (S2) T+

SU{-¥}F & TU{¥}F @
- T+®

(83) XU (focus-on z) & (S49) ZTF+ o
TF & SU{YIF &

(S5) X F (there-exists-a C) (S6) X I (some C W)
ZU{(every z C)} F & ZU {(every z C), (every z W)} &
D o TH®

(87) ZTuU{(every z C)}F (every W (R z)) (S8) XU {(every z C)} I (every z W)
Lt (every W (R (every C))) Y+ (every C W)

(S9) T F (at-most-one Z) (S10) XU {(every z; C),(every z; C)}} (every z; z)
Y I (every Z (R (some C))) L I {(at-most-one C)}
ZU{(every z C), (every Z (R z))} + &
b

Figure 2: The Socratic Proof Rules. In these rules C, W, and Z , are class expres-
sions, ® is a formula, and z, z, and z, are variables that do not appear free in X,

¢, C,Z,or W.

(34) (every y (Az ®(z))), (focus-on y)
o(y)

Each of these rules has an antecedent of the form (focus-ony), where y must
be variable. Formulas of this form are used to control the inference process and
have no semantic content. The focus-on antecedents of the above rules restrict
the application of these rules to “focus variables”, i.e., variables y such that the
formula (focus-ony) is given as a premise (there are no inference rules for deriving
formulas of the form (focus-ony)). Note that the sequent rule S3 in figure 2 can
be used to eliminate focus-on premises from sequents. If the A-expression rules
were not restricted with focus-on antecedents, then the inference relation defined
by those rules, together with the rules of figure 1, would be undecidable. Let M’
be the set of inference rules including all rules in figure 1 and their contrapositives,
plus the above two rules for quantifiers. We have a polynomial time implementation
of the inference relation H s, provided there is a bounded level of A-nesting. This
implementation is constructed along the lines described in [McAllester, 1989). We
conjecture that M’ is local, and thus that H » is the same as Fape.

Now let ¥ be the set of formulas of Montagovian syntax used to represent the
premises of Schubert’s steamroller as given in section 3 and let ® be the formula
to be proven. Our implementation of an inference procedure for the rule set M’

has been used to verify that:

(z,, wolf), (focus-on z,),
X U { (x4 fox), (focus-on zj), Fae @
(zp bird), (focus-on z)

This sequent expresses the English statement “to see that ® follows from 3, con-
sider a wolf z,,, a fox z;, and a bird z, — the result is then obvious”. Repeated
use of the Socratic inference rules S3 and S5 can be used to eliminate all premises
other than ¥, and hence derive the sequent & + &. A simple user interface to the
Socratic proof system can be used to automatically apply sequent rules, such as
S3 and S5, that remove extraneous premises. Given this user interface, the above
sequent is a one line solution to Schubert’s steamroller.

6 Discussion

We have constructed a complete proof system for a non-standard syntax for first
order logic. This proof system has the simultaneous features that proofs are short
and yet, if our conjectures are correct, the acceptability of a proof is quickly ver-
ifiable. The proofs in our system are so short that Schubert’s steamroller can be

proved in a single line, by far the shortest known proof in a proof system with
polynomial time checkable proofs.

The conciseness of the proofs in our proof system appears to be due to the
power (and conjectured locality) of the inference rules given in figure 1. This
power appears to depend fundamentally on the use of a non-standard syntax to
express the inference rules—just what aspect of the new syntax makes this added
expression possible is unclear, but one relevant observation is that the quantifier
free fragment of the new syntax can express many facts which require quantifiers in
classical syntax (e.g. (every man mammal)). Our experience indicates that the de-
cision procedure for the inference relation H 5, immediately solves the vast majority
of inference problems that can be stated in the fragment of Montagovian syntax
that does not contain A-quantifiers.* The statement of Schubert’s steamroller in
Montagovian syntax contains only a single A\-quantifier — a quantifier needed to
represent the English anaphora “itself”. Three instantiations of this quantifier are
needed in the solution of Schubert’s steamroller. Our one-line solution specifies
the objects on which the quantifier is to be instantiated — the focus-on premises
in the one-line solution control the use of the instantiation rules 34 and 35.

4We conjecture that validity in the A-free fragment of our Montagovian syntax is decidable,

although it is known that the inference rules in figure 1 are not complete for \-free Montagovian
formulas.

10

The inference relation defined by the inference rules in figure 1 appears not to
have any definition in the classical syntax of first order logic. Thus, Montagovian
syntax appears to play an essential role in the specification of the inference relation
and therefore in the construction of the a Socratic sequent system with extremely
concise proofs. Although this suggests that natural language syntax plays an
important role in human reasoning, it seems sufficient to merely claim that aspects
of natural language syntax can be used to build powerful inference algorithms.

References

[Bibel et al., 1987] W. Bibel, R. Letz, and J. Schumann. Bottom-up enhancements
of deductive systems. In Proceedings of the Fourth International Conference on
Artificial Intelligence and Information Control Systems of Robots, pages 1-9.
North-Holland, Amsterdam, Netherlands, October 1987.

[Cohn, 1984] A. G. Cohn. A note concerning the axiomatization of schubert’s
steamroller in many sorted logic. In Alvey IKBS Inference Research Theme
Workshop, pages 14-21. Alvey Directorate, London, England, September 1984.

[Cohn, 1989] A. G. Cohn. Taxonomic reasoning with many-sorted logics. Artificial
Intelligence Review, 3(2-3):89-128, 1989.

[Crawford and Kuipers, 1989] J. M. Crawford and Benjamin Kuipers. Towards a
theory of access-limited logic for knowledge representation. In First Interna-
tional Conference on Principles of Knowledge PUBLISHER = Morgan Kauf-
mann Publishers, Representation and Reasoning, pages 67-78, 1989.

[Davies, 1988] N. Davies. Schubert’s steamroller in a natural deduction theorem
prover. In Proceedings of Computer Society Specialist Group on Ezpert Systems,
pages 89-102. Cambridge University Press, Cambridge, UK, December 1988.

[McAllester and Givan, 1989] D. McAllester and R. Givan. Natural language syn-

tax and first order inference. Memo 1176, MIT Artificial Intelligence Laboratory,
October 1989. To Appear in AlJ.

[McAllester et al., 1989] D. McAllester, R. Givan, and T. Fatima. Taxonomic syn-
tax for first order inference. In Proceedings of the First International Conference

on Principles of Knowledge Representation and Reasoning, pages 289-300, 1989.
To Appear in JACM.

[McAllester, 1989] David A. McAllester. Ontic: A Knowledge Representation Sys-
tem for Mathematics. MIT Press, 1989.

11

[McAllester, 1990] D. McAllester. Automatic recognition of tractability in infer-

ence relations. Memo 1215, MIT Artificial Intelligence Laboratory, February
1990. To appear in JACM.

[Montague, 1973] Richard Montague. The proper treatment of quantification in
ordinary english. In Approaches to Natrual Language: Proceedings of the 1970
Stanford Workshop on Grammar and Semantics. Reidel, 1973. Reprinted in:

Formal Philosophy: Selected Papers of Richard Montague, ed. by R. H. Thoma-
son, Yale University Press, 1974.

[Oppacher and Suen, 1986] F. Oppacher and E. Suen. Controlling deduction with
proof condensation and heuristics. In International Conference on Automated
Deduction, pages 384-93. Springer-Verlag, Berlin, Germany, July 1986.

[Stickel, 1985] Mark E. Stickel. Automated deduction by theory resolution. Jour-
nal of Automated Reasoning, 1:333-355, 1985.

[Walther, 1984] Christoph Walther. A mechanical solution of schubert’s steam-

roller by many-sorted resolution. In Proceedings of AAAI-84, pages 330-334.
Morgan Kaufmann Publishers, 1984.

12

