MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1345 December 1991

Boltzmann Weighted Selection Improves
Performance of Genetic Algorithms

Michael de la Maza and Bruce Tidor

Abstract

Modifiable Boltzmann selective pressure is investigated as a tool to
control variability in optimizations using genetic algorithms. An im-
plementation of variable selective pressure, modeled after the use of
temperature as a parameter in simulated annealing approaches, is de-
scribed. The convergence behavior of optimization runs is illustrated
as a function of selective pressure; the method is compared to a genetic
algorithm lacking this control feature and is shown to exhibit superior
convergence properties on a small set of test problems. An analysis is
presented that compares the selective pressure of this algorithm to a
standard selection procedure.

Keywords: genetic algorithms; simulated annealing; function optimization;
hybrid search strategies.

Copyright (© Massachusetts Institute of Technology, 1991

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology and at the Whitehead Institute for Biomedical Research. Support for the
laboratory’s artificial intelligence research is provided in part by the Advanced Research Projects
Agency of the Department of Defense under Office of Naval Research contract N00014-85-K-0124.
The Whitehead Institute Fellow’s Program is supported by generous grants from the Lucille P.
Markey Charitable Trust and the W. M. Keck Foundation.

1. Introduction

A number of problem solving methods in current use are based on paradigms de-
rived from natural phenomena. Examples include simulated annealing, neural net-
works, and genetic algorithms. The first of these is modeled after physical systems
that are remarkably successful at finding global optima by sampling a potential
energy surface as the temperature is slowly reduced (Kirkpatrick et al., 1983). At
higher temperatures, relatively larger excursions over the potential energy surface
are permitted. During cooling, the system evacuates less favorable optima and
becomes trapped in the neighborhood of more favorable ones; the amount of pa-
rameter space sampled effectively decreases with the temperature, and the system
generally converges to very good local solutions. Simulated annealing has been
implemented using both first-derivative methods, in which equations of motion on
the potential energy (or general optimization) surface are integrated to produce
the search path (Verlet, 1967), and Monte Carlo methods, which do not require
derivative information (Metropolis et al., 1953). In both cases a temperature pa-
rameter is used to control the optimization. Artificial neural networks, inspired
by the highly interconnected, relatively simple, non-linear processing units found
in biological nervous systems, are proving useful in areas of machine learning and
pattern recognition. Genetic algorithms are based on the same principles of natu-
ral selection that describe the evolution of sizable biological populations over time
scales covering a large number of generations. A fitness function describes the
success of each member of the population in terms of that member’s parameters
(genetic makeup or “genes”); the fitness is a direct measure of an individual’s repro-
ductive potential, which follows in some measure the imperative, “Survival of the
fittest” (Darwin, 1859). Mechanisms for creating diversity are also incorporated,
including, but not limited to, mutation and crossover.

Genetic algorithms are atypical in that many solutions are followed in parallel
and these are recombined in search of improved ones. The evolutionary aspect
provides for the elimination of trial solutions that are relatively unsuccessful, but
a variety of selection criteria are possible. The quality of the overall result and the
computational effort required depend critically on the selection criteria used. Here
we compare the standard proportional scaling method with a new Boltzmann-based
protocol. As an illustration, note that one extreme selection scheme would allow
only copies of the fittest individual to survive. Variability would be introduced
only by mutation (and, if so desired, by crossover of mutant siblings); this would
correspond to a highly parallel Monte Carlo search, but at zero temperature (i.e., a
simple “always improving” optimization). While this might be efficient to perfect
the best optimum once it had been located, it would be extraordinarily inefficient
for most problems at the start of an optimization. In fact, for small enough
mutational steps in the parameter space, it would lead to the local optimum closest
to the fittest individual in the starting population. This corresponds to a “zero

tolerance” evolutionary system, in which the slightest advantage of one individual
over another results in the loss of the less fit individual from the gene pool. The
other extreme would be an “infinitely tolerant” environment; i.e., one that permits
all individuals to survive to reproduction, regardless of fitness. If the total number
of individuals in the population is fixed, this corresponds to a random walk in the
space with no preference for optima. Good solutions that are found are likely to
be lost to mutation and crossover. Between these two extremes lies a continuum of
evolutionary tolerance. Early in an optimization, it would be useful to have a high
tolerance, so that the search is carried out over a large portion of the space (like
the initially high temperature used for simulated annealing) and a large variety of
individuals are retained in the population so that, even if they, themselves, are not
of high fitness, they might donate to a crossover that produces an exceptionally
fit individual. Later in the procedure, when the major optima have been located
and partially refined, it would be reasonable to eliminate the lesser optima and
concentrate on refining the better ones, so a lower tolerance would be useful.

We have implemented a genetic algorithm using such a scheme for varying
the evolutionary tolerance of the environment with Boltzmann scaling. The plan
of the rest of this paper is as follows. In Section 2 we outline the theory of
the Boltzmann scaling method. In Section 3 we describe a set of trial problems
and present the empirical design of a tolerance schedule, a comparison between
Boltzmann and standard scaling, and an analysis of the variability of selective
pressure with standard scaling. Section 4 contains a discussion of the results, and
Section 5 presents our conclusions.

2. Theory

Generally there is a function to be optimized, U(R), which depends upon the
parameters, R. A transformation is applied to produce a fitness function, F (R),
which ensures non-negativity, provides a sign change when minimization, rather
than maximization, is desired, and introduces variable parameters to aid in the
optimization (De Jong, 1975; Baker, 1985; Grefenstette and Baker, 1989).

Commonly, in the selection step, the number of offspring propagated into the
next generation by an individual, j, with genetic makeup, R;, and fitness, F'(R),
is,

i+1 F(Rj)

where F; is the average fitness in generation 7 and we have used the notation i + :
to indicate that genetic operators, such as mutation and crossover, are applied
to the resulting set of individuals to produce the population in generation 7 + 1.
This selection technique is known as proportional scaling applied to fitness, but
how it selects on the optimization function depends greatly on the nature of the

transformation mapping U(R) to F(R) as well as on the distribution of individuals
in optimization space.

In an equilibrated simulated annealing ensemble, the probability of visiting a
point in optimization space, R, is,

e~U(R;)/T
P(R;) = T o UmIT (2)
where the minus sign in the exponent is necessary because a minimization is per-
formed, T is the temperature, the numerator contains the Boltzmann weighting
term, and the denominator is a normalization factor. The Boltzmann function has
the property that at higher temperatures the system visits more of phase space,
whereas at lower temperatures the probability of visiting points more unfavorable
than the global minimum is lower. We have implemented an analogous equation in
the selection step of our genetic algorithm. The transformation from optimization
function to fitness function is,

F(R) — e+U(R)/T (3)

where 7' is a variable parameter corresponding to evolutionary tolerance (analogous
to temperature in simulated annealing) and the plus sign is changed to minus
when minimization, rather than maximization, is desired. Thus, in terms of the
optimization function,

41 etURYT
Nt = (etU®R/TY (4)

where (), indicates an average over the population at generation i. Equation (4)
is analogous to the proportion of time that a simulated annealing optimization
spends in the neighborhood of R;, Equation (2), and we refer to it as Boltzmann
scaling applied to the optimization function. In what follows, we compare this
method to proportional scaling applied to the optimization function, in which,

F(R) = U(R) (5)
and so, ()
i+3 U RJ‘

Nj - Ui (6)

where U; is the average value of the optimization function in the i-th generation.

The Boltzmann formulation provides a number of attractive features. The
result of the selection step is independent of overall translational shifts in the op-
timization surface (i.e., the offspring from a given generation using the function
U'(R) = U(R) + ¢, for any constant, ¢, are equivalent to the offspring produced
using the function U(R)). Scaling the optimization surface by a constant, so that

U'(R) = cU(R), which corresponds to changing the units in which U(R) is mea-
sured, is also invariant so long as the parameter, 7', which has the same units
as U(R), is similarly scaled. Moreover, there is no requirement that the opti-
mization function be non-negative, since the exponential provides an appropriate
transformation.

3. Practice

In this section we first describe two model problems used to compare Boltzmann
and proportional scaling, we then explain how a tolerance schedule for the Boltz-
mann GA was chosen and present comparative results showing faster convergence
for the Boltzmann GA. Finally, we provide an empirical analysis that illustrates
that a genetic algorithm with proportional scaling increases, rather than decreases,
evolutionary tolerance as the point of completion nears (contrary to what one mi ght

wish).

3.1 Description of Model Problems

3.1.1 Molecular Biology Problem. This section describes a problem, inspired
by molecular biology, in which a pattern must be built that distinguishes between
functional and non-functional protein sequences.

A database of instances, composed of the twenty letters used to represent the
twenty amino acids, is divided into positive and negative classes. A random pat-
tern is generated and the same pattern is embedded in a random location in all of
the positive instances. The goal is to find this pattern or an acceptable substitute.
In addition to containing any character that can appear in the instances, the sub-
strings, also called individuals, can contain a “don’t care” symbol, which matches
any character.

A typical database is shown in Table 1. All of the positive instances contain
the substring RIEY while none of the negative instances do. Each database has
ten instances, each having a 0.5 probability of being in the positive class.

The optimization function, U(R), is a measure of the difference between how
well an individual matches the positive instances and how well it matches the
negative instances. The score of individual ; is calculated using,

1 1

U, I) = — max(match(z;, [y)) — = Y max(match(i;, It)) (7)
1Pl fep |V

IieEN

where I is the set of all instances, P is the subset containing | P| positive instances
and N is the subset containing |N| negative instances. The matching function
returns a list of numbers that indicate how well an individual matches each sub-
string of an instance. A point is given for each character that correctly matches

Table 1. Typical database. Each instance has sixteen letters. The instances in
the positive class contain the sequence “RIEY”.

Instance Class
KD GRWE GGG HW V M A R M negative
NH I TR HY V Q P C C C Y D K negative
T I €NV S D QWL F F K L W S negative
EE P S R I EY T I M G I E V T positive
VP Y KP CPKH S L S G A F K negative
R T EY R WP V KV R H Q N Y G positive
VA HRC CIKNWOQMT W I T H Q negative
T L Q F ' Y KENDL T K C G L K negative
R CWY K NAY I G QY V C P H negative
G VMAQGTRTIT E Y Y F F C G S positive

and half a point is given for the “don’t care” symbol. For example, the indi-
vidual *INE, when matched against the instance THISISFINE, returns 0.5 when
matched against THIS; 0.5 when matched against ISIS; and 3.5 when matched
against FINE.

Both the Boltzmann and proportional GAs shared the following properties.
There were three recombination operators: crossover, mutation, and shift. The
crossover operator was traditional 1-point crossover. Mutation was accomplished
by randomly switching exactly one character in an individual to another character.
The shift operator performed a cyclic permutation. To create the next generation
from the present one, first a selection step (either Boltzmann or proportional scal-
ing) was performed, creating generation i + % from generation i. Each of these
individuals was examined in turn and one of the three operators was chosen (at
random in the ratio crossover:mutation:shift of 2:1:1) and applied to create an in-
dividual for generation 7 + 1. In the case of crossover, an individual in generation
i + % was crossed over with any of the individuals in that generation (including
himself, producing the identity transformation) with equal probability.

The shift operator was introduced because many runs converged to a local
optimum that was a cyclic permutation away from the global optimum (correct
answer). With mutation and crossover alone, the rate of moving from the local
optima to the global optimum is negligible because it requires crossing deep valleys.
The cyclic permutation shift operator crosses these valleys in a single step.

The mutation rate (25%) seems deceptively high. For individuals with eight
characters, each character was mutated with an average probability of 3.125%.

If the twenty-one characters are represented as bits, then approximately 4.4 bits
are needed to represent each character. Thus, the mutation rate per bit was
approximately 0.7%, which is similar to that of other genetic algorithms.

3.1.2 F2 Function. The I2 function (Deb and Goldberg, 1989) is:

1
F2(z) = sin®(5ra) exp |21n 2(- O.g)? (8)

On the interval [0.0, 1.0], F'2 has five peaks, each one smaller than the previous
one (see Figures 4, 5, and 6).

Individuals for both the Boltzmann and proportional GAs were composed of
three decimal digits and represent a value between 0.000 and 0.999 (inclusive).
The optimization function was simply the value of F2 for the z value encoded by
the individual. The population consisted of 100 individuals. The 1-point crossover
rate was 90% and the mutation rate was 10%. The mutation operator added a
uniform random number between 0.1 and —0.1 to the individual. To create the
next generation from the present one, first a selection step (eithe1 Boltzmann or
proportional scaling) was performed, creating generation i + = from generation 1.
Each of these individuals was processed in turn and one of the two operators was
chosen (at random in the ratio crossover:mutation of 9:1) and applied to create an
1nd1v1dual for generation i+ 1. In the case of crossover, an individual in generation
? + was crossed over with any of the individuals in that generation (including
hlmseli, producing the identity transformation) with equal probability.

3.2 Finding the Initial Tolerance

The appropriate initial tolerance value was determined by performing a series of
experiments. The tolerance schedule is shown in Figure 1. This tolerance schedule
was chosen by adapting a successful simulated annealing cooling schedule to genetic
algorithms. The tolerance is constant for the first ten generations and then ramps
down over the next thirty generations to a final value. The final tolerance was set
to be 0.5.

Experiments using the molecular biology problem with a four character pattern
were used to determine the initial tolerance. Ten initial tolerances were tested:
0.5, 1.25, 2, 3.5, 5, 6.5, 8, 9.5, 11, and 12. The number of generations required for
convergence (see Section 3.3.1) was recorded; the results are shown in Figure 2.
Each experiment was repeated eight times; the numbers shown are averages.

The U-shaped curve in Figure 2 is in accordance with our intuition about how
the initial tolerance should affect search behavior. If the initial tolerance was
too high, then the genetic algorithm spent too much time performing a random
search and required a long time to focus on the few good solutions. If the initial
tolerance was too low, then the genetic algorithm performed a local search around

init |

T (optimization units)

final =T

0 20 40 60 80 100
Generation

Figure 1. The tolerance schedule used in the Boltzmann selection genetic algo-
rithm. A constant tolerance of T},;; is used for the first ten generations, followed
by a linear ramp down to T'tina1 over thirty generations, and finally at a constant
tolerance of Ty, until completion. In all runs, T'ina = 0.5 optimization units.

the individual with the highest fitness in the initial population and, therefore,
risked never finding the solution.

On the basis of these results, an initial tolerance of 4 was chosen for the next
series of experiments. Unless otherwise noted, this tolerance schedule was used for
all of the problems discussed in this paper. The observation that other optimization
surfaces were searched reasonably quickly with the same schedule suggests that the
method is robust with respect to fine details of the tolerance schedule.

3.3 Comparison

This section compares Boltzmann scaling and proportional scaling on a small set
of molecular biology problems and the F2 function (Deb and Goldberg, 1989).

3.3.1 Molecular Biology Problem. The results of comparing the Boltzmann
and proportional GAs are shown in Table 2. The first and second columns give
the number of characters in the instances and in the patterns. The third column
shows the size of the population. The fourth column indicates how many times
each experiment was performed. The fifth and sixth columns give the average
number of generations for the Boltzmann and proportional GAs to converge. For
this purpose convergence is defined as finding a pattern that is a perfect match

Mean Completion Time (generations)

-

1
1 1
0 2 4 6 8 10 12

Tin" (optimization units)

Figure 2. The average number of generations to completion of the Boltzmann
scaling genetic algorithm for the problem of pattern length four. Experiments that
required more than fifty generations to complete were stopped at fifty generations
and combined to compute the average as if they had completed in fifty generations.

in each of the positive instances (“don’t care” matches everything) but in none
of the negative instances. Note that the GA is not required to find the optimal
or characteristic pattern. The last column is the result of applying a one-tailed
statistical test: z = (u1 - u2)/y/a%/m1 +02/mnz . If this number is greater than 2.326 then
the Boltzmann GA is better than the proportional GA at the p < 0.01 level. If it is
greater than 2.576 then it is significant at the p < 0.005 level. A one-tailed (rather
than two-tailed) test was used to show that the performance of the Boltzmann GA
was superior to (rather than different from) the performance of the proportional
GA.

The results are clear. On all three versions of this problem, the Boltzmann GA
is far superior to the proportional GA.

Figure 3 shows the progress of the top individual in a Boltzmann scaling ex-
periment. At generation 0, the score is very low and the individual does not match
the target pattern, “RIEYGKSD?”, very well. But after a series of mutations,
crossovers, and shifts, the instance is perfectly aligned with the target pattern at
generation 19. After this point, the top individual is changed, one position at a
time, until it matches the target pattern perfectly. Note that in collecting the
data for Table 2 this run would have been considered to converge at generation 34,
when the pattern matches all of the positive instances and none of the negative
instances.

------- WA N ==~

)

(rvftsdtRIEYGKSDawvqekhmkwiqfyprfateshkyiiitgvscvpp)

----------- cvSwiwwk -) Gen:
------------- Svswiwwk - =) Gen:
------ swInYGfg--- - -) Gen:
------ swInYGEg--- - -) Gen:
----- gSWINYGE--—-~- - -) Gen:
----- gnwlvYGE- - ---) Gen:

WYGKSsWi---==-—=nmu ---) Gen:
-------- IwYGKSsw - - ---) Gen:
-------- IvYGKSsw - -) Gen:
-------- IvYGKSsw -—— -) Gen:
-------- IwvYGKSsw - -) Gen:
-------- IvYGKSsw——-~--) Gen:
-------- IvYGKSsw--- -) Gen:
-------- IvYGKSsw--- - =) Gen:
-------- INYGKSs*-—- - =) Gen:
------ S*INYGKS -~~~ === m—m e eeeeeeol) Gen:
------ s*InYGKS--- - -) Gen:
------ s*IwYGKS - -==) Gen:
------ s*IvYGKS ————ee- - ---) Gen:
[CRE— *INYGKS#=—mmmmm oo e -—- --=) Gen:
O *IwYGKS* - - ---) Gen:
(= A IRYGKS#mm o m o mm e e) Gen:
[C— *IWYGKS#—————— e -) Gen:
(=== *IhYGKS*=——--=— -) Gen:
[C— *IhYGKS* -—- mommemmmmem e) Gen:
[C— *ThYGKS* -- -) Gen:
(—==mmme *ThYGKS#—~-=— - -) Gen:
(mmmmmmm *ThYGKS*-—---- - -) Gen:
(=== *ThYGKS#*-- - - - =) Gen:
(——=mmee *ThYGKS#~—————————=ceeem - =) Gen:
(-----—-*IhYGKS#--—- - -) Gen:
(-==— *ThYGKS#----—- - ---) Gen:
(*ThYGKS#* - - ---) Gen:
R *ThYGKS*~ - - -) Gen:
(-————- HEY GRS # == e) Gen:
(-=mmmm- RIEYGKS* - -) Gen:
(--=--- *RIEYGKS Rt TE P) Gen:
(=== *RIEYGKS-——~--~=--- ----) Gen:
[CETEE *RIEYGKS - - -) Gen:
[Con— *RIEYGKS=-==~--~- e D D e) Gen:
(== *RIEYGKS--~- - -) Gen:
(=== RIEYGKS#*-~- - - =) Gen:
I o) Gen:
(-----—- RIEY GRS~ oo oo e) Gen:
(--==--- RIEYGKS* ---- --- -==) Gen:
(== RIEYGKS#~-——~—n- - -) Gen:
(=—=mmem RIEYGKSD---~------—-= -) Gen:

©ONOOND»WN=O

34-42
43
44
45
46
47
48
49
50
51
52
53
54

Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:
Score:

Figure 3. Sample Boltzmann scaling experiment. On each line the
ual, the generation number, the number of perfect alignments with the positive
instances, and the score of the top individual is shown. The top line shows a posi-
tive instance with the target region, “RIEYGKSD?”, in capitals and the rest of the
string in lower case. Each line shows the top individual and where it matches the
instance. When a letter matches with the target sequence it is capitalized. “*”
is the “don’t care” character. The complete data base had five positive and five
negative instances, so the maximum number of perfect alignments is five.

9

BRbRa222323

.20
.60
.60
.20
.20
.20
.20
.00
.00
.00
.00
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.40
.60
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.40

top individ-

Table 2. Results of comparison between Boltzmann GA and proportional GA.
The first two columns give the length of the instance and pattern. The third
column shows the size of the population of individuals. The Runs column indicates
how many times each experiment was repeated. The Boltzmann and Proportional
columns show the average number of generations needed for each algorithm to
converge. The final column gives the result of applying a statistical function to
the results.

Instance Pattern Population Runs Boltzmann Proportional Stat
Length Length Size

25 4 100 49 12.0 16.3 24
35 6 100 44 12.0 25.8 6.5
30 8 100 36 16.9 34.2 6.7

3.3.2 F2 Function. Two experiments were performed using the F2 function
(Deb and Goldberg, 1989) to explore the properties of tolerance. The experi-
ments differed only in the distribution of the initial population. The first experi-
ment, performed with a population randomly distributed around the middle peak,
demonstrates that the proportional GA does not allow individuals to jump from
the middle peak to the second highest peak and then onto the highest peak, while
the Boltzmann GA does. It also illustrates how the Boltzmann GA searches the
F2 space. The second experiment, performed with a random initial population,
shows how tolerance affects the search of the Boltzmann GA and compares it to
how the proportional GA searches the F2 space.

In the first experiment, the 100 individuals were randomly distributed between
0.400 and 0.600. The middle peak is at approximately 0.5. Figure 4 shows a snap-
shot of the proportional GA and Boltzmann GA populations after 50 generations
have passed. Notice that the proportional GA was not able to move any indi-
viduals from the middle peak, while the Boltzmann GA fully explored the second
highest peak and had an individual on the highest peak. Figure 5 shows a time
series of the progress of the Boltzmann GA. The population of individuals began,
at generation 0, with the 100 individuals on the middle peak. By generation 23,
some of the individuals began to explore the second highest peak. At generation
60, there were few individuals left on the middle peak, many individuals on the
second highest peak, and a few individuals on the highest peak. By generation 90,
almost all of the individuals were on the highest peak.

The second experiment, with a random initial population, demonstrates that
the behavior of the Boltzmann GA can be altered by changing tolerance. The

10

first graph in Figure 6 shows the distribution of individuals in the Boltzmann
GA subject to a constant tolerance of 10. The second graph repeats the same
experiment but with a tolerance of 1. As expected, in the experiment with the
higher tolerance, the individuals were comparatively more distributed throughout
the space than in the experiment with the lower tolerance. The lower tolerance
caused more copies of the highest fitness individuals to be made and therefore
there was much more pressure to explore the highest peak than the other peaks.
For purposes of comparison, the same experiment done with the proportional GA
is also shown.

3.4 Tolerance in the Proportional GA

Given the formalism that has been presented to modify evolutionary tolerance, it
is possible to study how the proportional GA sets an effective tolerance value at a
given generation by choosing the tolerance that minimizes,

U(R;) UR,)/T 12
2 S UR;) ¥ VRIT (9)

J

where U(R;) is the score of individual j and T is the tolerance.

Minimizing this function gives the tolerance which best characterizes the be-
havior of the proportional GA in the framework of the Boltzmann GA. For runs
of the molecular biology problem, the function was minimized using the golden
section search described by Press et al. (1988).

The results are shown in Figure 7. They indicate that in the proportional GA
the effective tolerance increased, rather than decreased, as a function of generation.
This result, which runs contrary to both intuition and theory, strongly suggests
that the traditional proportional scaling technique may need reconsideration.

4. Discussion

We have implemented Boltzmann scaling on the optimization function to select
the number of offspring each individual in the current population contributes to
the next generation; the procedure outperforms a standard proportional scaling
method on the small set of problems we have investigated. A broader range of
problems should be used to test the generality of this result. The tolerance schedule
is robust enough that the same schedule was used successfully for problems of
different sizes and correspondingly different scales in optimization space. These
results show that, for the molecular biology problem, many Boltzmann experiments
completed with a correct solution before the decrease in tolerance that occurred
after generation ten and nearly all completed before the schedule leveled off again
after generation forty.

11

A

] Ad |c°|

o
ha WWETS SUTTS A

A

e —t—
IR B,

dd A”JA i

o O O O O o o o o
(€]

3
.]
1=
o« J

0.1
0
0.5
o] 9-
0
0.93

(B) 14
0.9
0.8]
o.',f
0.6
0.5 i
0.4 d
0.35 : H
0.2] A
il j T A
OBV

0.99

0.1
0. 2
0.3
0

Figure 4. The proportional and Boltzmann GA populations at generation 50.
(A) proportional GA population, (B) Boltzmann GA population. The initial pop-
ulation was randomly distributed between 0.400 and 0.600. The individuals are
represented by small circles and the F2 function is the dark, continuous line. These
graphs show the population immediately after the recombination operators have
been applied and before the scaling operation has been done. Notice that none of
the individuals in the proportional GA have been able to escape the local optimum
of the middle peak.

12

~~
>
N
[
—~~
oS
N’
=

0.8 0.8]
0.9 0.7
0.6 0.6
0.5 0.5
0.4 0.4 A
0.5 1 0. Il
z A AT
0.2] 0.2
0. IRl 01 J RN
SVARVARVMARVVARNDANN oALLAL FIAANN
S s s A A B S A A S
o o o o o o o o o o o o o o o o

3
=
C

[

A

L

0
il

lc D‘

i

- q
Sy

l(nl Ld ncnj ik :

L
o WU

]lLul Al

(PSR
AR wTTs ST AT VY

o o o O O O o o O
(€2«

o O O O O o o o o

o)
]

L lrJLA

——— N

= H
N
("—
o]

1|
.

1|

o I
N
/‘

o

4//’

TTT[TYT T T
—~ N n o<
o o o O

3
9
]

.« 0]
-

I
o
o
-
o)
pd

. 0]
-,

7
o
[*]

0.9
1
0

0.1
0.2
0.3
0.4
0
0
0
0
0
0.8]
0.9

Figure 5. Boltzmann GA population time series. The initial population was
randomly distributed between 0.400 and 0.600. The individuals are represented
by small circles and the F2 function is the dark, continuous line. These graphs show
the population immediately after the recombination operators have been applied
and before the scaling operation has been done. Each graph shows the population
at a different generation: (A) generation 0, (B) generation 23, (C) generation 49,
(D) generation 60, (continued on next page).

13

A
/

il
I

ML

.

Sy un o r~
o O o o o o o o o

Ty v/nu TT
N

—_—

........
S e B B
—_ 0 O O O O O O O ©°o

=~

14

|
L

(continued) (E) generation 70, (F) generation 80, (G) generation 90.

|4 4
- . \ -
<] ”m 0 <1t
I P B
nllll\.l\\‘\\m {0 "h!lll!lll\il\.\. m
s SS— L~ P——] 3
,I/mo ‘o —— ;
O [
”w ‘0 E
& - Fe o
0
0

—- N ™

o O O O o o o o o

“~ <

A SR SHAR* GAAMY ARy Shadahssa nanss ranns na
o — . °

.15}

Q.
[o]
O
1
f<
o
=]
7
a
o
By
Y
&
0-#

PN R G S
a2 o

N— ~—

Figure 5.

0

(A) 17 (B) 15
0.9 0.9]
0.8 0.8+t
0.H 0.H
0.6 0.6
0.5 °'5§ {
0.4 0.4
0.3§ ﬁ: 0.35 p I
0.H 0.1
oY .:'i'g"q "uskxs'”:‘\‘ﬁl‘m\ﬂ 04 rj”-.‘oj \oj A
o o

0.1
0.4:
0.3
0

0. 3

.
© O O O O O o o o

(C)1E 2

A

0.5 |

0.2] M1 a
o PO

STARVARVVARNVARNVANN

0.1
0

0

0

0
0.87
0.9

Figure 6. Random initial population. The initial population was randomly dis-
tributed between 0.000 and 0.999. The individuals are represented by small circles
and the F2 function is the dark, continuous line. These graphs show the popula-
tion immediately after the recombination operators have been applied and before
the scaling operation has been done. (A) Boltzmann GA population at generation
20 with a tolerance of 10, (B) Boltzmann GA population at generation 20 with a
tolerance of 1, (C) proportional GA population at generation 20. As expected, the
individuals in (A) are comparatively more distributed than the individuals in (B).

15

25.0
20.0 +-
15.0

10.0 +

Effective Tolerance

5.0 1

I e e o ST EVEI SFENRFE S SFI P -
0 5 10 15 20 25 30 35

Generation

Figure 7. Effective tolerance in proportional GA. The dark line is for an exper-
iment in which the Boltzmann GA outperformed the proportional GA; the light
line is for an experiment with the opposite outcome. Both experiments are for
patterns of length eight.

One possibility that we have not investigated, but which is used in biological
systems, is to vary population size. In high tolerance periods the size of the
population could be allowed to increase, and in low tolerance periods it could be
forced to decrease. The advantage of such an approach is that more low fitness
individuals could be retained for use in crossover during critical stages of the
optimization, though it is not clear whether the benefits of this outweight the
computational overhead.

A refinement of our method that we have considered is to eliminate all du-
plicates in the population before applying the Boltzmann selection and adjusting
the selection to restore the fixed population size, as would be required by a strict
interpretation of the Boltzmann equation. The current distribution of fitness after
selection is biased somewhat more toward fit individuals than the refined method
would produce, but we expect that any benefit would be small relative to the cost
of finding and eliminating duplicates. Moreover, biological systems, particularly
those with larger genomes, have no such mechanism. Rather, they use a suite of
genetic operators that tend to keep exact duplicates as a low probability event.

Whitley (1987) reports using an exponential selection protocol for a genetic
algorithm and found that this increased problems of premature convergence. This
contradicts our results and suggests that the use of a reasonable evolutionary toler-
ance schedule is important (the parameter T in Equations (3) and (4)). It should

16

be noted that the evolutionary tolerance corresponds roughly to the acceptable
range of scores, in optimization units, between the best and worst individuals kept
after selection; thus, it is expected to vary with the scale of optimization space
and the use of trial runs to choose useful parameters (see Figure 2) is valuable.

Goldberg (1990) describes a Boltzmann tournament scheme in which the pop-
ulation of individuals converges to a Boltzmann distribution. The method was
developed so that genetic algorithms could benefit from the asymptotic conver-
gence properties enjoyed by simulated annealing and so that simulated annealing
procedures might be efficiently implemented on parallel machine architectures.
The algorithm includes a non-genetic “anti-acceptance” step that effectively con-
verts between Boltzmann and uniform distributions. Our goal here is to achieve
faster convergence to the global optimum rather than to a specific distribution.
We use Boltzmann scaling to control the approach to this optimum by varying
selective pressure through the tolerance (or its physical analogue, temperature).
Indeed, this is found to improve convergence over proportional scaling on at least
this set of problems. Moreover, proportional scaling appears to increase, rather
than decrease, effective tolerance during the course of an optimization.

5. Conclusion

This paper has illustrated the implementation of a procedure for genetic selection
based on Boltzmann scaling of the optimization function and empirically demon-
strated that it leads to convergence to the correct solution in fewer generations than
traditional proportional scaling on a small set of problems. Furthermore, it was
observed that proportional scaling, contrary to intuition and annealing methods,
actually increases evolutionary tolerance during the experiment.

We thank Patrick Winston, Richard H. Lathrop, and the MIT AI Biology
Reading Group for helpful discussions.

17

References

Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. In:
Proceedings of the International Conference on Genetic Algorithms, pp.
101-111. Lawrence Erlbaum, Hillsdale.

Darwin, C. (1859). The Origin of Species by Means of Natural Selection; or,
The Preservation of Favored Races in the Struggle for Life. London.

De Jong, K. A. (1975). Analysis of the Behavior of a Class of Genetic Adaptive
Systems. Ph.D. Thesis, Department of Computer and Communication
Sciences, University of Michigan, Ann Arbor.

Deb, K. and D. E. Goldberg (1989). An investigation of niche and species
formation in genetic function optimization. In: Proceedings of the Third
International Conference on Genetic Algorithms, pp. 42-50. Morgan
Kaufmann, San Mateo.

Goldberg, D. E. (1990). A note on Boltzmann tournament selection for genetic

algorithms and population-oriented simulated annealing. Complex Systems,
4, 445-460.

Grefenstette, J. J. and J. E. Baker (1989). How genetic algorithms work: A
critical look at implicit parallelism. In: Proceedings of the Third
International Conference on Genetic Algorithms, pp. 20-27. Morgan
Kaufmann, San Mateo.

Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi (1983). Optimization by
simulated annealing. Science (Washington, D. C.), 220, 671-680.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.
Teller (1953). Equation of state calculations by fast computing machines.
Journal of Chemical Physics, 21, 1087-1092.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1988).
Numerical Recipes in C: The Art of Scientific Computing, pp. 293-298.
Cambridge University Press, Cambridge.

Verlet, L. (1967). Computer “experiments” on classical fluids.
I. Thermodynamical properties of Lennard-Jones molecules. Physical

Review, 159, 98-103.

Whitley, D. (1987). Using reproductive evaluation to improve genetic search
and heuristic discovery. In: Proceedings of the Second International

Conference on Genetic Algorithms, pp. 108-115. Lawrence Erlbaum,
Hillsdale.

18

