MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1342 December 1991

Grammar Rewriting

David McAllester

Abstract

We present a term rewriting procedure based on congruence closure
that can be used with arbitrary equational theories. This procedure is
motivated by the pragmatic need to prove equations in equational theo-
ries where confluence can not be achieved. The procedure uses context
free grammars to represent equivalence classes of terms. The proce-
dure rewrites grammars rather than terms and uses congruence closure
to maintain certain congruence properties of the grammar. Grammars
provide concise representations of large term sets. Infinite term sets
can be represented with finite grammars and exponentially large term
sets can be represented with linear sized grammars. Although the pro-
cedure is primarily intended for use in nonconfluent theories, it also
provides a new kind of confluence that can be used to give canoni-
cal rewriting systems for theories that are difficult to handle in other
ways. For example, under grammar rewriting there is a finite canoni-
cal rewrite system for idempotent semigroups, a theory which has been
shown not to have any finite canonical system under traditional notions
of rewriting,.

Copyright © Massachusetts Institute of Technology, 1991

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the work described in this paper was provided in part by
Misubishi Electric Research Laboratories, Inc. Support for the laboratory’s artificial intelligence

research is provided in part by the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract N00014-85-K-0124.

1 Introduction

In most practical applications of term rewriting systems, such as verifications done
with the Boyer-Moore prover [Boyer and Moore, 1979], confluence can not be
achieved. In such cases attempts to prove true equations often fail. In this paper
a new term rewriting procedure is described that is intended to improve the suc-
cess rate for proof attempts in nonconfluent theories. In cases where normal term
rewriting fails, success can sometimes be achieved by generating a set of normal
forms rather than an individual normal form. This is done using a term ordering
where a single term can have many normal forms all of which are minimal under
that ordering. Somewhat surprisingly, canonicalization under such weak term or-
derings is possible. The canonical form of a given term is taken to be the set of all
normal forms.

The main problem with using sets as canonical forms is that the sets involved
can be quite large. In fact, to improve the success rate in nonconfluent theories
we would like the canonical sets to be as large as possible. Fortunately, large
sets can be compactly represented with context free grammars. A finite grammar
can represent an infinite set of terms. More importantly, very large finite term
sets can be represented by compact grammars. Consider the equational theory
consisting of the single commutativity axiom of the form z + y=y+ =z In this
theory the equivalence class of a sum of n constants contains order 2" terms.
However, a grammar for generating this class contains only order n productions.
As another example consider the theory consisting of a single associativity axiom
z+(y+2) = (z+y)+2z. In this theory the size of the equivalence class of a sum of
n constants is the Catalan number of n — a hyperexponential function. However
the equivalence class of a sum of n constants can be generated by a grammar with
order n® productions. In the equational theory that contains both associativity
and commutativity the grammar for generating the equivalence class of a sum of

n constants grows exponentially in n. However, the grammar is still vastly smaller
than the equivalence class itself.

Using grammars to represent equivalence classes involves the well known con-
gruence closure procedure. Congruence closure is an efficient algorithm for de-
termining the consequences of a finite set of ground equations [Kozen, 1977),
[Shostack, 1978], [Nelson and Oppen, 1980], [Downey et al., 1980]. A finite set
of ground equations can be converted to a grammar that encodes the congruence
relation on terms implicit in the equations. Congruence closure can be viewed as
an algorithm for converting ground equations to grammars. The rewriting proce-
dure described here operates on grammars — a grammar is repeatedly rewritten
to incorporate new ground equations.

The rewriting procedure described here is analogous to ordered rewriting sys-

tems [Bachmair et al., 1987), [Hsaing and Rusinowitch, 1987], [Martin and Nip-
kow, 1990], [Peterson, 1990). It rewrites (representations of equivalence classes
of) ground terms using a set of unordered equations. This rewriting is done in
the presence of a well founded order on ground terms and the rewriting process
is guaranteed to terminate. However, unlike previous ordered rewriting systems,
the order on ground terms is not assumed to be total. The commutativity equa-
tion + y = y 4+ z can be handled by placing both sides of the equation into the
representation of the set being rewritten. Thus the grammar rewriting procedure
described here provides a way of handling non-orientable equations that is differ-
ent from both ordered rewriting and from the use of special unification algorithms
[Jouannaud and Kirchner, 1986).

The grammar rewriting procedure described here has been incorporated into
the Ontic verification system which is under continued development by the au-
thor, Robert Givan, Carl Witty, and Kevin Zalondek. Experimentation with the
procedure is currently under way.

2 Congruence Grammars

Congruence grammars provide a way of compactly representing equivalence classes
of first order terms. Each equivalence class is represented by a nonterminal symbol
of the grammar which generates the elements of the class. Equivalence classes are
always disjoint sets. This observation motivates the restriction that no two produc-
tions of a congruence grammar can have the same right hand side. For example,

we can not have X — a and Y — a where X and Y are distinct nonterminal
symbols.

Definition: A Congruence Grammar is a set of productions of the

form X — f(¥;, .-, Y,), where f is an n-ary function symbol and
each Y; is a nonterminal symbol, and where no two productions have
the same right hand side.

We use the standard definition of a first order term where we assume an infinite
set of function symbols of each arity (number of arguments). Constant symbols
are treated as function symbols of no arguments. So, for example, the production
X — a is a production of the above form where @ is function of no arguments.

The above definition allows us to prove that distinct nonterminal symbols generate
disjoint classes.

Lemma: A given term is generated by at most one nonterminal of a
congruence grammar.

Proof: The proof is by induction on the size of the term. No constant
(zero ary function) can be generated by more than one nonterminal
symbol because this would imply the existence of two productions with
the same right hand side. Now consider a term ¢ such that all terms
smaller than ¢ are generated by at most one nonterminal symbol. Sup-
pose that ¢ is generated by two nonterminal symbols X and Y using
the productions X — f(Z,, ---Z,) and Y — f(W;, ---, W,) respec-
tively. Since no term smaller than ¢ can be generated by more than one
nonterminal symbol we must have that Z; equals W;. But this violates
the assumption that no two productions have the same right hand side.
u

Example, Representing an Infinite Class: Consider the equivalence class of
the constant symbol a under the single equation a = f(a). This infinite equivalence
class is a context free language generated by the following two productions.

X = f(X)
X—>a

Example, An Equivalence Class under Commutativity: Consider n distinct
constants ay, a3, - - -, a, and define the term ¢; to be the sum of the first i constants
associated to the left, i.e., ¢, is ay, t5 is a; +ay, t3 is (a, + a2) + a3, and so on. Note
that for 1 < i < n we have that ¢; is t;_, + a;. Suppose that + is commutative
but not associative. In this case the equivalence class of the term t, is generated
by the nonterminal X, in the grammar containing the 2(n — 1) productions of the
form

Xi = (ai + Xi)

Xi = (Xi + @)

together with the production
X 1 a.

The 27~ terms in this equivalence class are generated by a grammar with 2n — 1
productions.

Example, An AC Equivalence Class: Consider n constants ai, az, ---, a,
and suppose that + is both associative and commutative. Let S be any non-empty
subset of these constants. We can write the set S as {ai, aip, -+, a;,} where
J < himplies i; < 1. We define the term t5 to be the term (---((a;, +ai)+---ay,).
Let U be the set of all n constants. The equivalence class of the term ¢y can be
generated by a grammar with nonterminal symbols of the form Xgs where S is a

nonempty subset of the constant symbols. This grammar contains all productions
of the form

Xs = (Xw + Xv)

where W and V' are disjoint subsets of U/ and S is W U V. The grammar also
contains all productions of the form

Xay = ai.

The equivalence class of ty is generated by the nonterminal Xy of this grammar.
More generally, the nonterminal X generates the equivalence class of ts.

The grammar that generates the equivalence class of ty grows exponentially in
size of U — the grammar contains order 3" productions. This fact can be derived
by observing that each production

Xs = (Xw + Xv)

classifies each element of U in one of three ways — either as a member of W, or
a member of V, or as a member of neither. There are 3" ways of classifying n
constants into three groups. There are actually less than 3" productions because
the sets W and V in the above production must both be nonempty. The number
of productions in this grammar should be contrasted with the number of terms in
the equivalence class. For n = 8 the grammar contains 6,058 productions while
the equivalence class contains over 17 million terms.

With no term ordering the grammar rewriting procedure described in section 4
requires time on the order of 4" to construct the grammar that generates the
equivalence class of ¢y under the equational theory that contains the associativity
and commutativity axioms for +. It seems that this may be acceptable in a large
number of rewriting applications. In the theorems of the Boyer-Moore corpus, for
example, the number of elements of an AC term rarely exceeds three [Boyer and
Moore, 1979]. For n = 5 we have that 4™ is about a thousand, a small number
for modern computers. When a nontrivial term ordering is imposed the grammar
rewriting process generates a smaller grammar and terminates more quickly.

3 Congruence Grammars and Ground Equations

A congruence grammar is a representation of an equivalence relation on terms.
It turns out that those relations which can be represented by finite congruence
grammars are exactly those relations which are the deductive closure of a finite

set of ground equations. This section states some basic results relating congruence
grammars and ground equations.

First, we define the equivalence relation on (all) ground terms represented
by a congruence grammar. This is done by defining an interning operation on
ground terms. The word “interning” is commonly used to describe the way strings
are mapped to variables in most programming languages. Here we are mapping
semantically equivalent terms to the same internal data structure. We assume
a given congruence grammar and define an interning operation such that for any
term ¢, the result of interning ¢, denoted I[t], is a nonterminal of the grammar such
that I[t] generates t. If there is no nonterminal of the grammar which generates ¢
then the grammar is extended with new productions in such a way that the desired
nonterminal is created.

Procedure for Interning a term t:

® Let s1, .-+, s, be the (possibly empty) sequence of immediate
subterms of ¢, i.e., the terms such that ¢ is (81, +++, 8n).

e Let Y3, ---, Y, be the result of recursively interning the terms
S1y *°°, 8.

® Let X — f(Y1, ---, Y,) be the production whose right hand side
is f(Y1, ---, Y,). If there is no such production then create one
with a new nonterminal X and add it to the grammar.

¢ Return the nonterminal symbol X.

Since no two productions share the same right hand side the productions can
be stored in a hash table indexed by their right hand sides. Throughout this
section we assume the presence of such a hash table and assume that hash table
operations can be performed in unit time. Under these assumptions the above
intern procedure runs in linear time in the size of the given term.

For any fixed term t and any sequence of interning operations the nonterminal
symbol I[¢] that results from interning ¢ will be the same for each repeated interning
of t. This allows one to think of the interning operation as a well defined function
from terms to nonterminal symbols determined by the initial congruence grammar.
In fact, the initial congruence grammar determines an equivalence relation on terms
such that two terms s and ¢ are considered to be equivalent if I (3] equals I[t]. For
example, suppose the initial grammar contains the two productions X — f(X
and X — a and let f*(a) be an abbreviation for the term F(f(--- f(a))) with n
occurrences of f. In this case we have that I[f"(a)] equals X for any term of
the form f"(a). This implies that I[g(f"(a))] will be equal to I[g(f™(a))] for any
nonnegative integers n and m. Computing I[g(f™(a))] gives a nonterminal symbol
Y such that the grammar has been extended to include the production Y — g(X).
Although interning can add productions to the grammar, it does not change the

equivalence relation on terms defined by the grammar. Different grammars define
different intern mappings and we will write Ig[s] to mean the result of interning
the term s with respect to the grammar G.

Theorem: For any finite set H of equations between ground terms
there exists a finite congruence grammar G, (H) such that that for any
two ground terms s and ¢t we have that H |= s = t if and only if I, mls]
equals Ig,(m)[t]. Furthermore, assuming that hash table operations can
be done in unit time, the grammar G,(H) can be computed from H in
nlogn time where n is the written length of H.

The proof of this theorem is based on well known algorithms for congruence closure
[Kozen, 1977], [Shostack, 1978], [Nelson and Oppen, 1980], [Downey et al., 1980]. A
procedure for incrementally incorporating new equations directly into a congruence
grammar is given in section 7. A nonoptimal algorithm for converting a set of
equations H to a congruence grammar G,(H) can be described as follows. For
each term s occuring in H we introduce a nonterminal symbol X,.! For each
constant symbol a appearing in H we construct the production X, — a. For
each term f(w, --- wy) occuring in H we add the production Xj(y,, ... w,) —
f(Xuwr, +++, Xu,). Now we process the equations in H while maintaining a union-
find structure on nonterminal symbols. For each equation s = w in H we call
union on the nonterminals X, and X,,. After processing all equations we select a
canonical representative from each equivalence class of nonterminal symbols and
replace every nonterminal in the grammar by its canonical representative. The
resulting grammar need not be a congruence grammar because it is now possible
that two distinct productions have the same right hand side. Any time we have
two productions X — f(Wy, --- W,) and Y — F(Wy, .-+ W,) with the same
right hand side we uniformly replace all occurances of X in the grammar by Y.
Such replacement is continued until we have a congruence grammar.

The transformation from equations to grammars has an inverse — one can
transform a grammar back into a set of equations. For each nonterminal symbol
X we construct a new constant symbol cx. The constants of the form cx will be
called internal constants to distinguish them from the other (external) constants.
A term that does not contain any of these internal constants will be called an
external term. We now have the following definition and lemma.

Definition: If G is a congruence grammar we define E,(G) to be a set

of equations of the form cx = f(ewy, -+, cy,) where G contains the
production X — f(Y;, ---, Y},).

1(We say that s occurs in H if s is either one side of an equation in H orsis a subterm of a
term in an equation in H.

For example, if G contains the two productions X — f(X) and X — a, then
E,(G) contains the two equations cx = f (cx) and cx = a.

Lemma: For any congruence grammar G, and any two external ground
terms s and ¢, we have that I¢[s] equals I[t] if and only if E,(G) E
s=1.

Proof Sketch: One can show by induction on the size of a term s that
E(G) = s = crgls). Then if Ig[s] = Ig[t] = X we have E(G) Es=cx
and Ey(G) =t = cx 30 E,(G) |= s = t. To show the converse we add
a production X — cx for each nonterminal X. These productions
do not alter the intern function on external terms. We then consider
the congruence relation (on both internal and external terms) defined
by the intern function for this extended grammar. This congruence
relation provides a semantic model of E,(G). So if Ig[s] # Ig[t] then
EG)Es=t =

The operation E, introduces internal constants into the equation set. These in-
ternal constants are irrelevant to the equivalence relation on external terms defined
by the equation set. One can define the operation G, so that it eliminates inter-
nal constants from the grammar. The equation sets constructed by E, are useful
for analysis and conceptual definitions but they are never actually computed. All
computation is done directly on grammars.

4 Grammar Rewriting

This section defines the basic concepts of grammar rewriting.

Definition: A grammar rewriting system is a pair <FE, w> where
E is a set of equations between first order terms (usually containing
variables) and w is a weight function which assigns a positive integer
to every ground term.

The weight function induces a well founded order on ground terms by setting
s <t if and only if w(s] < wlt]. Unlike the orderings used in traditional ordered
rewriting systems, e.g., [Martin and Nipkow, 1990], the weight orderings used
in grammar rewriting are not total on ground terms. In term rewriting one is
interesting in simplifying one particular term. Grammar rewriting is also focused

on a particular term. However, in grammar rewriting this term is represented by
a nonterminal symbol of a grammar.

Definition: We define the “one step” rewrite relation — g on ground
terms so that o[s] +g oft] provided either s =t € Eort = s € E,
every free variable of ¢ appears in s, and o is a ground substitution.

For example, if E is the set {g(z, f(z)) = c} then we have that g(k(a), f(h(a))) —E
c but we do not have ¢ — g g(h(a), f(h(a))).

Definition: A grammar term is a pair <X, G> where G is a finite
congruence grammar and X is a nonterminal that appears in G.

Definition: We say that a term s is a minimal representative of a
grammar term <X, G>, with respect to a weight function w, if s is
generated by X under G' and no other term generated by X is smaller
than s according to w.

Definition: We define the one step rewrite relation F<E, w> ON gram-
mar terms so that

<X, G> g uw <X, Gr(Ey(G) U {u = v})>

provided u is a subterm of some minimal representative of <X, G>
under the weight function w, u —g v, Ig[u] # Ig[v], and X’ is the
nonterminal of G,(E,(G)U{u = v}) that generates the terms generated
by X under G.

The one-step grammar rewriting operation defined above corresponds to se-
lecting a term minimally generated by X, rewriting that term according to some
equation in E, and then modifying the grammar so that the result of the rewrite
is included in the language generated by X. A procedure for efficiently computing
G+(E¢(G) U {w = u}) from G and the equation w = u is given in section 7. This
procedure does not construct an equation set — it performs a direct operation on
the grammar.

The definition of the rewrite relation on grammars requires that the new equa-
tion being incorporated into the grammar is indeed new, i.e., it can not be an

equation that is already implied by E,(G). This allows for the existence of normal
forms as defined below.

Definition: We say that a grammar term <X, G> is in normal form

if there is no grammar term <X’, G'> such that <X, G> g o
<X', G'>.

As an example of rewriting, let C be the equation set consisting of the single
commutative law z+y = y+z. Let 1 be the weight function that assigns every term
the weight 1 (this weight function corresponds to the empty ordering on terms).
Let G be the grammar consisting of the productions X; — a, + X3, X3 — a3+ X3,

csy Xpno1 = ap_1 + X5, X, = a,. In other words, G is the grammar generated
by interning the term a; + (a2 + (- - - + a,)) starting with the empty grammar. In
the grammar rewriting system <C, 1> we have that the grammar term <X;, G>
rewrites to a normal form <X;, G’> where G' is the grammar consisting of the
productions of the form
Xi = a;i+ Xip

Xi— X1+ a;

together with the production
X, — a,.

A similar example can be given for the equation set AC consisting of the associative
and commutative laws.

Certain restrictions on the weight function w can be used to ensure that grammar
rewriting always terminates.

Definition: A grammar rewriting system <E, w> is called terminat-
ing if there are no infinite rewrite chains of the form <X;, G;> B, u>
<X2, G2> Y CE, u> <X3, G3> B w> .

Definition: A weight function w will be called a polynomial weight
function if for each function symbol f of n arguments there exists a
polynomial P¢(z,, ---, z,)in n variables with coefficients greater than
or equal to 1, where each r; appears in at least one term, where there
is a constant term of at least 1, and such that for any ground terms s;,
"+ Sn We have w[f(s1, -+, 8,)] = Py(w[sy], -+ -, ws,]).

Orderings based on polynomial weight functions are well known in the term rewrit-
ing literature.

Lemma: For a given finite set of function and constant symbols, and
a given weight k, there are only finitely many terms that can be con-

structed from those symbols that have weight less than or equal to
k.

Because grammar rewriting does not introduce new constant or function sym-
bols, and because matching is restricted to minimal weight terms, we have the
following well foundedness lemma for grammar rewriting.

9

Lemma: If w is a polynomial weight function and E is any finite set
of equations then <F, w> is terminating.

We use -5 . to denote the reflexive transitive closure of the relation <, w>-

Definition: Let Io[s] be the grammar term that results from intern-
ing s relative to the empty grammar. If Iy[s] e w <X, G> and
<X, G> is in normal form, then <X, G> is called a normal form of
s.

Definition: For any ground term s and set of equations E we define
|s|e to be the set of terms that can be proven to be equal to s using
the equations in E.

Definition: A grammar rewriting system <E, w> is called complete
if for each ground term s, and any normal form <X, G> of s, every
minimal member of |s|g is generated by X under G.

Definition: A grammar rewriting system is called canonical if it is
terminating and complete.

A canonical grammar rewriting system <E, w> provides a decision procedure for
the equational theory E.

Theorem: Let <E, w> be a canonical grammar rewriting system
and let s and ¢ be any two ground terms. Let <X, G> and <X', G'>
be normal forms for s and ¢ respectively under the rewriting system
<E, w>. Let G" be the grammar that encodes all equivalences encoded
in G or 7, i.e., G" is G,(E,(G) U E,(G")). We have that E Es=tif
and only if IGII [8] = IGII [t].

This lemma follows from the invariant that for any ground term u if L[u] =g o

<X, G> then X generates u under G and if <X, G> is a normal form of u then
X generates all minimal elements of |u|g.

5 Examples

We let w be the simple polynomial weight function such that for every term
f(s1, -+, 8n) we have that w[f(s;, ---, $a)] = wls1) + -+ + wls,] + 1. Let

10

A and C be the two equation sets {z+ (y+2) = (z+y)+ 2} and {z +y = y+z}
respectively. Let AC be AU C. One can easily verify that the systems A, C, and
AC are all canonical under this ordering.

Let w be any polynomial weight function satisfying w[s + t] = 2w[s] + w[t] + 1.
Under this weight function we have that w[s + t] < wlt + s] provided w[s] < wt]
and we have w(s + (¢ + u)] < w[(s +t) + u] for any terms s, ¢, and u. The equation
set AC U{z+ (y+2) =y+ (z+2)} forms a canonical system where every term
normalizes to a grammar term whose minimal representatives are the weight sorted
permutations of the addends under a standard parenthesization. If the addends
are linearly ordered by weight then there is only one minimal representative.

We now consider Abelian groups. Let w be any order satisfying w[s+t] = w[s]+
wt] + 1 and w[—s] = 2w[s]. Under this ordering we have that w[(—s) + (=) <
w[—(s+t)]. The equation set AC U{—(z+y) = (—z)+(-y), z+(—z)=0, z40=
x} is a canonical system under this ordering. Every term normalizes to a grammar
whose minimal representatives form an AC equivalence class. Refinements of the
ordering can give canonical systems which generate smaller grammars.

There seems to be little difficulty in handling the well known theories of ACI,
groups of exponent 2, and Boolean rings where each theory can be handled with
different weight functions that correspond to different minimal term sets.

Let E be AC U{f(z+ z) = 1}. This is given in [Martin and Nipkow, 1990]
as an example of a theory that can not be handled by ordered term rewriting
without special unification procedures. However, this equation set is canonical

under grammar rewriting using the simple ordering given in the first example of
this section.

6 Locally Context Free Theories

Let B (for Band) be the equation set {z*(y*z) = (z*y)*z, z*z = z}. It has been
shown that no finite term rewriting or word rewriting system can be canonical for B
[Baader, 1990). However, it is possible to show that B itself is a canonical grammar
rewriting system relative to the empty term ordering (and under fair rewriting
as defined below). The proof of this result can be generalized and provides an
interesting class of canonical grammar rewriting systems. Throughout this section
we use the weight function 1 that assigns the weight 1 to all terms. This induces the
empty ordering on terms. We start with some simple definitions and observations.

Throughout this section we let E a fixed but arbitrary finite set of equations.

Definition: E is called fully bidirectional if for each equation s =t in
E the terms s and ¢ contain the same set of variables,

11

Recall that a grammar rewriting system <E, w> is complete if any normal form
of a term s represents all minimal elements of |s|g.

Lemma: If E is fully bidirectional then <E, 1> is complete.

If E is fully bidirectional and all terms are the same weight then grammar
rewriting starting with a term s corresponds to unrestricted enumeration of the
equivalence class of s. If this process leads to a normal form then that normal form
must be a grammar that generates the entire equivalence class of s. Of course,
for many equation sets E the system <E, 1> fails to produce any normal forms
and the above lemma is vacuously true. However, many equation sets do generate
normal forms under the empty term ordering.

Definition: An equation set E is called finitary if for every ground
term s the set |s|g is finite.

Lemma: If E is fully bidirectional and finitary then <E, 1> is canon-
ical.

This follows directly form the fact that if E is finitary then the enumeration
of the equivalence class of a term must terminate. The above lemma immed;-
ately implies that <A, 1>, <C, 1> and <AC, 1> are all canonical. The next few
definitions and lemmas give a more interesting class of canonical systems.

Definition: An equation set E is called locally contezt free if, for every

ground term s, the set |s|g can be generated by a finite congruence
grammar.

Note that if E is locally context free then each equivalence class under E is
a context free language in the traditional sense. If E is locally context free then
normal forms exist. This does not imply, however, that the grammar rewriting
system is terminating. Let E contain the three equations f(z) = z, g(z) = =,
and f(z) = f(g(z)). E is locally context free. However, by repeatedly selecting
only the last equation it is possible for a grammar rewrite system (under the
empty term ordering) to run forever. We can rule out this kind of nontermination
by considering only fair rewriting schemes. Intuitively, a rewrite system is fair
provided that no equation is ignored indefinitely.

Definition: An infinite chain <X;, G;> =B uw> <Xz, G2> H g, W
<X3, G3> g, 45 - is said to be fair if for any subterm u of a

12

minimal representative of a grammar term <X;, G;>, if u —g v then
there exists some grammar term <X;, G;> with j > i such that either
u is not a subterm of minimal representative of <X;, G;> or I;[u] =

Ig;[v].

Definition: A grammar rewriting system <E, w> is said to termi-
nate under fair rewriting if there is no fair infinite rewriting chain
for <E, w>. The system <E, w> will be called canonical under fair
rewriting if it is complete and terminates under fair rewriting.

Lemma: If E is fully bidirectional and locally context free then <E , 1>
is canonical under fair rewriting.

If E is fully bidirectional and all terms have the same weight then grammar
rewriting of a term s corresponds to the enumeration of the entire equivalence class
of s. If this enumeration is done in a fair manner then we eventually generate every
equation of the form u = v that is provable from E where u and v are subterms
of terms equivalent to s. If s is generated by a finite grammar then this grammar
can be written as G,(H) where H is some finite set of equations of this form. So
the rewrite process must eventually construct this final grammar and terminate.

To show that the equation set B is canonical it now suffices to show that it is

locally context free. The following proof is due largely to Robert Givan and Carl
Witty of the MIT AI Laboratory.

Definition: An equation set E is said to be locally finite if for any finite
set S of constant symbols the set of all terms that can be constructed
from the constants in S and the functions in E fall into a finite number
of equivalence classes under E.

For example, the equation set AC U{z+z = z} has the property that for any fixed
set of n constants, every sum that can be constructed from those n constants fall

into 2™ — 1 equivalence classes — one equivalence class for each nonempty subset
of the constants.

It is interesting to note that E is locally finite if and only if for any finite set S
the free E-algebra generated by $ is finite.

Lemma: If E is locally finite and fully bidirectional then E is locally
context free.

13

Consider a term s and consider a term t in |s|g. If E is fully bidirectional
then every constant that appears in ¢ must appear in either s or E. Since E is
locally finite there are only a finite number of equivalence classes of such terms. By
creating a nonterminal symbol for each equivalence class one can show construct a
grammar for generating the equivalence class of s. Given that a grammar exists, it

can be computed using the fact that <E, 1 >> is canonical whenever E is locally
context free.

The converse of the above lemma does not hold. There are locally context free
equation sets which are not locally finite. The empty equation set is an example.

One can use the infinite canonical word rewrite system for B given in [Siekmann
and Szabo, 1982] (also described in [Baader, 1990]) to prove that B is locally finite
— for any set of n constants there exists a k such that all words built the given
constants can be simplified to a word no longer than k. The above lemma now
implies that <B, 1> is canonical under fair rewriting.

7 Incorporating Equations into Grammars

This section gives an algorithm for computing G,(E,(G) U {s = t}) from the
grammar G and the equation s = ¢. The grammar G,(E,(G)U {s = t}) is directly
computed from G by incrementally adding and removing productions. The algo-
rithm given here is quite similar to the congruence closure procedure described in
[Nelson and Oppen, 1980]. The algorithm has been reformulated here to operate
on grammars and optimized to run in order nlogn time (under the assumption
that hash table operations take unit time).2

This procedure uses the internal constants of the form cz that are associated
with the nonterminals of the grammar. The procedure maintains an equivalence
relation represented by three sets of equations. First, the procedure maintains
a congruence grammar. Second, the procedure maintains a queue of equations
of the form ¢z = cy. Third, an additional set of equations between constants
of the form ¢z is maintained in a union-find structure on these constants. The
equivalence relation determined by these three sets of equations is maintained as
a fixed invariant of the procedure.

As mentioned above, equations between constant symbols can be handled by
the well known union-find procedure.® Consider a set of equations a; = b, a; =
by, +++, an = by,. This set of equations can be represented in a union-find structure

2 A somewhat different nlog n algorithm for congruence closure is described in [Downey et al.,

1980].

3A description of the union-find protocol and efficient union-find algorithms can be found in
most modern algorithms texts.

14

by executing union(a;, b;), union(az, b;), - -, union(a,, b,). To see if an equation
¢ = d follows from the given equations one computes find(c) and find(d). The

equation ¢ = d is provable if and only if these two find operations return the same
value.

In the following procedure we assume that the find operation is such that
find(cx) is a canonical member of the equivalence class of cx relative to the
equivalence relation encoded in the union-find structure. In other words, find(cx)

is a constant cy such that find(cy) equals c¢y. We also assume that when two
equivalence classes are merged with a union operation the canonical representative

of the resulting equivalence class is selected to be one of the two previous canonical
representatives.

Definition: A constant cx is said to be dead if find(cx) is some
constant other than cx. A constant that is not dead is said to be alive,
i.e., a constant cy is alive if find(cy) equals cy.

Procedure for computing G,(E,(G) U {s = t}):

1. Let Z and W be the nonterminals Ig[s] and Ig[t].
2. Initialize S to be a queue containing the single equation ¢z = ¢y
3. While the queue S is not empty do the following.

(a) Remove an equation ¢z = cw from the queue S.

(b) Let cx be find(cz) and let ¢y be find(cw).

(c) I cx is the same symbol as ¢y then do nothing, otherwise:
(d) Call union(cx,cy).

(e) Swap the roles of X and Y if necessary so that cx is dead and
cy is still alive.

(f) Let P be the set of all productions involving X.
(g) Remove all the productions in P from the grammar.
(h) For each production Z — f(W;, ---W,) in P do the follow-
ing.
i. Let cz+ be find(cz) and for each W; let cw; be find(cw,)
il. If there is no production whose right hand side is FWy, .., W)
then add the production 2’ — f(W!, .., W).
iii. If there is already a production U — Fwy, -, W)
where U is different from Z’ then add the equation ¢y =
cz to the queue S.

15

This procedure maintains the invariant that no two productions in the grammar
have the same right hand side, i.e., the grammar is always a congruence grammar.
Furthermore, the equivalence relation encoded in the equations in the grammar,
the queue, and the union-find procedure is maintained as a fixed invariant. To
check this one must check that every added equation is derivable from previous
equations and that every equation removed in step g is derivable from previous
equations plus those equations added in step h. The procedure also maintains the
invariant that every nonterminal in every production is “alive”, i.e., if X appears
in a production of the grammar then find(cx) equals cx. Every nontrivial ex-
ecution of the main loop reduces the number of living nonterminal symbols, so
the procedure must terminate. Furthermore, when the procedure terminates the
equational theory enoded in the union-find structure can be dropped without al-
tering the induced equivalence relation on external terms. To prove this consider
an extended grammar that includes all productions of the form X — ¢y where
X is a living nonterminal and find(cy) is cx. The equation set of the extended
grammar encodes the equivalence relation of the original grammar plus the equiv-
alences in the union find structure. However, this extended grammar encodes the
same intern function on external terms as the unextended grammar.

If we assume a bound on the number of arguments taken by function symbols,
e.g., no function takes more than three arguments, and assume that hash table
operations can be performed in unit time, then under an appropriate implemen-
tation of union-find it can be shown that the above procedure terminates in order
nlogn time where n is the number of productions in the original grammar. In
practice the incorporation of a single new equation into a large grammar requires
the manipulation of only a small subset of the grammar.

8 A Grammar Rewriting Algorithm

In this section we consider a fixed but arbitrary grammar rewriting system <E, w>,
where w is a polynomial weight function, and give a procedure for computing all
the ways in which a given grammar term can be rewritten under <E, w>. The
procedure is incremental so that if <X, G> Pk w> <X', G'> then the set of
possible ways of rewriting <X’, G'> can be computed incrementally from the set
of possible ways of rewriting <X, G>. Incremental procedures can be defined by
“inference rules” that are run in an incremental forward chaining manner. We first
give rules for deriving the weight of nonterminal symbols as defined below.

Definition: For each nonterminal Y of a congruence grammar the

weight of Y, denoted w[Y], is minimum weight of all terms generated
by Y.

16

The following inference rule can be used to propagate bounds on weights.
w[X;] < w;

w[X,] < w,
Z - f(Xy, -+, X,)

w[Z] < Py(wy, -+, wn)

For constant symbols (functions of no arguments) the above inference rule can
be used to generate a weight bound directly from a production of the form Z — c.
Weight bounds generated by constants can then be propagated to other symbols.
One can show that, for any given nonterminal Y, the tightest bound that can be
derived for w[Y] using the above rule is in fact the weight of Y as defined above.
In practice, simply running this rule over the entire grammar until the tightest
bounds are derived seems to be an acceptable incremental algorithm for computing
the weight of nonterminals. However, the theoretical worst case behavior of this
this algorithm is quite bad. An n logn algorithm can be derived by placing derived
bounds on a priority queue and processing the tightest bounds first.

Procedure to compute the weight of all nonterminals:

1. Initialize S to be the priority queue containing all pairs of the
form <Y, w> where the grammar contains the production Y — a
where a is a constant and w is the weight of a.

2. Until S is empty, or until every nonterminal has been assigned a
weight, do the following.

(a) Remove a pair <Y, w> from S such that w is the minimum
weight of all pairs on S.

(b) If Y has already been assigned a weight do nothing. Other-
wise:

(c) Assign Y the weight w.

(d) For each production Z — f(Wj, ---, W,) such that some W;
is Y and such that each W; has been assigned a weight w;,
add the pair <Z, Ps(w, ---, wy)> to the queue S.

Each pair added to the queue has a larger weight than the last pair removed
from the queue. This implies that the pairs removed from the queue have mono-
tonically increasing weight. This, plus the assumed properties of the polynomial
weights, implies that for each nonterminal symbol Y the weight assigned to Y is

17

the minimum over all the productions from Y of the weight computed from that
production. One can check that by selecting productions that minimize weight
that if Y has been assigned weight w then Y generates a term of weight w. Fur-
thermore, one can prove by induction on the weight of a term s that the weight of
8 is at least as large as the weight assigned to I[s], the symbol that generates s.
Since the procedure only assigns a single weight to each nonterminal symbol the
number of pairs placed on the priority queue is linear in the size of the grammmar.
Order n insertions and deletions from a priority queue can be done in n log n time.
Assuming a bound on the number of arguments taken by any function symbol, the
other operations in this procedure can be performed in order n time so the total
running time is order nlogn.

The next step is to identify those nonterminals in the grammar that generate
subterms of minimal representatives of <X, G>.

Definition: A production Z — f(Xy, ---, X,) is minimal if w[Z] =
Ps(w[Xy], -+, w[Xa)).

Lemma: If s is a minimal representative of the grammar term <X, G>
then s is generated by X in that subset of G which consists of just the
minimal productions of G.

Definition: We say that a nonterminal symbol Y is a minimal subterm
nonterminal of a grammar term <X, G> if either Y is X (X is a
minimal subterm nonterminal) or G contains a minimal production

W — f(Z,, ---, Z,) where W is a minimal subterm nonterminal and
some Z;is Y.

As an example consider the grammar term <X , G> where G consists of the
five productions

X — f(Y), Y—>9(2Z), Z-a
Z - (W), W f(2).
The production Z — k(W) is not minimal — it does not provide a smallest
term generated by Z. However, all other productions are minimal, including the
production W — f(Z) which provides a smallest term generated by W. However,

the nonterminal W is not a minimal subterm nonterminal — it does not generate
a subterm of a minimal representative of <X y G>.

The procedure for constructing matches uses a simple extension of the grammar.
Definition: An estended congruence grammar is a congruence gram-

mar such that, for each nonterminal X appearing in a production of
the grammar, the grammar also contains the production X — cy.

18

We define a match to be a triple, match[Y, s, o], where Y is a nonterminal, s
is a term, and o is a substitution such that I[o[s]] is Y. Matches can be computed
by starting with “basic matches” and creating new matches according to inference
rules that generate new matches from old matches. For each minimal subterm
nonterminal Y, and for each variable r occurring in E, we create the basic match
match[Y, z, {z — cy}]. To minimize the number of basic matches it is important
to rename the variables in equations in E to minimize the total number of vari-
ables in E. Typically there will be no more than 3 or 4 variables in E. We also
create basic matches for constant symbols that appear in E. For each constant a
appearing in E we create the basic match match[Ig[a], a, 0] where 0 is the empty
substitution. More complicated matches can be constructed using the following
rule.

matchlY;, s;, 7]

match(Y,, s,, 7.]
Z—fN, -, 1)

match[Z, f(sy, -+, 8,), o]

The substitutions are represented by finite lists of variable-value pairs. In all
the substitutions constructed by the matching procedure the values assigned to
variables are always internal constants. The above rule only applies when the
substitutions 7; agree on all shared variables — if 7; and 7; both contain a pair
assigning a value to the variable z then they must both assign z to the same
internal constant. The substitution o is simply the union of the 7;’s. The above
rule is also restricted to the case where Z is a minimal subterm nonterminal, the
production Z — f(Y3, ---, Y,) is minimal, and f(s1, --+, 84) is a term occurring
in E.

The restrictions on the above inference rule are “nonmonotonic”. The addi-
tion of a new production can cause other productions to go from being minimal
to being nonminimal. When matches are computed incrementally as new produc-
tions are added it is possible that previously computed matches become “obsolete”
in the sense that they were computed from productions that have now become
nonminimal.* The failure to remove matches that are obsolete due to productions
that are no longer minimal will cause minor overgeneration of matches. The time
required to detect and remove these obsolete matches is probably greater than the

*Matches can also become obsolete if nonterminals or constant symbols involved in the match
become “dead” due to generated equations between nonterminals. Matches that are obsolete due
to references to dead nonterminals or dead constants are easily detected and eliminated.

19

time taken to perform any extra rewrites they cause. Rewrites generated by these
obsolete matches are semantically sound and do no harm.

Finally, we construct “equate relations” of the form ¢z —g v where cz is
an internal constant and v is a ground term involving internal constants. More
specifically, if we derive match[Z, s, o] and E contains either s = tor t = s
where every free variable in ¢ occurs in s, then we can derive ¢z g o[t]. The set
of derived equate relations of the form ¢, —g v provide all the possible ways of
rewriting the grammar. For each equate relation ¢z —g v, the grammar can be
rewritten by using the procedure of section 7 to equate cz and v.

9 Summary

Grammar rewriting is motivated by the desire to increase the success rate of at-
tempts to prove equations in nonconfluent rewrite systems. Intuitively, the rewrite
Process generates a set of terms rather than an individual term, and by generating
two sets of terms, rather than two classical normal forms, we increase the likeli-
hood of proving the desired equation. Although grammar rewriting is primarily
motivated by the need to handle nonconfluent theories, it also provides a new
kind of canonical rewriting system. Under grammar rewriting there exist finite
canonical systems for equational theories, such as idempotent semigroups, that
do not have finite canonical systems under traditional notions of rewriting. The
pragmatic value of grammar rewriting in general purpose provers, such as [Boyer
and Moore, 1979], has not yet been adequately investigated.

10 Acknowledgements

I would like to thank Robert Givan and Carl Witty for their help in the implemen-
tation of grammar rewriting in the Ontic theorem proving system and for the main

insights in the proof that the theory of idempotent semigroups is locally context
free.

References

[Baader, 1990] Franz Baader. Rewrite systems for varieties of semigroups. In
CADE-10, LNAI 449, pages 381-395. Springer-Verlag, 1990.

20

[Bachmair et al., 1987] L. Bachmair, N. Dershowitz, and D. Plaisted. Comple-

tion without failure. In Proc. Col. on Resolulution of Equations in Algebraic
Structures, 1987.

[Boyer and Moore, 1979] Robert S. Boyer and J Struther Moore. A Computational
Logic. ACM Monograph Series. Academic Press, 1979.

[Downey et al., 1980] Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Vari-
ations on the common subexpression problem. JACM, 27(4):758-771, October
1980.

[Hsaing and Rusinowitch, 1987] J. Hsaing and M. Rusinowitch. On word problems
in equational theories. In ICALP-87, LNCS 267, pages 54-71. Springer-Verlag,
1987.

[Jouannaud and Kirchner, 1986] J. P. Jouannaud and H. Kirchner. Completion of

a set of rules modulo a set of equations. SIAM Journal of Computing, 15:1155-
1194, 1986.

[Kozen, 1977] Dexter C. Kozen. Complexity of finitely presented algebras. In Pro-
ceedings of the Ninth Annual ACM Symposium on the Theory of Compututation,
pages 164-177, 1977.

[Martin and Nipkow, 1990] Ursula Martin and Tobias Nipkow. Ordered rewriting
and confluence. In CADE-10, LNAIT 449, pages 365-380. Springer-Verlag, 1990.

[Nelson and Oppen, 1980] Greg Nelson and Derek Oppen. Fast decision proce-
dures based on congruence closure. JACM, 27(2):356-364, April 1980.

[Peterson, 1990] Gerald E. Peterson. Complete sets of reductions with constraints.
In CADE-10, LNAI 449, pages 381-395. Springer-Verlag, 1990.

[Shostack, 1978] R. Shostack. An algorithm for reasoning about equality. Comm.
ACM., 21(2):583-585, July 1978.

[Siekmann and Szabo, 1982] J. Siekmann and P. Szabo. A noetherian and conflu-
ent rewrite system for idempotent semigroups. Semigroup Forum, 25, 1982.

21

