MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1343 December 1991

Lifting Transformations

David Allen McAllester and Jeffery Mark Siskind

Abstract

Lifting is a well known technique in resolution theorem proving, logic
programming, and term rewriting. In this paper we formulate lift-
ing as an efficiency-motivated program transformation applicable to a
wide variety of nondeterministic procedures. This formulation allows
the immediate lifting of complex procedures, such as the Davis-Putnam
algorithm, which are otherwise difficult to lift. We treat both classi-
cal lifting, which is based on unification, and various closely related
program transformations which we also call lifting transformations.
These nonclassical lifting transformations are closely related to con-
straint techniques in logic programming, resolution, and term rewriting.
Formulating these techniques as transformations on nondeterministic

programs expands the range of procedures to which the techniques can
be easily applied.

Copyright © Massachusetts Institute of Technology, 1991

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the work described in this paper was provided in part by
Misubishi Electric Research Laboratories, Inc. Support for the laboratory’s artificial intelligence
research is provided in part by the Advanced Research Projects Agency of the Department of
Defense under Office of Naval Research contract N00014-85-K-0124.



1 Introduction

Lifting is a well known technique in resolution theorem proving, logic programming,
and term rewriting [Robinson, 1965, [Knuth and Bendix, 1969]. In this paper we
formulate lifting as an efficiency-motivated program transformation that can be
applied to a wide variety of nondeterministic programs. This lifting transformation
immediately gives lifted versions of a variety complex ground procedures. Section 6
shows how the lifting transformation provides an immediate lifting of the Davis-
Putnam procedure for automated theorem proving [Davis and Putnam, 1960]. The
early success of resolution over the Davis-Putnam procedure is generally attributed
to the fact that, unlike the Davis-Putnam procedure, resolution is easily lifted. The
general lifting transformation can be applied to other complex ground procedures
such as so-called “nonlinear planners” for solving Al planning problems [McAllester
and Rosenblitt, 1991].

To formulate lifting as a general transformation on nondeterministic programs
we must first formulate nondeterministic programs. The basic observation that
nondeterministic programs provide a good representation of search problems has
been made by a variety of authors [McCarthy, 1967], [Floyd, 1967). The use of
nondeterminism to represent search is a motivation for automatic backtracking in
Prolog. It seems that nondeterminism (and automatic backtracking) are largely
orthogonal to other features of a programming language — one can add nonde-
terminism to Lisp [McCarthy, 1967], or flowcharts [Floyd, 1967], and one could
even remove nondeterminism from logic programming. Nondeterminism and au-
tomatic backtracking can be easily implemented in Scheme or SML using first
class continuations [Haynes, 1987]. All of the techniques discussed in this paper
have been implemented in a nondeterministic version of Common Lisp [Siskind
and McAllester, 1992b]. Any nondeterministic programming language provides
a formal model of nondeterministic computation that can be substituted for the
notion of a nondeterministic Turing machine in the definition of nondeterministic
complexity classes such as NP. In this paper we give an operational semantics for
a simple nondeterministic functional language similar to pure Lisp but extended
with primitives for nondeterminism.

Section 4 formally defines lifting as an efficiency-motivated transformation on
nondeterministic programs. Section 4 gives three lifting lemmas for this general
transformation. The first lemma states that lifting is sound — any value derived
from lifted computation is “legitimate”. The second lemma states that lifting is
complete, i.e., any possible ground computation is an “instance” of some lifted
computation. The third lemma states that lifting preserves systematicity. Sys-
tematicity is a desirable property of search programs — a search is systematic if
it never generates the same solution twice. Although lifting lemmas similar to



the first two lemmas of section 4 are common in the resolution and term rewrit-
ing literature, the formulation of lifting lemmas for a general purpose program
transformation appears to be new.

Classical lifting is viewed here as one example of a large family of efficiency-
motivated lifting transformations. Classical lifting generates equational constraints
whose satisfiability can be tested with classical unification. Nonclassical (or con-
straint) lifting generates other forms of constraints, such as constraints on variables
that range over integers or floating point numbers. The lifting lemmas of section 4
apply to a wide variety of mechanical lifting transformations.

Our nonclassical lifting transformations are closely related to the use of con-
straints in logic programming, resolution theorem proving, and term rewriting, e.g.,
[Jaffar and Lassez, 1987], [Colmerauer, 1986], [van Hentenryck, 1989], [Biirckert,
1990}, [Martin and Nipkow, 1990], [Peterson, 1990]. All of these systems can
be loosely characterized as variants on “constraint programming”. Each system
maintains sets of constraints and uses some form of inference procedure to either
test the satisfiability of constraints or to infer “new” constraints from those given.
Constraint programming is formulated here as a general efficiency-motivated lifting
transformation on nondeterministic programs. As with classical lifting, the formu-
lation of constraint programming as a general program transformation immediately

gives constraint versions for a wide variety of nondeterministic procedures and al-
gorithms.

The formulation of lifting and constraint programming as efficiency-motivated
program transformations emphasizes a certain perspective on the relationship be-
tween logic and computer science. Logic is often viewed as a source of techniques
for ensuring the “correctness” or “safety” of computer programs. But the program
transformation view of lifting and constraint programming shows how logical in-
ference, in the form of constraint processing, plays an important role in improving
the efficiency of a wide variety of computations. There are many computational
problems whose solution requires search. Inference improves the efficiency of search
by pruning large portions of the search space. The formulation of lifting and con-
straint programming as program transformations allows inference-based pruning
to be applied to a wide variety of nondeterministic programs.

2 A Simple Functional Language

This section precisely defines the syntax and semantics of a simple functional
programming language. Neither the language nor its semantics are particularly
interesting or novel. The operational semantics is given as a rewrite relation anal-
ogous to operational semantics that have been given for a variety of languages. A



good discussion of operational semantics and the relation between operational and
denotational semantics can be found in [Plotkin, 1977] or [Milner, 1977]. Although
the operational semantics presented here is not novel, it is necessary for a rigorous
discussion of lifting transformations.

The language defined here serves as a formal model of deterministic compu-
tation. The language defined in the next section serves as a formal model of
nondeterministic computation. Our models of deterministic and nondeterminis-
tic computation could be used in the place of Turing machines to define standard
complexity classes such as P and NP. Compared to modern typed A-calculi our lan-
guages may seem unsophisticated. However, they serve as an adequate foundation
for formulating efficiency-motivated constraint transformations on nondeterminis-
tic computation.

The language defined here is an untyped call by value A-calculus. The language
includes a handful of primitives for manipulating list structure. These primitives
play an important role in the classical lifting transformation. We also provide an
explicit Y operator to simplify the discussion of recursion.

Definition: Quoted symbols, such as *foo, and the (unquoted) sym-
bols cons, car, cdr, equal, and Y are called primitive constants.

Definition: The symbol if is called a special form.

Definition: An ezpression is one of the following.

e A variable.
e A primitive constant.
e A special form.

o A \-expression of the form (LAMBDA (z, ... Tn) s[zy...z,)]) where

each z; is a variable and s[z; ... T,] is an expression possibly in-
volving the variables z,, ..., z,.

e A combination (e; e; ... e,) where each e; is an expression.

An expression which does not contain free variables will be called closed. We
allow \-expressions of no arguments, i.e., expressions of the form (LAMBDA () b),
as a special case of A-expressions. A\-expressions of no arguments are sometimes

called thunks.

We now define the notion of a “value”.

Definition: A first order value is either a quoted symbol or an appli-
cation of the form (cons s t) where s and ¢ are values.

3



Definition: A valueis either a first order value or a closed A-expression.

Note that the application (car (cons ’a ’b)) is not a value, although (as
we shall see) it computes to the value ’a. Similarly, (cons (car (cons ’a ’b))
’c) computes to the value (cons ’a ’c). We define a separate class of first order
values because the lifting transformations discussed in this paper require that the
logic variables introduced by lifting be first order — they range only over first
order values.

We formalize computation as a process of rewriting expressions. We write s — ¢
to indicate that the program s is converted to the program t by a single rewrite
step. Intuitively, each rewrite step corresponds to a single step in a computational
process. The rewrite relation — is defined by the set of rewrite rules given below.

o If s is a first order value then (EQUAL s s) — ’T.

¢ If s and ¢ are different first order values then (EQUAL s t) — ’F.
o If s and ¢ are first order values then (CAR (CONS s t)) — s.

e If s and ¢ are first order values then (CDR (CONS s t)) — ¢.

o If s - s’ then (if s t u) » (if s’ ¢ w).

o (if 'Tt u) — t.

o (if ’F t u) — u.

o If all of vy,...,v, are values and f is the A-expression (LAMBDA (z, ... z,)
Blz1...z.]), then (f vy, ... v,) = Blv;...v,).

o (Y (LAMBDA (f) b[f])) — B[(Y (LAMBDA (f) b[f]))]
o If fogthen (f e ... e) — (g er ... e,).

o If f is a value other than a special form and ¢ is the first expression among
€1, ..., ey thatisnot a value then if ; — e; wehave(feq, ..., €,..., €n) —
(fer, ..., €.ty €n).

Notice that it is possible for expressions to rewrite to normal forms which are
not values. For example, the expression (car ’a) can not be further rewritten

but it not a value. Normal forms which are not values are considered to be errors
or failures.



In the examples throughout the remainder of this paper we use definitions of the
following form.

(define (foo z; ... z,)

body)

If the definition is not recursive, e.g., if foo does not appear in the body of the
definition, then the definition signifies that foo is to be taken as an abbreviation

for (LAMBDA (z, ... z,) body). If the definition is recursive then foo is to be
taken as an abbreviation for

(Y (LAMBDA (foo) (LAMBDA (z; ... z,) body))).

We give the following definition of append as an example.

(define (append z y)
(if (equal z ’nil)
)
(cons (car z) (append (cdr z) y))))

On can readily verify that if = is a well formed list then (append z y) will
rewrite to the standard value of the append function. If z is not a well formed list
then (append z y) will rewrite to a normal form that is not a value — we would
say that the computation terminates in an error.

3 Nondeterminism

In this section we extend the language defined in the previous section with the new
special form either and the new primitive constant a-value.! The operational
semantics of these new primitives can be defined with the following rewrite rules.

o (either s t) — (if ’T s t).
o (either s t) — (if °'F s t).

o (a-value) — s where s is any first order value.

The particular form of the rewrite rules for either is required for the “system-
aticity” lifting lemma given in section 4. Intuitively, the form of these rules ensure

!By making either a special form we avoid the evaluation of both of its arguments as would
otherwise be required by rewrite rules of the previous section.

5



that one can distinguish the two possible computation paths for an expression of
the form (either s s). If we allowed the computation step (either s s) — s
then we could not distinguish selecting the first argument form selecting the second
argument. Systematicity can be defined as follows.

We give the following simple example of a nondeterministic procedure. The
procedure takes a list of proposition symbols and returns a truth assignment on
those symbols. The truth assignment is represented by a list of pairs.

(define (a-truth-assignment-on propositions)
(if (equal propositions ’nil)
’nil
(cons (cons (car propositions) (either ’T ’F))
(a-truth-assignment-on (cdr propositions)))))

Although the special form either is sufficient for many purposes, the primitive
a-value plays a crucial role in the classical lifting transformation. The following
is a simple example of the use of the primitive a-value.

(define (a-substitution-on variables)
(if (equal variables ’nil)
’nil
(cons (cons (car variables) (a-value))
(a-substitution-on (cdr variables)))))

It is convenient to introduce the primitive fail. The expression (fail) is not
considered to be an error, nor is it a value. If one of the computations of s ends in
the expression (fail) then that computation is effectively “pruned” — it is not
an error but it does not contribute any value. The technical distinction between
errors and failures is not needed for the analyses given in this paper and no formal
definition of this distinction is given here. The following is a nondeterministic
procedure for finding a truth assignment satisfying a given formula.

(define (satisfying-assignment formula)
(let ((assignment (a-truth-assignment-on (variables-of formula))))
(if (satisfies? assignment formula)
assignment
(fail))))

We leave it to the reader to define the procedure satisfies?. We now introduce
some additional terminology.



Nondeterministic programs define search trees. More specifically, the set of
possible executions of an expression s form a tree whose root is s itself and where
branching occurs whenever there is more than one way of continuing the computa-
tion from an intermediate expression. Each leaf in this tree is a normal form of s.
It is possible to build efficient interpreters (or compilers) that systematically search
the tree of possible executions with a minimum of overhead. This search process
for a nondeterministic language can be easily implemented in languages such as
Scheme or SML with first class continuations. More efficient implementations can
(arguably) be achieved by performing a continuation passing transformation and
then stack allocating failure continuations. This latter approach is taken in the
Common Lisp implementation of the ideas presented in this paper [Siskind and
McAllester, 1992b).

Definition: An ezecution of an expression s is a finite reduction se-
quence of the form sq — 3; — s; = ... — s where s is s.

Definition: A possible value of an expression s is any value that is the
final expression in an execution of s.

Intuitively, a search process is systematic if it never examines the same solution
twice.

Definition: An expression s is called systematic if no possible value
of s is the final value of more than one execution of s.

Most simple generate and test programs are systematic provided they return
the generated data structure as a value. Systematicity can be viewed as an “anti-
confluence” condition — in systematic search divergent nondeterministic compu-
tation paths should not reconverge.

4 Lifted Computation

Lifted computation operates on “logic variables” and constraints on logic variables.
We start by defining a general notion of a constraint.

Definition: A value substitution is a mapping o from variables to first
order values.

Definition: A type constraintis a pair of a variable z and an expression
8. A type constraint is written as z : s.



Definition: A value substitution o satisfies a type constraint z : s
if the value o[z] is a possible value of the expression o[s]. A value
substitution o satisfies a set of constraints ¥ if o satisfies each member

of .

For example, the constraint = : (either ’T ’F) states that z is a Boolean
variable — for any substitution o satisfying this constraint o[z} must be either *T
or ’F. As another example consider a constraint of the form z : (cons y z) where
, Y, and z are variables. This constraint can be viewed as an equation of the form
z = (cons y z).

We formalize lifted computation as a rewrite relation. In the lifted rewrite
relation the states of the computation are formalized as triples <s, &, V> where
8 is an expression, X is a set of constraints (discussed below), and V is an infinite
list of “unused” variables. The relation symbol < is defined by a set of rewrite

rules. The first rule states that < is an extension of the nondeterministic relation
—_.

o If s —» tthen <3, I, V> — <t, I, V>.

Lifted computation is based on a new special form, make-variable which takes
one argument, a “type”, and returns a new variable of that type. The following
rewrite rule gives the operational semantics of make-variable. The expression
(make-variable t) rewrites to a previously unused variable and imposes a con-
straint on the type of that variable.

* <(make-variable t), I, V> — <z, EU {z:t}, V — {z}> where z is the
first variable in the sequence V.

The classical lifting transformation involves expressions of the form (make-variable
(a-value)). Such expressions generate type constraints of the form z : (a-value).

We now give the remaining rewrite rules for lifted computation. The following
rewrite rules specify the “locus of control”. These rules are compatible with the
corresponding rules for the ground relation — but they handle the case where the
internal computation results in new variables and constraints.

o If<s, B, V> <s, X, V'>then<f st u), &, V> e <(if ¢ ¢ u), X, V'>.
o If<f, 3,V> = <g, &', V'> then<(f ¢ ... €,), &, V> s <(g e ... &), ¥, V>.

e If f is a value other than a special form and e; is the first expression among
€1, .-+, en that is not a value then if <e;, ,V> — <é, ', V'> then

<(fe ... ..., T, V><(f ¢ ... € ... e), X, V>,

8



Finally we give three rules that are the essence of our general concept of lifted
computation.

e If ¢ is a primitive constant, s; ... s, are either values or variables, and
at least one of s,, ..., s, is a variable, then <(c s, ... k), B, V> —
<z, XU{z: (c 8; ... sx)}, V — {z}> where z is the first variable in V.

e If all of vy,...,v, are either first order values, variables, or A-expressions,
and f is the M-expression (LAMBDA (z; ... z,) Blz;...z,]), then

<(fvi, ... v), B, V> <Blvy...v,), T, V>.

e If z is a variable then <(if z ¢t u), &, V> — <t, LU {z:T}, V>.

o If z is a variable then <(if z ¢ u), &, V> — <u, SU {z: ’F}, V>.

Lifted computation will terminate if it encounters an application of the form (z e

. €n) where z is a variable. If all variables are first order then any corresponding
ground computation must also terminate at this point. Higher order logic variables
could be handled by adding a lifted rewrite rule which allowed expressions of
the form (z e; ... e,) to be rewritten to a variable y subject to the constraint
y:(z e ... ey). In this paper, however, we restrict our attention to first order
logic variables. We now have three lifting lemmas.

Definition: A properly lifted expression is a closed expression s such
that, for any expression of the form (make-variable ¢) that appears
in s, every possible value of ¢ is first order.

Definition: An expression s will be called ground if it is closed and it
does not contain the constant make-variable.

Definition: We define the ground version of an expression s, de-
noted G[s], to be the result of replacing each expression of the form
(make-variable ¢) in s by the expression ¢.

The reader can verify that if s is properly lifted then G[s] is ground.

Definition: A lifted ezecution of an expression s is a finite reduc-
tion sequence of the form <s,, Lo, Vo> = <81, 51, V> 5 ...
<S8k, Lk, Vi> where s, is s, £ is the empty set of constraints, and V,
is the (fixed) initial infinite sequence of variables.



Definition: A lifted value of an expression s is a pair <v, £> where v is
either a value, a variable, or a A-expression, and where <v, £> appears
as the first two components in the final triple of a lifted computation
of s.

Definition: A pair <v, £> is said to cover a value v’ if there exists a
value substitution o satisfying ¥ such that o[v] is v'.

Soundness Lifting Lemma: If s is a properly lifted expression then
any value covered by a lifted value of s is a possible value of G[s].

Completeness Lifting Lemma: If s is a properly lifted expression
then any a possible value of G[s] is covered by some lifted value of s.

Systematicity Lifting Lemma: For any properly lifted expression
s, if G[s] is systematic then no value of G[s] is covered by two different
lifted computations of s, i.e., no two lifted computations of s terminate
in lifted values that both cover the same value of G[s].

The systematicity lifting lemma requires the particular form of the rewrite rules
for either given in section 3.

5 Classical Lifting and Unification

In this section we introduce a “classical” lifting transformation which maps a
ground expression s to a properly lifted expression L[s]. The constraints generated
by a lifted execution of £L[s] can be viewed as a set of equations and disequations
between expressions.? Unification can be used to find a most general unifier of
the equation constraints and one can check that this unifier does not violate any
disequation constraint. In short, unification provides a fast consistency test for the
constraint sets generated by classical lifting.

Definition: For any expression s we define L(3), called the classi-
cal lifting of s, to be the expression that results from replacing each
ocurrence (a-value) in s by (make-variable (a-value)) and each
expression of the form (equal s t) by (if (equal s t) ’T ’F).

2A disequation is the negation of an equation. Disequations have not played an important
role in logic programming but they are required under a program transformation view of lifting.

10



The classical lifting transformation has the property that for any ground ex-
pression s, the expression L[s] is properly lifted and the ground expression G[L[s]]
has the same set of possible values as s. By replacing each expression of the form
(equal s t) by (if (equal s t) ’T ’F) we ensure that whenever lifted compu-
tation generates a constraint of the form z : (equal s ¢) it also generates either
z:’Tor z: 'F. This ensures that the set of constraints generated by lifted com-
putation can be converted to a set of equations and disequations. For example,
a constraint of the form z : (car y) can be converted to an equation of the form
y = (cons z 2) where z is a new variable.

6 Lifting the Davis-Putnam Procedure

The transformation view of lifting allows the immediate lifting of a variety of nonde-
terministic programs that are otherwise difficult to lift. The example given here is
the Davis-Putnam procedure for automated theorem proving. Many authors have
attributed the early success of resolution techniques over the Davis-Putnam pro-
cedure to the fact that ground resolution can be easily lifted while Davis-Putnam
can not. However, given a formulation of lifting as a general program transforma-
tion one has an immediate lifting Davis-Putnam. We can define a version of the
Davis-Putnam procedure as follows.

Davis-Putnam Procedure: To determine the consistency of a given
set A of clauses do the following.

1. Let I be a finite set of ground instances of clauses in A.
2. If T is unsatisfiable then output ’unsatisfiable else fail.

The given set of clauses A is unsatisfiable if and only if there exists some
execution of the above procedure which outputs ’unsatisfiable. The above
procedure can be implemented as a nondeterministic ground M-expression of one
argument. Step 1 is (of course) nondeterministic with an infinite number of possible

outcomes. Step 1 can be implemented using the following procedure to construct
a ground instance of a clause.

(define (a-ground-instance-of exp)
(let ((subst (a-substitution-on (variables-in exp))))
(apply-substitution subst exp)))

We leave it to the reader to construct a representation of variables and to
construct the procedures variables-in and apply-substitution. The procedure
a-substitution-on is defined in section 3 and uses the primitive a-value.

11



Step 2 must be implemented deterministically — step 2 must show that all
truth assignments fail to satisfy . In step 2 we can use the most efficient known
algorithm for determining if a set of ground clauses is satisfiable.

Once the Davis-Putnam procedure has been implemented as a nondeterministic
ground procedure the classical lifting transformation can be applied directly. In
the lifted version, step 2 constructs a set of copies of clauses in A where each copy
is built from fresh logic variables. The correctness of this transformation on the
Davis-Putnam procedure is immediately implied by the general lifting lemmas of
the previous section. The systematicity lemma does not apply since the ground
Davis-Putnam procedure is not systematic. Another example of a lifted procedure
where lifting would be difficult without the general transformation can be found in
[McAllester and Rosenblitt, 1991]. This example involves a procedure for solving
Al planning problems.

7 Other Lifting Transformations

Other useful efficiency-motivated lifting transformations can be constructed by in-
troducing other nondeterministic primitives into the language. Our first example is

a Boolean lifting transformation. We can introduce the primitive (a-boolean-value)
and the primitives and, or, implies, and not. These primitives can be given op-
erational semantics with ground rewrite rules such as the following.

e (a-boolean-value) — ’T
e (a-boolean-value) — ’F
e (and ’T 'T) — T

e (and 'T ’F) — ’F

We can now define a Boolean lifting transformation.

Definition: For any expression s we define the Boolean lifting of s, de-

noted B[s], to be the result of replacing each ocurrence of (a-boolean-value)
by (make-variable (a-boolean-value)).

Lifted computation is defined with the rewrite rules given in the section 4. The

three lifting lemmas of section 4 hold for the Boolean lifting transformation as well
as classical lifting.

12



A lifted computation of a Boolean-lifted expression can generate constraints of
the form z : (and y 2). Any value assignment satisfying this constraint must as-
sign either *T or ’F to each of the variable z, y, and z, and the truth value assigned
to z must be the logical and of the values assigned to y and z. Given a careful im-
plementation of constraint satisfaction techniques for equational (unification) con-
straints, such as z : (cons y 2), and Boolean constraints, such as z : (and y z),
the Boolean lifting transformation mechanically converts the simple generate and
test procedure for Boolean satisfiability procedure given in section 3 into one of
the most efficient known procedures for Boolean satisfiability.

As another example of an efficiency motivated lifting transformation we con-
sider the primitives a-floating-point-number, +, *, <, and =. These primitives
can be given operational semantics using ground rewrite rules such as the following.

o (a-floating-point-number) — f where f is any IEEE standard floating
point number.

o (+ fi f2) — f3 where f3 is the IEEE standard sum of the floating point
numbers f; and f5.

o (< fi fu) = ’Tif f; is less than f.

We have choosen floating point numbers rather than reals or rationals to em-
phasize that efficiency-motivated lifting transformation can be applied to a variety
of “practical” data types and operations.

Definition: For any expression s we define the floating point lifting
of s, denoted Fls], to be the result of replacing each ocurrence of
(a-floating-point-number) by (make-variable (a-floating-point-number)).

As an example consider the following simple nondeterministic procedure.

(let ((x (a-floating-point-number))
(y (a-floating-point-number)))
(if (and (< (+ (* x x) (* y y)) 1.0)
(< .9 (*x x )
(cons x y)

(fail)))

13



Although this expression has a well defined set of possible values, one would
not normally attempt to find a value by simple backtrack search on the choice of
floating point numbers. However, the floating point lifting of this expression has
only one lifted value which consists of a variable representing the cons expression
(cons z y) and a collection of constraints on the floating point numbers z and y.

In the case of classical lifting the lifted computations can be pruned by elim-
inating any lifted computation that generates an unsatisfiable set of constraints.
Satisfiability can be tested with the unification procedure. In the case of Boolean
and floating-point lifting, however, it seems that a more efficient strategy is to use
fast but incomplete pruning of the lifted computations. Under incomplete pruning
of the lifted computations there is no guarantee that the constraint set resulting
from an unpruned lifted computation is satisfiable. After a lifted value is found
one may still have to search for a solution of the resulting constraint set. In the
case of floating point lifting one may have to search for solutions to a system of
nonlinear equations involving numerical variables. Qur Common Lisp implemen-
tation of floating point lifting uses interval techniques to find solutions to systems
of nonlinear equations [Hansen, 1968], [Hansen and Walster, 1991)]. In the interval
method one associates each numerical variable with a numerical upper and lower
bound. The two bounds define an interval of possible values for each variable. New
bounds can be inferred from existing bounds and constraints. For example, given
the constraint z : (+ y 3.0), and an upper bound of 2.0 for Y, we can infer an up-
per bound of 5.0 for z. We call this inference process bounds propagation. Bounds
propagation can often determine that a set of constraints is unsatisfiable relative
to given bounds on variables. In the interval method for solving a set of constraints
one iteratively selects the numerical variable with the largest allowed interval (as
determined by the bounds on that variable). After selecting a numerical variable
one computes the midpoint of the interval associated with that variable and then
nondeterministically either increases the lower bound to the midpoint or decreases
the upper bound to the midpoint. Any solution to the constraint set must be
consistent with one of these two choices. Bounds propagation is run in each case
and in many cases bounds propagation prunes one of the two possible selections.
This nondeterministic splitting of intervals is repeated until a unique floating point
value is found for each variable.? Floating point lifting, combined with the interval
method of solving numerical constraints, can efficiently find ground values of the
above “generate and test” floating point expression.

It is also possible to define a constraint satisfaction problem (CSP) lifting trans-
formation. This lifting transformation is appropriate for solving classical constraint
satisfaction problems such as the eight queens puzzle, or line labeling problems in
vision [Kirousis and Papadimitriou, 1988], [van Hentenryck, 1989], [McAllester,

3The interval method described in [Hansen, 1968] and [Hansen and Walster, 1991] apply to
constraints on real numbers rather than to floating point representations.

14



1990]. CSP lifting is described in the setting of the Common Lisp implementation
in [Siskind and McAllester, 1992a]. A variety of examples of constraint trans-
formed programs that run under our Common Lisp implementation is also given
in [Siskind and McAllester, 1992a).

8 Discussion

Nondeterministic programs provide a natural formal representation of a wide va-
riety of search problems. Lifting is formulated here as an efficiency motivated
transformation on nondeterministic programs. Lifted computation constructs a
set of declarative constraints from a given nondeterministic program. In fact, it
seems appropriate to view lifting as a general method of translating a search prob-
lem expressed as a nondeterministic program into a constraint satisfaction problem
expressed as a set of declarative constraints. In many cases one can find general
purpose methods of solving declarative constraints that are vastly more efficient
than simple backtracking in the original procedural nondeterministic program.
This is true of most classical, floating point, Boolean, or CSP lifting.

To summarize, lifted computation translates procedural search programs into
systems of declarative constraints. Unlike procedural programs, systems of con-
straints admit inference techniques. Inference is a powerful tool in pruning search.
Lifting improves efficiency by allowing inference techniques to be applied to search
problems originally expressed procedurally.

If inference is to be used as a tool for improving efficiency it is imperative that
inference be done quickly. In the case of classical lifting, unification is a fast and
semantically complete procedure for deriving all equations (bindings) that follow
from a given set of constraints. In other lifting transformations, semantically
complete inference requires exponential time in the worst case. Fortunately there
are fast but incomplete inference techniques which seem quite effective in improving
search efficiency [van Hentenryck, 1989) [McAllester, 1990].

References

[Biirckert, 1990] Hans-Jirgen Biirckert. A resolution principle for clauses with
constraints. In CADE-10, LNAI 449, pages 178-192. Springer-Verlag, 1990.

[Colmerauer, 1986] A.Colmerauer. Logic Programming and Its A pplications, chap-
ter Theoretical Model of Prologll, pages 181 — 200. Ablex Series in Artificial
Intelligence. Ablex Publishing Corporation, 1986.

15



[Davis and Putnam, 1960] M Davis and H. Putnam. A computing procedure for
quantification theory. JACM, 7(3), July 1960.

[Floyd, 1967] Robert Floyd. Nondeterministic algorithms. JACM, 14(4):636-644,
October 1967.

[Hansen and Walster, 1991} E. R. Hansen and G. W. Walster. Nonlinear equations
and optimization. Control and Games of Comput. Math. Appl., 1991. To appear
in the second special issue on Global Optimization.

[Hansen, 1968] E. R. Hansen. On the solution of linear algebraic equations using
interval arithmetic. Mathematical Computation, 22:153-165, 1968.

[Haynes, 1987] Christopher T. Haynes. Logic continuations. JLP, 4:157-176, 1987.

[Jaffar and Lassez, 1987] J. Jaffar and J. L. Lassez. Constraint logic programming.
In Proceedings of POPL-87, pages 111-119, 1987.

[Kirousis and Papadimitriou, 1988] L. M. Kirousis and C. H. Papadimitriou. The

complexity of recognizing polyhedral scenes. Journal of Computer and Systems
Science, 37(1):14-38, 1988.

[Knuth and Bendix, 1969] Donald E. Knuth and Peter B. Bendix. Computational
Problems in Abstract Algebra, chapter Simple Word Problems in Universal Al-
gebras, pages 263-297. Pergamon Press, Oxford, England, 1969.

[Martin and Nipkow, 1990] Ursula Martin and Tobias Nipkow. Ordered rewriting
and confluence. In CADE-10, LNAI 449, pages 365-380. Springer-Verlag, 1990.

[McAllester and Rosenblitt, 1991] David McAllester and David Rosenblitt. Sys-

tematic nonlinear planning. In AAAI-91, pages 634-639. Morgan Kaufmann
Publishers, July 1991.

[McAllester, 1990] David McAllester. Truth maintenance. In Proceedings AAAI90,
pages 1109-1116. Morgan Kaufmann Publishers, 1990.

[McCarthy, 1967] John McCarthy. A basis for a mathematical theory of compu-

tation. In P. Braffort and D. Hirschberg, editors, Computer Programing and
Formal Systems. North-Holland, 1967.

[Milner, 1977] Robin Milner. Fully abstract models of typed lambda-calculi. The-
oretical Computer Science, 4(1):1-23, 1977.

[Peterson, 1990] Gerald E. Peterson. Complete sets of reductions with constraints.
In CADE-10, LNAI 449, pages 381-395. Springer-Verlag, 1990.

16



[Plotkin, 1977] Gordon Plotkin. Lcf considered a programming language. Theo-
retical Computer Science, 5(3):223-256, 1977.

[Robinson, 1965] J. A. Robinson. A machine-oriented logic based on the resolution
principle. JACM, 12(1), January 1965.

[Siskind and McAllester, 1992a) Jeffrey Mark Siskind and David Allen McAllester.

Nondeterministic lisp as a substrate for constraint logic programming. Submit-
ted to LFP92, 1992.

[Siskind and McAllester, 1992b] J effrey Mark Siskind and David Allen McAllester.
Screamer: A portable efficient implementation of nondeterministic common lisp.
Submitted to LFP92, 1992.

[van Hentenryck, 1989] Pascal van Hentenryck. Constraint Satisfaction in Logic
Programming. MIT Press, 1989.

17



