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Abstract

A time-reversible Maxwell’s demon is demonstrated which creates
a density difference between two chambers initialized to have equal
density. The density difference is estimated theoretically and confirmed
by computer simulations. It is found that the reversible Maxwell’s
demon compresses phase space volume even though its dynamics are
time reversible. The significance of phase space volume compression in

operating a microscopic heat engine is also discussed.
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1 Introduction

The second law of thermodynamics is usually attributed to the fact that
states of maximum disorder in a statistical system have the largest probabil-
ity of occurrence among all possible states. The exact form of the microscopic
dynamics is usually assumed to play a secondary role. Yet the microscopic
dynamics can not be arbitrary. There are certain conditions that the micro-
scopic dynamics of a system must satisfy for the second law to hold. This
paper examines a system of hard core disks whose microscopic dynamics do
not satisfy the second law and can be viewed as a time-reversible Maxwell’s
demon.

The hard core disks move and collide with each other elastically, and are
kept inside a container that is separated into two chambers by a membrane.
The membrane interacts with the disks by transforming an incident disk’s
velocity according to a time-reversible and energy conserving rule to be de-
scribed below. The interaction between the disks and the membrane makes
the system of disks non-ergodic even though the dynamics are chaotic, energy
conserving, and time reversible.

The next section describes in detail the membrane and disks system and
explains how the membrane interaction leads to a density difference between

the two chambers. Section 3 estimates the density difference theoretically,



and section 4 presents the results of computer simulations confirming the
theoretical estimate. Section 5 discusses the dynamics of the membrane and
disks system in a multidimensional phase space, and reviews a few other
examples of dynamical systems that exhibit non-ergodic behavior.

Section 6 shows that the membrane interaction compresses phase space
volume when a disk penetrates the membrane. It also demonstrates that
if the membrane interaction obeyed incompressible dynamics, then it could
not create a density difference (for piecewise differentiable maps). Thus the
loss of ergodicity in the membrane and disks system must be attributed to
compression of phase space volume. Section 7 shows that a heat engine that
consists of a microscopic rectifier and a cooling mechanism also compresses
phase space volume, but in this case the compression of phase space volume
is caused by external forces.

Section 8 looks at the membrane system as a Maxwell’s demon whose
dynamics are time-reversible, and compares it to the traditional Maxwell’s
demon whose dynamics are irreversible. The comparison suggests that com-
pression of phase space volume is more general than irreversibility for re-
ducing the entropy of an isolated system of disks. An information theoretic

model of the new demon is also discussed.



2 The System

The system of membrane and disks (shown in figure 1) consists of a box
containing hard core disks, and a membrane that separates the box into two
chambers of equal volume. The hard core disks move and collide with each
other elastically. The membrane interacts with every incident disk according
to a rule that either reflects the disk back, or allows the disk to penetrate
the membrane while permuting and negating the disk’s velocity components

according to the following equation.

Vi = W, V1<0 V,<0 Vil > |V2|) or
+45 : if <
Vi = W Vi>0 V>0 |V < W)
Vi = -V, V<0 V23>0 W] > |V or
—45 if (1)
i= ) |0 veo mi<m)
i = -W
+90: | otherwise
Vi = v

The labels +45, —45, and 490 are motivated by the discussion of section 8
that views the membrane as a time-reversible Maxwell’s demon. The above
equation says that an incident disk in octants 2,4,5, and 7 (refer to figure 2)
reverses the x-component of its velocity when it hits the membrane and is
not allowed to penetrate. It also says that an incident disk in the remaining

octants penetrates the membrane by being deflected toward the x-axis when



coming from the left, and away from the x-axis when coming from the right.

Figure 2 illustrates graphically equation 1. The vertical solid line in
figure 2 denotes the membrane, and the other solid lines denote a division
of the plane into octants. The two dashed lines inside the first and sixth
octants (counting counterclockwise) denote trajectories that are deflected
and penetrate the membrane according to the case +45 of equation 1. The
transformation of velocities takes place instantaneously when the center of
an incident disk reaches the membrane.

Another way of examining equation 1 is to rewrite the equation as a map
of the velocity angle (impact angle). This is shown in figure 3 where ©
is the impact velocity angle and ©’ is the transformed velocity angle after
the membrane interaction has occurred. Both © and ©' range from —r
to 7. Note that a completely transparent membrane would be a straight
line of slope “1” passing through the origin, and a completely impenetrable
membrane (mirror-reflecting) would be a line of slope “—1” shifted 7 radians
from the origin and wrapped around periodically. Figure 3 shows that the
map of equation 1 consists of eight line segments. The eight line segments
can be viewed as the result of breaking a mirror-reflecting line of slope “—1”
and shifting the broken line segments that are shown dashed in figure 3 up

and down. The dashed line segments of figure 3 correspond to impact angles



that penetrate the membrane, while the solid line segments correspond to

impact angles that are mirror-reflected back.

The membrane interaction described by equation 1 leads to a large den-
sity difference between the two chambers. This is accomplished by exploiting
the thermal motion of the disks and the impact rate of disks hitting the mem-
brane. Assuming that the velocities of the disks are distributed isotropically
inside the container, it follows from geometrical considerations that the im-
pact rate of disks hitting the membrane must be a cosine of the impact angle
in absolute value,

impact-rate o« |cos©® | . (2)

The membrane exploits this cosine distribution of impact angles by allowing
disks with “high rate” impact angle to penetrate from the right, and allowing
disks with “low rate” impact angle to penetrate from the left. To achieve
reversibility, the remaining impact angles (“low rate” from the right and
“high rate” from the left) are blocked and do not penetrate the membrane.
They are simply reflected back. Furthermore, each “high rate” angle from
the right is rotated onto a “low rate” angle when the disk penetrates the
membrane, and vice verca.

The membrane interaction of equation 1 makes the membrane more per-

meable from the right side than from the left. This leads to an excess flux of



disks from the right side of the membrane, and creates a density difference
between the two chambers. When the density difference reaches an equi-
librium value (which is calculated in the next section), the fluxes of disks

between the two sides of the membrane become equal.

3 Estimate of the Density Difference

At equilibrium the fluxes of disks from the left and from the right side of the
membrane are equal to each other. In other words if Nz is the normalized
density in the left chamber, and P r) is the probability of an individual

disk to penetrate the membrane coming from the left, we require that
Ny Pp.r = Nr Pror) - (3)

We can estimate Py gy using the fact that among all the disks that strike
the membrane from the left only those with trajectories in the third and
sixth octants of figure 2 are allowed to penetrate. In particular, these disks
have impact angles in the intervals (7/4,7/2) and (47 /4,57 /4). In addition,
we assume that the probability of an individual disk to strike the membrane
varies as the cosine of the impact angle and is independent of the density in
each chamber. Although the total impact rate depends linearly on the density

of the disks, the probability of an individual disk to reach the membrane is



independent of the density to a first approximation. Thus we get,

/2
Ppor ~ 2C cosfdf ~ 2 C 0.3,

/4
for some normalization constant C; and similarly,

57/4
Propy ~ 2 C cos@df ~ 2 C 0.7,

4m /4
which gives

NL ~ 0.7 and NR ~ 0.3

(6)

In other words the system of membrane and disks reaches equilibrium when

the fluxes of disks from the left and right side of the membrane are balanced,

and this happens when the normalized density is approximately 0.7 in the

left chamber and approximately 0.3 in the right chamber.

4 Simulation Results

To check the theoretical results of the previous section, a two-dimensional

system of hard core disks with a membrane has been simulated. The com-

puter program used in these simulations is the same program as the one

described in detail in reference [1] with a few modifications to simulate the

membrane. The following membrane rule has been added to the program:

Whenever the center of an incident disk reaches the membrane, the disk’s

velocity is transformed according to equation 1.



In the experiments reported below forty disks are used. The size of each
chamber is 24.3 x 107"?¢m? (equal size chambers), and the disk radius is
3 x 107%cm. These numbers give a mean free path of the order of 10~%cm
which is approximately the length of each chamber. The average speed of
each disk is 3.56 x 10*cm/sec.

Figure 4 shows the time average of the number of disks in the left cham-
ber, building up from an initial value of 0.5 (normalized) to a value of 0.7
(approximately) as a result of the membrane interaction. The smooth curve
displays the cumulative time average of the number of disks in the left cham-
ber, which approaches a steady value as time increases. The noisy curve
displays a sequence of short time averages of the number of disks in the left
chamber (averaged over 1.25 x 10™'%sec intervals) and provides an indication
of the density fluctuations for the chosen system parameters.

Figure 5 shows the same quantities as figure 4, but plots them on a much
longer time scale. In addition, the running averages are based on longer time
intervals (25 x 107'%ec), so the size of fluctuations is accordingly reduced.
The cumulative time average of the number of disks in the left chamber is
a straight line that intersects the y-axis at the value of 0.68 (normalized).
This corresponds to 0.69 density (normalized) if we take into account that

the unequal numbers of disks in the two chambers changes the available area
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in each chamber. The simulation results are in good agreement with the

theoretical estimate of 0.7 normalized density difference in section 3.

5 FErgodicity

The membrane and disks system is now discussed from the perspective of
multidimensional phase space. A system of N disks can be represented in
R*N phase space as a 4N vector (-.., X, Y;, U, Vi, . ..) of real numbers. The
4N vector is called the representative point of the system, and it specifies
exactly the positions and velocities of all particles in the system at any given
time (all particles have equal mass). As the system evolves in time, the
representative point moves inside a constant energy subsurface of the R*M
phase space because the total energy is conserved. The total linear mo-
mentum is not conserved because wall collisions reflect a disk’s momentum
Ui = -U; or V/= -V, and because membrane interactions permute
and/or reflect a disk’s momentum according to equation 1. The total lin-
ear momentum is only conserved in a time average sense, and this has been
checked by computer simulations. The energy subsurface that is accessible
to the representative point will be denoted by (.

The membrane and disks system is not ergodic because it does not spend

equal times in equal regions of Q [2, p.68]. If the representative point of the
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system visited regions of ) that have more disks in the left chamber as often
as regions of () that have more disks in the right chamber, then the time
average density would be equal in the two chambers. Instead, the membrane
and disks system approaches irreversibly a state of 0.7/0.3 density difference
independent of initial conditions.

In general there are many ways in which a system can fail to be ergodic.
A trivial way to lose ergodicity in the context of billiard balls is to remove
all interactions between the disks. Then the disks can not see each other and
bounce between the walls of the container undisturbed. This system does not
attain a Maxwellian velocity distribution. It is a trivial example that shows
that collisions between disks are necessary for modeling ideal gas. Binary
collisions give rise to chaotic dynamics, and allow a system of hard disks to
explore fully its phase space.

On the other hand, binary collisions are not enough by themselves to
guarantee ergodicity. A system based on binary collisions and some other
dynamics can fail to be ergodic if the additional dynamics introduce an at-
tractor in phase space, which may occur when the evolution map M : Q — Q
does not conserve measure in phase space. To conserve measure, the Jaco-
bian determinant of the evolution map M must be unity in absolute value.

The simplest example of an evolution map that does not conserve measure is
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a two-to-one map, which means that two distinct representative points in §
are mapped onto the same point. In physical space this may occur when two
distinct trajectories of disks are mapped onto the same trajectory, which is
the case for the traditional Maxwell’s demon (see section 8).

A two-to-one evolution map is irreversible as well as compressing phase
space volume, but irreversibility is not necessary for compressing phase space
volume. The next section shows that the membrane and disks system com-
presses phase space volume even though its dynamics are time-reversible.

Incompressibility of dynamics is a property of systems that have a proper
Hamiltonian function (closed and isolated systems). Such systems conserve
phase space volume according to Liouville’s theorem [3]. A system that
is the limit of Hamiltonian systems also conserves phase space volume. For
example, a system of hard disks in a box (no membrane, only disks) conserves
phase space volume [4], and it can be viewed as the limit of Hamiltonian
systems with inverse power law potentials. By contrast, the membrane of
equation 1 can not be the limit of Hamiltonian systems since it compresses

and expands phase space volume, as is shown in the next section.
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6 Phase Space Volume

The membrane and disks system is not ergodic even though its dynamics
are chaotic, time-reversible, and energy conserving. The chaotic character
results from the binary collisions. Time-reversibility results from the binary
collisions and the membrane interaction of equation 1. One can easily verify
that if the velocity of a disk is reversed after it has interacted with the
membrane, the disk retraces its trajectory in all cases. The system of disks
would be ergodic if the membrane interaction did not compress and expand
phase space volume when a disk penetrates the membrane.

To examine the compressibility of dynamics, we can consider a membrane
system that contains only one disk for simplicity. In other words, we have
the same container and membrane as shown in figure 2 and we have a single
disk bouncing around. The phase space {2 is three dimensional X, Y, ® where
X,Y is the position of the disk and © is the velocity angle. We examine the
compressibility of dynamics using this one disk system.

Referring to figure 3 we see that the transformation of the velocity angle
of an incident disk is a linear map that has unity slope (minus one). A unity
slope suggests that the membrane map conserves volume in phase space. It
turns out however that this is not correct. In order to calculate the compress-

ibility of dynamics we have to consider the time evolution of all three X, Y, ®
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dimensions of the phase space together, and not only the © dimension that
is shown in figure 3.

For concreteness we look at the time evolution of an infinitesimal phase
space volume w(Xy,Y;,0;) centered at X;,Y;,0;. We assume that the
membrane is located at X = 0, and that the volume w(X}, Y3, ©1) is near the
membrane with X; > 0, and that ©, is inside the interval 3r/4 < O < 7.
We assume that after a time interval of 1.0 (in appropriate units) every
point X, Y, © in the volume w(X7, Y1, ©;) has penetrated the membrane from
the right and moved to the left of the membrane. We denote by X', Y, ©’
the image of X,Y,0 under the evolution map, and we have the following
equation,

X' = X +cosO At. —sin© (1 — At,) (7)

where At is the time it takes for point X,Y,0 to move to the membrane

and is equal to — X/ cos ©. Therefore,

X' = —sin® — Xsin®/cos ©
Y' = Y —X(1+5in0/cos®) — cos © (8)

O = 31/2-0

To check whether the evolution map compresses the volume w(Xy,Y1,0,)
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we evaluate the Jacobian determinant of the above equations. We find,

—sin®/cos® 0 —cos® — X/cos?O
—1—-sin®/cos® 1 sin® — X/cos? O = sin®/cos® = tan©

0 0 -1

(9)
For points X, Y, © inside the volume w(X7,Y;,0;), the angle © is inside the
interval 3m/4 < © < 7. Thus, the Jacobian determinant is always less than
one. In other words, the evolution map compresses phase space volume when
a disk penetrates the membrane from right to left.

Figure 6 shows geometrically how the compression of phase space volume
occurs when a disk penetrates the membrane. The figure is confined to two
dimensions for practical reasons. The two rectangles shown in solid lines
correspond to phase space volumes that are mapped onto each other under
the evolution map — they correspond to w(X,Y,®) with the angle © chosen
constant for all points. The vertical line X = 0 of figure 6 corresponds to the
membrane. It is easy to see that the edges of the two rectangles (the original
rectangle and its image under the evolution map) are equal between the two
rectangles, but the angles of the two rectangles are not equal, and hence the
areas of the two rectangles are not equal. Therefore phase space volume is
compressed when penetrating the membrane from right to left and expanded

when penetrating from left to right.
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The significance of compressing phase space volume by the membrane
map of equation 1 can be appreciated if we attempt to find a new membrane
map that would result in a density difference while preserving phase space
volume. It turns out that this is not possible, at least for piecewise differen-
tiable maps. To see this, we seek a map f(©) mapping the impact velocity
angle © to a new velocity angle f(©) so that the condition of incompress-
ibility (Jacobian determinant unity) is satisfied. Repeating the above steps,

equations 8 and 9 using f(©), we find
f(©) =sin™!(£sin® + C) . (10)

If C is zero, f(©) corresponds to a transparent membrane (i.e. no membrane
at all) or a completely impenetrable membrane (i.e. a wall). If C' is non-zero,
then we get a membrane that maps velocity angles in a non-linear fashion. In
analogy with the membrane of equation 1, we can apply the non-linear map
f(©) to a selected region of velocity angles and block the remaining angles.
In this way we hope that the probabilities of penetrating the membrane from
left and right will be different from each other (see section 2). However, a
simple calculation shows that the probabilities of penetrating the membrane
from left and right must be equal to each other for all possible choices of
the constant C' in equation 10. For example let us suppose that (r,m — d)

is a region of velocity angles penetrating the membrane from the right side,
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and (f(m — d), f(x)) is the image of this region under the membrane map
f(©) = 7 —sin"!(sin® + C) for some positive constant C <= 1 — sind.
Also let us assume that the remaining velocity angles are blocked and do not
penetrate the membrane. Then the probability of an individual molecule to

penetrate the membrane from the right (see section 3) is,

/”d|cose|d0 , (11)

and the probability to penetrate from the left is,

f(m)
/f(ﬂ_d) | cos 6|df . (12)

An elementary integration gives

Eqll = sin(r —d) =sind ,
Eql2 = sin f(m —d) —sin f(7) =
(13)
sin[sin™'[sin(7 — d) + C]] — sin[sin"![sin 7 + C]] =
sind .
Hence, the probabilities of penetrating the membrane from the right and
from the left are equal to each other. Therefore a membrane map (piecewise

differentiable) that obeys incompressible dynamics can not create a density

difference.
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7 Microscopic Rectifiers

Although the membrane and disks system creates a density difference be-
tween two chambers initialized to have equal density, the second law of ther-
modynamics is not in danger. The microscopic dynamics of the membrane
system compress phase space volume, and we can assume that the laws of
nature prohibit the compression of phase space volume in an isolated system
of disks. In this way the membrane and disks system relates the second law of
thermodynamics to the incompressibility of microscopic dynamics. It shows
that compressibility of dynamics can reduce the entropy of a statistical sys-
tem if the system is designed to take advantage of the compression of phase
space volume.

The significance of compressible dynamics can be appreciated further if
we compare the membrane and disks system to a class of mechanisms known
as microscopic rectifiers [8, 1]. These mechanisms are designed to extract
work from the thermal motion of gas molecules by rectifying spontaneous
variations in density between microdomains of gas. Microscopic rectifiers
do not succeed as explained in references [8, 1] because the rectifying mech-
anism becomes thermalized and starts moving randomly in every possible
way. In order to succeed the rectifying mechanism must be kept at a lower

temperature than the surrounding gas molecules.
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Interestingly the prevention of thermalization by a cooling process com-
presses phase space volume. To see how compression of phase space volume
occurs when a microscopic rectifier is cooled, we examine the trapdoor system
of reference [1]. For simplicity we consider a trapdoor system that contains
only one disk. We denote by z,y,u,v the coordinates and velocity of the
disk, and by X,U the position and velocity of the trapdoor. We assume
that the cooling operation of reference [1] occurs at time T, for 0 < 7, < 1
(in appropriate units of time), and we consider the evolution of the system

between times 0 and 1. The new state is given by the following equations,

o=z +ul.+nu(l -T,)
Y =y+ ol +nv(l -T,)

u = nu

(14)

v =nv

X' =X+UT.+eU(1-T.)

U =eU
where 0 < € < 1 is the cooling parameter (a fixed number), and 5 is chosen
so that the total energy of the system is conserved. If m, M are the masses

of the disk and the trapdoor, n is given by the formula

n:JHWM—W_)u—ez) | (15)

u2+v2

After some algebra we find that the Jacobian determinant of the evolution
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equation 14 is equal to €. In other words, phase space volume is compressed
at a rate of e. A similar calculation for a system containing a large number

of disks, for example n disks, gives the Jacobian determinant

2 (n—1)
Jacobian = ¢ <1+(1—62) — MU )> ) (16)

i m(uf + v?
which reduces to € (1 + R(1 — €?)) if we assume that the total energy of the
disks is much larger than the energy of the trapdoor, and that R is the ratio
of the energy of the trapdoor to the average energy of the disks. Further, if
the trapdoor is colder than the disks, R is a small number and the Jacobian
determinant is approximately equal to e. Hence, cooling the trapdoor is
accompanied by compression of phase space volume.

The difference between a cooled rectifier and the membrane and disks
system is that the former is an open system while the latter is a closed
system. In the open system compression of phase space volume is physically
possible because it comes from external forces. The cooled rectifier is simply
a heat engine. In the closed system we must assume that compression of
phase space volume is not physically possible. Also if the open system is
enclosed in a larger system that is closed and isolated (for example if a hot
and a cold reservoir are used to perform the cooling), then the extended
phase space must evolve incompressibly, and heat can only be converted to

work while the system is approaching equilibrium.
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Another difference between a cooled rectifier and the membrane and disks
system is that the former is microscopically irreversible, while the latter is
microscopically time-reversible. However, both systems are macroscopically
irreversible.

In conclusion compressibility of dynamics brings together many different
kinds of systems: heat engines, microscopic rectifiers, the membrane and
disks system, and the traditional Maxwell’s demon which also compresses

phase space volume as is shown in the next section.

8 Maxwell’s Demon

The present section discusses the relationship between the membrane system
of equation 1 and the traditional Maxwell’s demon. Maxwell’s demon is an
imaginary being (or device) that operates a microscopic door between two
chambers containing disks [5, 1, 6, 7]. In its simplest version the demon
opens the door when a disk is coming from the right, and closes the door
when a disk is coming from the left. The demon’s operations lead to a density
difference between the two chambers, and the density difference can be used
to extract work from the thermal motion of the disks. If the demon could
operate in a closed cycle dissipating less energy than the work that can be

extracted after the demon has finished its operations, then the second law
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of thermodynamics would be violated. This conundrum has inspired a large
volume of literature aimed at exorcising Maxwell’s demon [6].

The most recent and most popular way of exorcising Maxwell’s demon is
the information theoretic approach which assumes that the demon must erase
information in order to operate its trapdoor, and the erasure of information
must be accompanied by a minimum amount of entropy production (en-
ergy dissipation). This simple assumption has led to many interesting ideas
and conjectures regarding the role of information in physics, the relation
between physical and algorithmic entropy, and the possibility of reversible
dissipationless computation [9, 10, 6]. According to the information theo-
retic assumption Maxwell’s demon is in accordance with the second law of
thermodynamics because the reduction of entropy achieved by the demon is
counterbalanced by an equal amount of entropy production that is necessary
to implement the demon’s irreversible operations.

The dynamics of the traditional Maxwell’s demon are irreversible and
also phase space volume compressing. This is because the traditional demon
maps two distinct disk trajectories onto the same trajectory every time it
interacts with a disk, by opening and closing its trapdoor. After the demon
has interacted with a disk, it is impossible to distinguish whether the disk

came from the opposite chamber or whether the disk bounced off the demon’s
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door.

In contrast to the traditional Maxwell’s demon, the membrane and disks
system is time-reversible. To view the membrane system as a Maxwell’s
demon, we imagine that the membrane interaction is the result of a demon
playing tennis with the disks. The demon moves a tiny racket up or down
so as to intercept the disk at the membrane line. In addition, the demon
orients its racket in one of three possible orientations +45, —45, and +90
degrees, so as to reflect the incoming disk according to the map of equation 1
(also see figure 2). The mechanism used by the demon to position its racket
is not specified because no mechanism exists according to the second law,
and because there is no need to specify a mechanism in order to exorcise the
demon. To exorcise the tennis demon as well as the traditional Maxwell’s
demon, we assume that compression of phase space volume is not physically
possible in an isolated system of disks.

The novelty of the tennis demon is that its dynamics are time-reversible as
opposed to the traditional Maxwell’s demon whose dynamics are irreversible.
The tennis demon shows that irreversibility of dynamics is not necessary for
decreasing the entropy of an isolated system of disks. Compression of phase
space volume is more general than irreversibility in the sense that irreversibil-

ity necessitates compression of phase space volume, but the reverse is not
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true in continuum phase space. If the phase space were discrete, however,
(discrete position velocity), then compression of phase space volume would
necessitate irreversibility, and the tennis demon would become irreversible
just like the traditional Maxwell’s demon.

There is also another way of looking at the tennis demon which is in
terms of an information theoretic model. Instead of viewing the demon as
abstract dynamics, we view the demon as an agent that measures the position
and velocity of an incoming disk, or somehow has this information, and acts
according to this information in order to position the racket. By viewing the
demon this way, the demon is no longer abstract dynamics.

In particular the information model separates the demon from the mi-
croscopic dynamics and gives the demon a macroscopic quality: the act of
positioning a racket according to information. This property does not belong
to the level of microscopic dynamics. For example, two disks do not mea-
sure or have information about each other in order to perform a collision.
Instead the disks follow the microscopic laws of nature that are executed
infinitely precisely and time-reversibly. By contrast, the model of the demon
acting according to information introduces the macroscopic qualities of finite
precision and irreversibility.

Viewing the tennis demon as an agent that acts according to information
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means that the tennis demon can only position its racket with a precision
that is limited by the amount of information that the demon has. To po-
sition its racket, the demon must know exactly where an incoming disk is
going to intersect the membrane line. This corresponds to infinite informa-
tion because the point where a disk intersects the membrane line belongs
to a continuum. Thus the tennis demon can only be time-reversible if it
operates on infinite information. The information model of the demon and
the continuum dynamics of the demon inevitably lead to the need for infinite
information.

The novelty of the tennis demon is that the infinite information needed
by the demon is always available in the system, before and after the demon
has struck an incoming disk with its racket. The infinite information is the
state (continuum position velocity) of the incoming disk, and it evolves in a
time-reversible fashion. If the demon can have this infinite information, then
1t is a reversible demon. If it can not have this infinite information (possibly
because of quantum uncertainty), then it is an irreversible demon.

To label the tennis demon irreversible, however, is somewhat misleading.
First, this terminology does not capture the nature of the tennis demon
which is the reversible compression and expansion of phase space volume.

Second, the demon’s need for infinite information is partly the result of our
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viewing the demon as an agent that acts according to information. The
information model of the demon is not necessary for exorcising the demon.
It is only necessary for investigating other questions such as measurement
theory. Leaving such researches aside, the tennis demon can be understood
and exorcised as a time-reversible Maxwell’s demon at the level of abstract
dynamics. The exorcism follows from the assumption that the laws of nature

prohibit compression of phase space volume in an isolated system of disks.
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Figure 1: A system of membrane and disks can be viewed as a time-reversible
Maxwell’s demon. The membrane, displayed as a dashed line, interacts with
the disks according to a time-reversible and energy conserving rule which

creates a density difference between the two chambers.

Figure 2: The membrane interaction rule is illustrated graphically. The
vertical solid line denotes the membrane, and the other solid lines denote
a division of the plane into octants. The dashed lines correspond to disk

trajectories that penetrate the membrane.

Figure 3: The membrane map is shown as a map of the velocity angle. The
impact velocity angle © is mapped to the new velocity angle ©’. Both angles
range from —m to 7. The dashed line segments correspond to trajectories
that penetrate the membrane, while the solid line segments correspond to

trajectories that do not penetrate the membrane.

Figure 4: The cumulative time average of the number of disks in the left
chamber builds up from an initial value of 0.5 to approximately 0.7 (smooth
curve). The fluctuating curve displays a sequence of short time averages,

each one taken over 1.25 x 107 1%sec.
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Figure 5: The cumulative time average of the number of disks in the left
chamber is shown over a much longer time scale than Figure 3. The running

averages (fluctuating curve) are taken over time intervals of 25 x 107 1%sec.

Figure 6: The membrane map compresses phase space volume. A rectangular
region of points having identical velocity (impact angle) is compressed when

the points penetrate the membrane from right to left.
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