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Abstract

We consider the concept of local sets of inference rules. Locality is a
syntactic condition on rule sets which guarantees that the inference
relation defined by those rules is polynomial time decidable. Unfortu-
nately, determining whether a given rule set is local can be difficult. In
this paper we define inductive locality, a strengthening of locality. We
also give a procedure which can automatically recognize the locality of
any inductively local rule set. Inductive locality seems to be more use-
ful that the earlier concept of strong locality. There are many natural
examples of inductively local rule sets that are not strongly local. We
have not found any natural examples of local rule sets that fail to be
inductively local. However, we show here that locality, as a property
of rule sets, is undecidable in general.
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1 Introduction

Under what conditions does a given set of inference rules define a computationally
tractable inference relation? This is a syntactic question about syntactic infer-
ence rules. There are a variety of motivations for identifying tractable inference
relations. Tractable inference relations sometimes provide decision procedures for
semantic theories. For example, the equational inference rules of reflexivity, sym-
metry, transitivity, and substitutivity define a tractable inference relation that
yields a decision procedure for the entailment relation between sets of ground
equations [Kozen, 1977), [Shostack, 1978]. Tractable inference relations can also
provide useful incomplete inference in cases where complete inference is intractable.
Many practical search algorithms use some form of incomplete inference to prune
nodes in the search tree [Knuth, 1975], [Mackworth, 1977], [Pearl and Korf, 1987].
Incomplete inference also plays an important role in pruning search in constraint
logic programming [Jaffar and Lassez, 1987], [van Hentenryck, 1989], [McAllester
and Siskind, 1992]. Tractable inference relations can also be used to define a no-
tion of “obvious inference” which can then be used in “Socratic” proof verification
systems which require proofs to be reduced to obvious steps [McAllester, 1989),
[Givan et al., 1991].

Inference rules are syntactically similar to first order Horn clauses. In fact,
most inference rules can be syntactically represented by a Horn clause in sorted
first order logic. If R is a set of Horn clauses, ¥ is set of ground atomic formulas,
and @ is a ground atomic formula, then we write & | ROPIFXURF ®in
first order logic. We write g rather than =r because we think of R as a set of
syntactic inference rules and Fp as the inference relation generated by those rules.
Throughout this paper we use the term “rule set” and “Horn set” interchangeably.
Technically this phrase to refers to a finite set of Horn clauses. We give nontrivial

conditions on R which ensure that the inference relation - R 18 polynomial time
decidable.

One rather simple condition ensuring the tractability of k5 is that R be “su-
perficial”. We call a Horn clause U; AW, A --- A ¥, = ® superficial if every term
appearing in the conclusion @ also appears in some antecedent ;. Several authors
have observed that if R is a finite set of superficial Horn clauses then Fp is polyno-
mial time decidable [Aho and Ullman, 1979], [Papadimitriou, 1985]. Building on
independent results of Vardi and Immerman, Papadimitriou showed that superfi-
cial Horn sets provide a characterization of the complexity class P [Vardi, 1982),
[Immerman, 1986], [Papadimjtriou, 1985]. Let P be any polynomial time predicate
on k first order terms. Papadimitriou showed, in essence, that for any such P there
exists a set R of superficial Horn clauses such that for any first order terms ¢,, t,,
... U we have that P(ty, t,, ... t,) if and only if Input(ty, t, ... t;) Fg Accept



where Input is a predicate symbol and Accept is a distinguished proposition sym-
bol. We can think of a set of Horn clauses as a Prolog program. Papadimitriou’s
result can be interpreted as saying that the class of superficial Prolog programs
defines all and only polynomial time relations.

Superficial Horn sets are a special case of the more general class of local Horn
sets [McAllester, 1990]. A set R of Horn clauses is local if whenever Y kg O there
exists a proof of ® from ¥ such that every term in the proof is mentioned in ¥ or
®. If Ris local then Fp is polynomial time decidable. All superficial Horn sets are
local but many local Horn sets are not superficial. The set of the four inference
rules for equality is local but not superficial. The local inference relations provide
a different characterization of the complexity class P. In section 5 we prove that
for any predicate P of k first order terms, P can be computed in polynomial time
if and only if there exists a local Horn set R such that for any terms t;, t,, ...
we have that P(t, t3, ... #;) if and only if Fp P(ty, t3, ... t;) where P is a
predicate symbol representing P.

Unlike superficiality, locality can be difficult to recognize. The set of four infer-
ence rules for equality is local but the proof of this fact is nontrivial. In section 5
we give a proof that locality, as a property of sets of Horn clauses, is undecidable.
However, there are subclasses of local Horn sets which can be mechanically recog-
nized. A notion of a strongly local rule set is defined in [McAllester, 1990] and a
procedure is given which will automatically recognize the locality of any strongly
local rule set. The set of the four basic rules for equality is strongly local. As an-
other example of a strongly local rule set we give the following rules for reasoning
about a monotone operator from sets to sets.

zCz, zCyAyCz=>zCz2

zCy = f(z) S fy)

A variety of other strongly local rule sets are given [McAllester, 1990]. As an
example of a rule set that is local but not strongly local we give the following rules
for reasoning about union and intersection operations on sets.!

tCz, zCyAyCz=>zC2

zCzUy, yCazUy, zCzAyCz=>zUyCz2
zNyCz, zNyCy, 2CzAzCy=>z2CzNy

These rules remain local when the above monotonicity rule is added. With or
without the monotonicity rule, the rule set is not strongly local.

1These rules are complete for reasoning about lattice operations. We phrase them as rules
about sets because we believe this is how they are most commonly used.



In this paper we construct another machine-recognizable subclass of the local
Horn sets which we call inductively local Horn sets. All of the strongly local rule
sets given in [McAllester, 1990] are also inductively local. The procedure described
in section 4 for recognizing inductively local rule sets has been implemented and
has been used to determine that the above rule set is inductively local. Hence
the inference relation defined by the rules is polynomial time decidable. We have
been able to show that there are strongly local rule sets which are not inductively
local, although our examples are somewhat artificial. We have not found any
natural examples of local rule sets that fail to be inductively local. Polynomial
time inference relations have a variety of applications. Inductively local rule sets
provide a variety of mechanically recognizable polynomial time inference relations.

2 Basic Terminology

In this section we give more precise definitions of the concepts discussed in the
introduction.

Definition: A Horn clause is a first order formula of the form ¥, A
U A...A ¥ = ® where ® each ¥, is an atomic formula. For any set
of Horn clauses R, any finite set ¥ of ground terms, and any ground
atomic formula ®, we write & Fg @ if SUU(R) + @ in first order
logic where U(R) is the set of universal closures of Horn clauses in R.

There are a variety of inference relations defined in this paper. For any inference

relation I and any sets of ground formulas ¥ and I’ we write YFTiHXY F Ufor
each ¥ in T'.

The inference relation g can be given a more direct syntactic characterization.
This syntactic characterization is more useful in determining locality.

Definition: A derivation of ® from & using Horn set R is a sequence
of ground atomic formulas V;, ¥,,...9, such that ¥, is & and for
each ¥, there exists a Horn clause OAO;A...AO; = ¥ in R and
a ground substitution o such that o[¥'] is ¥; and each formula of the

form o[©;] is either a member of ¥ or a formula appearing in earlier in
the derivation.

Lemma: ¥ Fg & if and only if there exists a derivation of ® from %
using the Horn set R.



The following restricted inference relation plays an important role in the anal-
ysis of locality.

Definition: We write © Hp ® if there exists a derivation of ® form
¥ such that every term appearing in the derivation apears as a subex-
pression of ® or as a subexpression of some formula in .

Lemma: For any finite Horn set R the inference relation H R 18
polynomial time decidable.

Proof: Let n be the number of terms that appear as subexpressions
of ® or a formula in X. If P is a predicate of k arguments that appears
in the inference rules R then there are at most n* formulas of the form
P(s1, ... s¢) such that © Hp P(sy, ... 8;). Since R is finite there is
some maximum arity over all the predicate symbols that appear in R.
The total number of formulas that can be derived under the restrictions
in the definition of Hpg is order n* where k is the maximum arity of
the predicates in R. m

Clearly, if ¥ Hp @ then © kg &. But the converse does not hold in general.
By definition, if the converse holds then R is local.

Definition: The Horn set R is local if the restricted inference relation
Hpr is the same as the unrestricted relation + R-

Clearly, if R is local then Fp is polynomial time decidable.

3 Another Characterization of Locality

In this section we give an alternate characterization of locality. This characteri-
zation of locality plays an important role in both the definition of strongly local

rule sets given in [McAllester, 1990] and in the notion of inductively local rule sets
given here.

Definition: A bounding set is a set T of ground terms such that every
subterm of a member of T is also a member of T,

Definition: A ground atomic formula V¥ is called a label formula of a
bounding set T if every term in ¥ is a member of T.
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Definition: For any bounding set T, we define the inference relation
HRrx tobesuchthat ¥ Hpy ® if and only if there exists a derivation
of ® from X such that every formula in the derivation is a label formula
of the term set Y.

We have that ¥ Hgr & if and only if & H ry @ where T is the set of all
terms appearing as subexpressions of ® or formulas in ¥. The inference relation
Hgey can be used to give another characterization of locality. Suppose that R
is not local. In this case there must exist some ¥ and & such that ¥ H g ® but
Y FRr ®. Let T be the set of terms that appear in ¥ and ®. We must have
Y W py ®. However, since ¥ Fp ® we must have & H rx' P for some finite
superset T’ of T. Consider “growing” the bounding set one term at a time, starting
with the terms that appear in ¥ and ®.

Definition: A one step estension of a bounding set Y is a ground term
a that is not in T but such that every proper subterm of « is a member

of T.

Definition: An feedback event for R consists of a finite set ¥ of ground
formulas, a ground formula ®, a bounding set T containing all terms

that appear in ¥ and ®, and a one step extension a of T such that
E HR,TU{G} Q but E |7{ RTY i ]

By abuse of notation, a feedback event will be written as ¥ H RYu{a} @.
Lemma: R is local if and only if there are no feedback events for R.

Proof: First note that if R has a feedback event then R is not local
—if ¥ Hpryey Pthen & kg ® butif & W ry ®then T K 5 ®.
Conversely suppose that R is not local. In there case there is some
L and ® such that & I/ 5 & but & H rRyx @ for some finite T. By
considering a least such T one can show that a feedback event exists

for R. m

The concepts of strong locality and inductive locality both involve the concept
of a feedback event. We can define strong locality by first defining Cp(Z, T) to be
the set of of formulas ¥ such that X H rx V. R is strongly local if it is local and
there exists a natural number k such that whenever Y HRrufay ¥ there exists a
derivation of ¥ from Cg(Z, T) such that every term in the derivation is a member
of TU {a} and such that the derivation is no longer than k. As mentioned above,
the set of the four basic inference rules for equality is strongly local and there
exists a procedure which can recognize the locality of any strongly local rule set.

The definition of inductive locality is somewhat more involved and is given in the
next section.



4 Inductive Locality

To define inductive locality we first define the notion of a feedback template. A
feedback template represents a set of potential feedback events. We also define a
backward chaining process which generates feedback templates from a Horn set R.
We show that if there exists a feedback event for R then such an event will be found
by this backchaining process. Furthermore, we define an “inductive” termination
condition on the backchaining process and show that if the backchaining process
achieves inductive termination then R is local.

Throughout this section we let R be a fixed but arbitrary set of Horn clauses.
The inference relation Hgzy will be written as hH r with the understanding
that R is an implicit parameter of the relation.

We define feedback templates as ground objects — they contain only ground
first order terms and formulas. The process for generating feedback templates is
defined as a ground process — it only deals with ground instances of clauses in R.
The ground process can be “lifted” using a lifting transformation. Since lifting is
largely mechanical for arbitrary ground procedures [McAllester and Siskind, 1992],
the lifting operation is only discussed briefly here.

Definition: A feedback template consists of a set of ground atomic
formulas X, a multiset of ground atomic formulas ', a ground atomic
formula @, a bounding set T, and a one step extension a of T such
that ® and every formula in ¥ is a label formula of T, every formula
in T' is a label formula of T U {a} that contains @, and such that
YUurl'h Tu{a} P.

By abuse of notional a feedback template will be written as E,T Hyygey @
I' is a multisetset of ground atomic formulas, each of which is a label formula of
TU{a} containing a, and such that the union of ¥ and T" allow the derivation of &
relative to the bounding set T U {a}. A feedback template is a potential feedback
event in the sense that an extension of ¥ that allows a derivation of the formulas
in I may result in a feedback event. The need to make I a multiset rather than a

set is discussed below. Feedback templates for R can be constructed by backward
chaining. o

Procedure for Generating a Template for R:

1. Let ¥ AW A---AT,, = ® be a ground instance of a clause in R.

2. Let o be a term that appears in the clause but does not appear
in the conclusion ® and does not appear as a proper subterm of
any other term in the clause.



3. Let T be a bounding set that does not contain a but does contain
every term in the clause other than a.

4. Let X be the set of antecedents ¥; which do not conain a.
5. Let I be the set of antecedents ¥; which do conaint c.
6. Return the feedback template £, H TU{a} P-

We let To[R] to be the set of all feedback templates that can be derived from
R by an application of the above procedure. We leave it to the reader to verify
that To[R] is a set of feedback templates. Now consider a feedback template
E,I' Hyy(ay ®. We can construct a new template by backward chaining from
Y, T Hyy{o} ® using the following procedure.

Procedure for Backchaining from &, T' H Tufa} @

1. Let © be a member of T

2. Let ¥; AW, A--- AT, = O be a ground instances of a clause in
R that has © as its conclusion and such that each ¥; is a label
formula of T U {a}.

3. Let X' be X plus all antecedents ¥; which do not contain a.
4. Let I be T minus © plus all antecedents ¥; which do contain a.
5. Return the template ¥/, IV H rufa} ®.

In step 4 of the above procedure, I" is constructed using multiset opertions.
For example, if the multiset I' contains two occurances of O, then “I' minus ©”
contains one occurance of ©. The use of multisets ensures that backchaining steps
“commute”. To see thislet £, T H Tu{a} P be atemplate and let ©, and O, be two
elements of I'. Select two Horn clauses for backchaining on ©; and @, respectively
and let X, T Hyy(a) @ be the result of performing these two backchaining steps.
The use of multisets ensures that the template X", T H Tu{a} P is independent of
the order in which the two backchaining steps are done. Suppose we use sets rather
than multisets and suppose that backchaining on ©, generates O, as a subgoal. In
this case backchaining on ©; and then backchaining on ©, eliminates all occurances
of ©;, while backchining on ©; and then backchaining on ©, leaves an occurance of
O;. The use of multisets rather than sets guarantees that in this case the subgoal
O, remains under either order of backchaining. The commutativity of backchaining
steps simplifies the inductive termination test considered below.

For any set T of feedback templates we define B[T] to be T plus all templates
that can be derived from an element of T by an application of the above backchain-
ing procedure. It is important to keep in mind that by definition B[] contains 7.
We let B"[T] be B[B]- - - B[T]]] with n applications of B.

7



Definition: A feedback template ¥, H Yu{a} @ is called critical if T
is empty.

If X,0, Hyugy @ is a critical template then ¥ H rufa} . £ X KA ® then
Y Hyue} @ is a feedback event. By abuse of terminology, a critical template
%,0 Hyygap ® such that & b @ will be called a feedback event. The following
lemma provides the motivation for the definition of a feedback template and the
backchaining process.

Lemma: There exists a feedback event for R if and only if there exists
a j such that B’[To[R]] contains a feedback event.

Proof: To prove the above lemma suppose that there exists a feedback
event for R. Let ¥ H Yu{o} ® be a minimal feedback event for R, ie.,
a feedback event for R which minimizes the length of the derivation of
® from ¥ under the bounding set T U {a}. The fact that this feedback
event is minimal implies that every formula in the derivation other than
® contains a. To see this suppose that O is a formula in the derivation
other than ® that does not involve a. We then have & H Tu{a} © and
YU {0} Hrypy ®. One of these two must be a feedback event —
otherwise we would have ¥ Hy ®. But if one of these is a feedback
event then it involves a smaller derivation than ¥ H Tu{a} ® and this
contradicts the assumption that ¥ H Tu{a} P is minimal. Since every
formula other than ® in the derivation underlying ¥ H Tu{a} ® contains
a, the template X,0 Hyy(o; ® can be derived by backchaining. m

The above lemma implies that if the Horn set is not local then backchaining
will uncover a feedback event. However, we are primarilly interested in those cases
where the Horn set is local. If the backchaining process is to establish locality then
we must find a termination condition which guarantees locality. Let 7 be a set of
feedback templates. In practice T can be taken to be B [To[R]] for some finite j.
We define a “self-justification” property for sets of feedback templates and prove
that if 7 is self-justifying then there is no n such that B"[T] contain a feedback
event. In defining the self-justification property we treat each template in 7 as an
independent induction hypothesis. If each template can be “justified” using the
set of templates as induction hypotheses, then the set 7 is self-justifying.

Definition: We write £,T" H Ty ®if T contains templates
zl’]-‘ll HTU{a} ¥y, E%F2 H'I’U{a} ‘FZa Z"k’]:‘k H'I'U{a} Uy

where each X; is a subset of Y, each T'; is a subset of ' and ¥ U
{¥,, ¥, ... Ui} Hy &.



Definition: 7 is said to justify a template X,T Hyuey @ if there
exists a © € I such that for each template &/, I H Tu{a} P generated
by backchaining from X,T' Hyy() ® by selecting © at step 1 of the
backchaining procedure we have ¥/, IV H Ty @

Definition: The set 7 is called self-justifying if every member of T is
either critical or justified by 7, and 7 does not contain any feedback
events.

Induction Theorem: If T is self-justifying then no set of the form
B"[T] contains a feedback event.

Proof: We must show that for every critical template Z,0 Hyygey @
in B*[T] we have that ¥ Hy ®. The proof is by induction on n.
Consider a critical template X,0 H Tu{a} @ in B"[T] and assume the
theorem for all critical templates in B?[T] for j less than n. The critical
template £,0 Hyyy,y ® must be derived by backchaining from some
template X', I Hyy(a} @ in 7. Note that X’ must be a subset of X. If
I is empty then ¥’ equals ¥ and ¥ Hy ® because 7 is assumed not
to contain any feedback events. If I is not empty then, since 7 is self
justifying, there must exist some © in I such that for each template
T T" Hyyay @ derived from ¥/, IV H ru{a} ® by backchaining on ©
we have X/, T H T ®. Wenoted above that backchaining operations
commute. By the commutativity of backchaining steps there exists a
backchaining sequence from ¥/, I Hrue) @ to X,0 Hrugay @ such
that the first step in that sequence is a backchaining step on ©. Let
E"T" Hyy(ep D be the template that results from this backchaining
step from X', IV Hyyp) ®. Note that X7 is a subset of X. We must
now have X", T H T x ®. By definition, 7 must contain templates

E5,T1 Hyugey U, 25,12 Hyggy ¥y, ... Z4, Ty Hrutey Yk

such that each X; is a subset of X”, each T; is a subset of I, and
YU {¥,, ¥, ... I;} Hy &. Note that each ¥; is a subset of
Y. Since I'; is a subset of I there must be a sequence of fewer than
n backchaining steps that leads from ¥, T Hruty Wi to a critical
template X!, 0 Hrua} ¥ Note that Y! is a subset of ¥. This
critical template is a member of B[T] for j less than n so we have
Yi By ¥ and thus & Hy ¥;. But if & Hy W, for each ¥;, and
ZU{¥, ¥z, ... U4} Hy &, then Z Hy &. m

We now come the main definition and theorem of this section.
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Definition: A Horn set R is called inductively local if there exists some
n such that B"[T,[R]] is self-justifying.

Theorem: There exists a procedure which, given any finite set R of
Horn clauses, will terminate with a feedback event whenever R is not
local, terminate with “success” whenever R is inductively local, and
fail to terminate in cases where R is local but not inductively local.

The procedure is derived by lifting the above ground procedure for computing
B"[T[R]]. Lifting can be formalized as a mechanical operation on arbitrary nonde-
terministic ground procedures [McAllester and Siskind, 1992). In the lifted version
the infinite set B/[T,[R]] is represented by a finite set of “template schemas” each
of which consists of a template expression Y,TH Tu{a)} P involving variables plus a
set of constraints on those variables. Lifting always converts a ground computation
to a lifted computation resulting in a data structure containing variables together
with constraints on those variables. In this case all of the terms in E,F Hyyey @
may contain first order variables and T is a variable ranging over bounding sets.
The variable T is subject to the constraint a ¢ T and a set of constraints of the
form ¢t € T where t is a first order term. There exists a simple procedure for deter-
mining if these constraints are satisfiable, i.e., if there exists a ground substitution
o and a ground bounding set Y satisfying these constraints. It is also possible to
construct a procedure that determines if B*[T[R]] is self-justifying by examining
the finite set of template schemas constructed by the lifted computation.

5 Locality is Undecidable

To prove that locality is undecidable we start with Papadimitriou’s result that
superficial Horn sets can represent any polynomial time predicate. Let P be any
polynomial time predicate on first order terms. Papadimitriou proved that a poly-
nomial time bounded Turing machine for computing P can be mechanically con-
verted to a superficial Horn set R such that for any first order terms t;, ¢, ... ; we
have that P(ty, t,, ... t,) if and only if Input(ty, ty, ... &) Fg Accept where
Input is a predicate symbol and Accept is a distinguished proposition symbol.?
The first step in proving that locality is undecidable is to convert R to a local Horn
set R’ such that for any t,, ¢,, ... t; we have that P(t1, t3, ... ti) if and only if
Fr P(ty, ta, ... tg).

?Papadimitriou’s result is actually somewhat different. He only uses Horn clauses that do
not contain any function symbols other than constants but then requires more input premises.
Papadimitriou’s result can be used to prove the result stated here by constructing additional
clauses that allow the additional premises needed by Papadimitriou’s clauses to be proved by
superficial inference rules operating on the terms ¢;, 1, ... ¢,,.
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Let P be a polynomial time predicate on k first order terms and let R be a
superficial Horn set satisfying Papadimitriou’s condition for P. For each predicate
symbol @ of m arguments appearing in R let Q' be a new predicate symbol of
k + m arguments. We define the Horn set R’ to be the Horn set containing the
following clauses.

e Input'(zi, ... zk, 21, ... Z4)

o All clauses of the form

Q'l(a:l, vee Thy tl,ly e tl,m,)/\---AQ;(zl, voo Tk, tn,ly e tn,m,.)=> W’(.’Bl, ceo Ty 81, ...

where the clause Q1 (21, ... tym,)A-- AQn(ta1y -+ tama) = W(sy, ... s;)

isin R.
o The clause Accept/(zy, ... zx) = P(zy, ... Tk).
Given the above definition we have that Fgp Q' (t1, ... tx, S1, ... 8y) if and

only if Input(ts, ... tx) Fr Q(s1, ... sm). So Input(ty, ... tx) Fr Accept if
and only if kg P(ty, ... t;). It remains only to show that R’ is local. Suppose
that ¥ Fp ®. We must show that & Hp ®. Let t1, ... tx be the first k
arguments in ®. Every inference based on R’ involves formulas which all have the
same first k arguments. Given that ¥ Fg ® we must have that Y kg ® where
¥’ is the set of formulas in ¥ that have l1, ... U as their first k¥ arguments. Let
Y" be and @' be the result of replacing each formula Q'(t, .- tk, 81, ...,8,) by
Q(s1, -..,8m). Since &' Fp & we must have {Input(ty, ... $H)JUZ" kg &
But since R is superficial this implies that every term in the derivation underlying
{Input(ts, ... &)} UZ" kg & either appears in some ; or appears in £”. This
implies that every term in the derivation appears in either ¥’ or ®. This implies
YHp &.

We can now reduce the halting problem to the problem of determining locality.
Let T be a specification of a Turing machine. Let Pr be the predicate on first order
terms which is true of a term c just in case ¢ is a representation of a computation
history of T' which ends in a halt state. Pr is a polynomial time predicate on
first order terms. Furthermore, a polynomial time Turing machine for Pr can be
computed from the representation of T. By the above construction, the Turing
machine for Pz can be converted to a local rule set R such that kg Pr(c) if
and only if Pr(c). Now let R’ be R plus the single clause Pr(z) = Halts where
Halts is a new proposition symbol. We claim that R’ is local if and only if T does
not halt. First note that if T' halts then we have r Halts but K p, Halts.
Conversely, suppose that T does not halt and suppose that ¥ Fp &. We must
show that £ Hp ®. Suppose @ is some formula other than Halts. In this case
Y kg @ isequivalent to X kg ®. Since R is local we must have ¥ Hp ® and
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thus ¥ H p ®. Now suppose ® is the formula Halts. Since & Fg Halts we must
have ¥ kg Pr(c) for some term c. To show ¥ H i Halts it now suffices to show
that ¢ is mentioned in X. By the preceding argument we then have & H r Pr(c).
Since the rule set R was generated by the construction given above, we have that
every inference based on a clause in R is such that that every formula in the
inference has the same first argument. This implies that ¥/ H g Pr(c) where X'
is the subset of formulas in ¥ that have c as a first argument. We have assumed
that T' does not halt, and thus g Pr(c). Hence ¥’ must not be empty. So ¥
must mention ¢ and since £ H g Pr(c) we have ¥ H g Halts.

The use of Papadimitriou’s result can be eliminated from the proof that locality
is undecidable. We could have started by giving a direct proof that one can not in
general determine for an arbitrary superficial Horn set R whether there exists a ¢
such that Input(c) kg Accept. We could then translate an arbitrary superficial
Horn set R to a Horn set R’ such that R’ is local if and only if there does not
exist a c such that Input(c) kg Accept. This can be done using the construction
given above.

6 Discussion

Local rule sets provide a characterization of the set of relations decidable in poly-
nomial time. An understanding of local rule sets can lead to streamlined proofs of
polynomial time decidability. For example, consider the fact that any context free
language can be recognized in cubic time. This fact is easily proven by giving a
translation of grammars into local rule sets. Consider a grammar with productions
of the form D — d and A — BC where A, B, C, and D are nonterminal symbols
and d is a terminal symbol. One can translate these productions to Horn clauses of
the form Terminal(d, ¢, j) = D(i, j) and B(, J)AC(, k) = A(i, k). One can
then add the clause Terminal(z, cons(z, ¥), ¥). One can readily verify that this
set of clauses is local and that a string z (represented as a list) parses as nontermi-
nal A if and only if + A(z, nil). Hence context free parsing is polynomial time.
General methods for analyzing the order of running time of local rule sets can be
used to immediately give that these clauses can be run to completion in order n3
time where n is the length of the input string. We have implemented a compiler
for converting local rule sets to efficient inference procedures. This compiler can be

used to automatically generate a polynomial time parser from the above inference
rules.

In addition to providing a characterization of the complexity class P, and a
convenient way of representing some polynomial time algorithms, local inference
relations provide a variety of efficient inference techniques that can be applied
in situations where complete inference is intractable. The inference rules for set
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inclusion given in the introduction are incomplete (as rules as about set inclusion)
but are useful nonetheless. Efficient but incomplete inference relations can play an
important role in pruning search. We hope that progress in understanding efficient
inference will lead to better practical algorithms.

In closing we note some open problems. First, although there is a close relation-
ship between the complexity class P and local rule sets, it is not known whether
every polynomial time inference relation can be generated by a local rule set. More
precisely, let I be any polynomial time inference relation such that ® + & for any
ground atomic formula ® and if £ F ® then ¥ U {¥}  &. Does there always
exist a local rule set which generates I, or perhaps a conservative extension of F?
Our other problems are less precise. Can one find a “natural” rule set that is local
but not inductively local? A related question is whether there are useful machine
recognizable subclasses of the local rule sets other than the classes of strongly local
and inductively local rule sets?
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