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Abstract

According to the 1.5 views theorem (Poggio, 1990; Ullman and Basri, 1991) recog-
nition of a specific 3D object (defined in terms of pointwise features) from a novel 2D
view can be achieved from at least two 2D model views (in the data basis, for each
object, for orthographic projection). In this note we discuss how recognition can be
achieved from a single 2D model view. The basic idea is to exploit transformations
that are specific for the object class corresponding to the object — and that may be
known a priori or may be learned from views of other “prototypical” objects of the
same class — to generate new model views from the only one available. The paper
is organized in two distinct parts. In the first part, we discuss how to exploit prior
knowledge of an object’s symmetry. We prove that for any bilaterally symmetric 3D
object one non-accidental 2D model view is sufficient for recognition. We also prove
that for bilaterally symmetric objects the correspondence of four points between two
views determines the correspondence of all other points. Symmetries of higher order
allow the recovery of structure from one 2D view. In the second part of the paper,
we study a very simple type of object classes that we call linear object classes. Linear
transformations can be learned exactly from a small set of examples in the case of lin-
ear object classes and used to produce new views of an object from a single view. We
also provide natural examples of linear object classes induced by symmetry properties
of the objects.

(© Massachusetts Institute of Technology, 1992

This paper describes research done within the Center for Biological Information Processing in the
Department of Brain and Cognitive Sciences, and at the Artificial Intelligence Laboratory. This
research is sponsored by grants from the Office of Naval Research, Cognitive and Neural Sciences
Division; by a grant from the National Science Foundation under contract IRI-8719394; by the Ar-
tificial Intelligence Center of Hughes Aircraft Corporation (LJ90-074); by Office of Naval Research
contract N00014-89-J-3139 under the DARPA Artificial Neural Network Technology Program; and
by NSF and DARPA under contract 8814612-MIP. Support for the A.I. Laboratory’s artificial intel-
ligence research is provided by ONR contract N00014-91-J-4038. Tomaso Poggio is supported by

the Uncas and Helen Whitaker Chair at the Whitaker College, Massachusetts Institute of Technol-

ogy. Thomas Vetter holds a postdoctoral fellowship from the Deutsche Forschungsgemeinschaft (Ve
135/1-1).



1 Introduction

Techniques have been recently developed that can learn to recognize a specific 3D object
after a “learning” stage in which a few 2D views of the object are used as training examples
(Poggio and Edelman, 1990; Edelman and Poggio, 1990). A lower bound on the number
of views is provided by the 1.5 view theorem (Poggio, 1990; see also Ullman and Basri,
1991 who pioneered the linear combination approach and Huang and Lee, 1989) that implies
that 2 views — appropriately defined — may be sufficient in the orthographic case. Under
more general conditions (perspective projection, more general definition of view, non uniform
transformations etc.) many more views may be required (Poggio and Edelman’s estimate is
in the order of 100 for the whole viewing sphere using their approximation network).

Though this is an easily satisfied requirement in many cases, there are situations in which
only one 2D view is available as a model. As an example, consider the problem of recognizing
a face from just one view: humans can do it, even for different facial expressions (of course
an almost frontal view may not be sufficient for recognizing a profile view and in fact the
praxis of person identification requires usually a frontal and a side view).

Clearly one single view of a generic 3D object (if shading is neglected) does not contain
sufficient 3D information. If, however, the objcct belongs to a class of similar objccts (pro-
totypes), it seems possible to infer appropriate transformations for the class and use them to
generate other views of the specific object from just one 2D view of it. We are certainly able
to recognize faces which are slightly rotated from just one quasi-frontal view, presumably
because we exploit our extensive knowledge of the typical 3D structure of faces.

One can pose the following problem: is it possible from one 2D view of a 3D object to
generate other views, ezploiting knowledge of the legal transformations associated with objects
of the same class? A positive answer would imply (for orthographic projection and uniform
affine transformations) that a novel 2D view may be recognized from a single 2D model view,
because of the 1.5 views theorem .

This note is divided in two distinct parts. In the first part we consider the case in which
legal transformations for a specific object (i.e. transformations that generate new correct
views from a given one) are immediately available as a property of the class. In particular,
we will discuss certain symmetry properties. In the second part, we consider the problem of
learning appropriate transformations from examples of other objects of the same class.

The main results in the first part of the paper are:

1. we prove that for any bilaterally symmetric 3D object (such as a face) one 2D model
view is sufficient for recognition of a novel 2D view (for orthographic projection and
uniform affine transformations). This result is equivalent to the following statement:
for bilaterally symmetric objects a model based recognition invariant (as defined by
Weinshall, 1992) can be learned from just one model 2D view;

2. we also prove that for symmetries of higher order (such as two-fold symmetries, i.e.
bilateral symmetry with respect to two symmetry planes) it is possible to recover
structure from one 2D view.

A positive answer would also make possible the use of other recognition techniques such as Poggio and
Edelman’s technique - and its extensions, possibly including the correlation based version (Brunelli and
Poggio, 1991) - by using the newly generated views as a training set.
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In the second part of the paper we first argue that transformations that generate addi-
tional model views from a single view may be learned at least approximatively from examples
of objects of the same class. We then

1. introduce the definition of “linear classes”,

2. show that for linear classes one 2D model view is sufficient to generate exact additional
views (and therefore to perform recognition of a novel view);

3. discuss examples of linear classes and prove that object symmetries induce a natural
set of linear classes: for instance, bilaterally symmetric objects are a linear class.

In the final section,, we briefly mention some the implications of our results for the practical
recognition of bilaterally symmetric objects such as faces, for human perception of 3D struc-
ture from single views of geometric objects and, more generally, for the role of symmetry
detection in human vision.

2 PART I: Object Symmetries Recover Recognition
and Structure from One 2D View

2.1 Recognition from One 2D Model View

Suppose that we have a model 2D view of an object. Assume further that (a) we know a
priori that the object is bilaterally symmetric (for instance because we identify the class to
which it belong and we know that this class has the property of bilateral symmetry) and
(b) we know a pair of symmetric points in the 2D view. For the purpose of this first part
we define an object to be bilaterally symmetric if the following transformation of any 2D
view of a pair of symmetric points of the object yields a legal view of the pair, that is the
orthographic projection of a rigid rotation of the object

D Xpair = x;)air (1)
with
T —2
T2 * —I
Xpair = Xpair —
P Y1 pa Y2
Y2 Y
and
0 -1 0 0
-1 0 0 0
D= 0 0 0 1
0 0 1 0

Notice that symmetric pairs are the elementary features in this situations and points lying on
the symmetry plane are degenerate cases of symmetric pairs. Notice also that our definition
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of symmetry is in the same spirit as its use in physics, where symmetries of an abstract
object are typically defined in terms of properties of the object under an appropriate set of
transformations.

Geometrically, this simply means that for bilaterally symmetric objects simple transfor-
mations of a 2D view yield other views that are legal. The transformations are similar to
mirroring one view around an axis in the image plane, as shown in Figure 1 top (where
the left image is “mirrored” into the right one) and correspond — but only for a bilaterally
symmetric object — to proper rotations of a rigid 3D object and their ortographic projection
on the image plane.

Equation 1 defines one such transformation and generates an additional view from the
one model view (and the knowledge of bilateral symmetry). The 2 views X4, and Xpair aT€
linearly independent, unless X, = AXp,;.» Which is equivalent to the condition that x,,;, is
the solution of the eigenvalue problem

D Xpair = Axpaira

that is, unless X,q; is a view which is left invariant(modulus a sign) by the symmetry oper-
ation D. The eigenvalue problem has exactly two sclutions (with A = +1) which correspond
to “accidental” views such as a perfectly frontal view, an exact side view, and reflection about
the image plane (obtainable for “transparent” objects by a 7 rotation). These x are the only
ones for which the symmetry operation D does not provide a linearly independent new view.
The same argument can be repeated for all symmetric pairs (points on the symmetry axes
are of course a degenerate case of a pair) and all transformations.

Thus, bilateral symmetry allows the generation of an additional, linearly independent
view of the object. The 1.5 views theorem (see Appendix A.5) can then be used to compute
the 3D basis that spans the spaces V, and V, of the object. Recognition of any view of the
object is then possible. We have thus proved

Theorem 2.1 A single 2D view of a bilateral symmetric object (containing at least 2 sym-
metric, nondegenerate pairs, once translations are factored out) yields a three dimensional
basis for the vector spaces V, and V,, provided that the view is not an “accidental” view, i.e.
is not a solution of Dx = +x.

Notice that bilateral symmetry provides from one 2D view a total of eight 2D views, each
corresponding to a different rotation of the original 3D view. Four of the eight views are
linearly independent (two linearly independent vectors of the z coordinates and two for the
y coordinates). > Moses and Ullman (1991) derived a result about recognition functions of
symmetric objects that is consistent with our theorem and complements it.

Notice that it is also possible to define bilateral symmetry for the 3D object and then
show that this definition yields the one above in the following way. Let us call a 8D object
bilaterally symmetric if there exist a position and orientation of the object relative to a given
3D cartesian coordinate system for which each feature point

2The depth ambiguity of any 2D view of “transparent” objects correspondes to a rotation of a single rigid
object (notice in the non symmetric case the two views cannot be interpreted as a rotation of a rigid object)
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has either z = 0 or a symmetric point x,, such that

Xy = U
21

It is easy to verify that there is a rotation % around the z axis in 3D under which the
vector of the coordinates of the two symmetric points transforms into

Z
T2

Xpgir =
pair ]
n

Y2

whereas a rotation of —¢ maps it into

ir —
pa Y2

n

2.1.1 A Recognition Algorithm

A single 2D model view together with knowledge that the object is bilaterallly symmetric
can be used for recognition (in the same spirit as Ullman and Basri, 1991) in the following
way.

1. Take x; and y; (the vectors of the z and y coordinates of the n feature points) from
the available view and generate a third vector x; (or y,) by applying the symmetry
transformation D to x; (or y,).

2. Make a 2n x 6 matrix B with its 6 columns representing a basis for ViN=VN @ 78
An explicit form of B is

B_(Xl X2 Y1 0 0 0)
N0 0 0 x x ¥

3. Check that B is full rank (for instance (BT B)™" exists). If B is not full rank try others
of the legal views induced by symmetry.

4. A novel view t (we assume here that the first » components are the z coordinates
followed by n y) of the same object must be in the space spanned by the columns of
B, and therefore must satisfy



Figure 1: Given a single 2D view (upper left), a new view (upper right) is generated under
the assumption of bilateral symmetry. The two views are sufficient to verify that a novel
view (second row) corresponds to the same object as the first.

t = Ba

which implies (since (BT B) ™" exists)

= B(BTB) 'BTt (2)

B can then be used to check whether t is a view of the correct object or not, by
checking whether ||t — B(BTB) ' BTt|| = 0 or not (a further test for rigidity may also
be applied, if desired, to the three available views). Figure 1 shows the results of using
this technique to recognize simple pipe-cleaner animals.

2.2 Structure from One 2D Model View

Suppose, as before, that we have a single 2D view of an object. Assume further that we
hypothesize (correctly) that the object is twice bilaterally symmetric (we assume in the
present notation that z,y are the image coordinates and z is ortogonal to the image plane)
and that symmetric quadropoles can be identified, that is sets of four points (they are
the “elementary“ features in this situation, since any point, which is not on both symmetry
planes, corresponds to 3 other points). We define an object to be twice bilaterally symmetric
if the following transformations of any 2D view of a feature quadropole yield legal views of
the quadropole, that is orthographic projections of rigid rotations of the object:



—

AN
N S

Figure 2: A single 2D view (upper left) of a twice bilaterally symmetric object can gencrate
additional views (upper center and right) using the symmetric properties of the object. Those
three views are sufficient to compute 3D structure, as indicated in the second row where we
project the 3D structure computed from the 3 views above.

I |
D21x‘1uad7' - xquadr (3)
D = x? 4
22X quadr = xquadr ( )
with
(21 (—2 (@
)] — T T3
T3 — T4 T2
_ | Ta 1 _ | —%s 2 _ L1
Xquadr — o 9 xquadr - Ya and xquadr - — Yy
Y2 Y1 —Y3
Y3 Ya —Y2
Ya / Ys ) \ ~H%

These 3 views are independent apart from special views, such as accidental views (see pre-
vious section). Thus the above definition of symmetry provides a way to generate two
additional views from the given one view, unless Xquadr 15 @ view which is left invariant by
at least one of the symmetry transformations D;. This is the case, for instance, for exactly
frontal views. The same argument can be repeated for all symmetric quadrupoles.

Thus, this transformations yields in the generic case to 3 independent views of the ob ject
(the symmetry yields a total of 16 views, representing 16 different orientations of the ob ject,



Figure 3: A single 2D view (upper row) of a bilaterally symmetric object can be generated by
different bilaterally symmetric 3D objects. The three objects projected in the second row all
generate the 2D view of the first row after a rotation of 20° around the vertical azis.

which span the 6 dimensional viewing space of the object). One can verify that standard
structure-from-motion techniques (Huang and Lee, 1989; see also Ullman, 1979) can be
applied to conclude that structure is uniquely determined up to a reflection about the image
plane 3. The following holds:

Theorem 2.2 Given a single 2D orthographic view of a twice bilaterally symmetric object
(with at least 2 symmetric, nondegenerate quadropole features containing a total of at least
four non-coplanar points) the corresponding structure is uniquely determined up to a reflec-
tion about the image plane.

In addition, the following results can be easily derived:

1. 3D structure can be obtained from two 2D view of a bilaterally symmetric object.

2. Structure cannot be uniquely obtained from a single 2D view of a bilaterally symmetric
object. So a single 2D view of an bilaterally symmetric object can be generated by
different bilaterally symmetric objects (see for example figure 3).

2.3 Correspondence and Bilateral Symmetry

Let us suppose that the correspondence of 4 non coplanar points (or more) between two
views (the model view and the noval view) is given (as in A.6) and the object belongs to the
class of bilaterally symmetric objects. Then the argument of Appendix 6 can be applied to
each of the two views generated by the model view and the assumption of bilateral symmetry
(see equation 1). For each point in the first view the corresponding point (z, y) in the second
view satisfies then the two equations:

3The W matrix defined by Weinshall (1992) is full rank in this case. It is rank deficient for simple bilateral
symmetry.
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Figure 4: Given a single 2D view (upper left), a second view (upper right) is generated by
czploiting under the assumption of bilateral symmetry. Four corresponding points {lower left)
are sufficient to obtain full correspondence between the model view (top left) and the novel
view (lower right), of the same 3D object undergoing a uniform affine transformation.

y=me+ A
y=m'z+ A
and is therefore uniquely determined (apart special cases) as

_ mA-—mA A—A

Y= ’ T =

m' —m m —m’

Thus the correspondence of 4 non coplanar points between two 2D views of a bilaterally
symmetric object (undergoing a uniform affine transformation) uniquely determines corre-
spondence of all other points.

Figure 4 shows an example of obtaining full correspondence between a model view and

a novel view given just four matched points and bilateral symmetry.

3 PART II: Learning Transformations

The key idea that motivated the work described in this paper is to use appropriate transfor-
mations to generate new views from a single 2D view. Such transformations may be known
a priori as a property of the object. This is the case discussed in Part I of this paper where
the symmetry properties of the objects provide the transformations. They can also be syn-
thesized in various ways. Poggio (1991) describes a few simple techniques such as the use
of 3D models whose parameters are estimated from the single 2D view. The 3D model can



be then transformed (for instance rotated) and new views thereby produced. This technique
has been already used for image compression (see Aizawa, Harashima and Saito, 1989 ).

We are interested in a different approach. The general idea is to use an approximation
technique, such as HyperBf networks, to learn an appropriate specific transformation from
a set of examples of objects of the same class. For instance, we may learn a specific trans-
formation that changes expression (from serious to smiling, say) of a face, using a set of
examples consisting of pairs of 2D views of faces (each pair consists of two views of the same
face, once serious and once smiling). In this section, we consider a more restricted set of
transformations, uniform affine transformations of 2D views of objects (see Appendix for
definitions), such as rotations, in order to begin to characterize their learnability. In the
case of faces one such transformation would be a specific rotation, for instance, from +30°
to 0°. It is worth emphasizing that the transformations we consider here are very specific
(from a ceratin specific pose to another). The situation is quite different from Part I, where
we were not interested in learning transformations and we were not restricted to specific
transformations.

We first introduce a very specific definition of object classes that we call linear object
classes, for which it is easy to show existence and learnability of exact transformations. We
do not believe that this is the best or most powerful definition of object classes. Its main
merit is that it is simple and easy to analyse. We believe that other definitions should also be
studied and that their computational and psychophysical relevance should be characterized.

3.1 Linear Object Classes

Consider a 3D view X, of object 0. Assume that X, € R3" is the linear combination of
frontal views of ¢ 3D views of other objects of the same dimensionality, that is

9
Xo = Z a,-Xi (5)
i=1
Xy is then the weighted average of ¢ points in a 3n dimensional space. Consider now the
operator L™ associated with a desired uniform transformation (see Appendix) such as for
instance a specific rotation in 3D. Let us define X7 = L"X; the rotated 3D view of object i.
Because of linearity of the group of uniform linear transformations £, it follows that

q
X; = o XI.
=1
Thus, if a 3D view of an object can be represented as the weighted sum of views of other
objects, its rotated view is a linear combination of the rotated views of the other objects with
the same weights. The same statement also holds for the corresponding 2D views, obtained
from the 3D views under orthographic projection (see Appendix), that is

q
Xo = Zaixi (6)
=1

implies
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9
Xy = ) o).
i=1
with xo = PX,, xj = PXJ, x; = PX; and x7 = PXT.

These relations suggest that we can use “prototypical” 2D views and their known trans-
formations to synthesize an operator that will transform a 2D view into a new 2D view
when the object is a linear combination of the prototypes. Notice that the decomposition
of equation 5 is always possible if ¢ > 3n, but that in general the decomposition cannot be
found uniquely for one 2D view and the given prototypes. However, if ¢ < 2n, then it is
possible to recover the coefficients o;. This observation leads to:

Definition of a linear object class
A set of 3D views (of objects) {X;} is a linear object class if dim{X;} < 2n with
X; e B3,

This is equivalent to say that all objects of the same class cluster in a small linear subspace
of #2" spanned by 2n prototypes. Edelman (1992) discusses closely related issues in the
context of the complexity of recognition.

3.2 How to Learn Transformations for Linear Object Classes

First we compute the coefficients a for the optimal decomposition (in the sense of least
square) of a “initial” view X, of an object ® into the “initial” views x; of the q given
prototypes by minimizing

q
on - Zaixi||2- (7)

i=1

we rewrite equation 6 as

1]

Xp =

o (8)

where E is the matrix formed by the g vectors x; arranged column-wise and « is the column
vector of the a coefficients. Minimizing equation 7 gives

a=(E)"x (9)
The observation of the previous section implies that the operator that transforms x, into Xg
through xj = Lx,, is given by
Xp=Ea=EEx, (10)
as
L=E"Et (11)

and thus can be learned from the 2D example pairs (x;,x7). In this case, a one-layer, linear
network (compare Hurlbert and Poggio, 1988) can be used to learn the transformation L. L
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Figure 5: Four 2D views (top) of a 3D object rotated three times around a fized azis, cack
time by 5°. From the resulting 3 pairs of 2Dviews, the transformation “rotation by 5° degrees”
can be learned in terms of the linear operator L. The lower row shows the effect of applying
the transformation, iterated 10 times, to the upper right 2Dview.

can then transform a view of novel object of the same class. If the ¢ examples are linearly

° g T g\ — 1 ey « . . . . .
independent E* = (E7Z) ™ ET and the minimization of equation 7 provides Xo = Yory QiX;
4

3.3 Examples of Linear Object Classes and the Role of Symme-
try

A “small” number of prototypes
Each set of 2n linear independent objects defines a linear object class, which contains all
their linear combinations.

The space of a single object

As recently discovered by Basri and Ullman (1989), the space spanned by all rotations of
one object has dimension 6. The dimension is reduced to 3 if the rotations are limited to
the rotation around one fixed axis. A few examples (6 or 3) therefore span the complete
view space in which any novel view of the same object — obtained through a 3D rotation
(or any uniform affine transformation in 3D), followed by orthographic projection — lies. It
is possible to transform this transformed view again, and thus to compute all the 2D views
generated by a stepwise 3D rotation (see figure 5).

4Under more general assumptions, however, such as perspective projection and use of other non-geometric
features instead or in addition to the z,y coordinates of labeled surface points, we expect the mapping
between “frontal” views and rotated views to be nonlinear. Techniques such as Hyperbf should then be used
(Poggio and Girosi, 1990).
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Objects with a symmetry structure

3D objects with a common or partly common interior structure (e.g. symmetry, fixed angles
(such as right angles) or fixed ratios between some feature points) may form a linear ob ject
class. The following result holds: A class of objects, each one represented by a special 3D
view {Xs}, Xs € R®, is a specific linear object class if the structure can be represented by
a matriz S(3n,3n) with rank(S) < 2n and X5 = SX; .

Symmetric objects form a natural linear object class of this type. In the case of bilateral
symmetry in the y, z plane {Xg} is taken to be a “frontal” 3D view of the object and S can

be written as:
_ Spl 0 )
S= ( 0 Sy

where S,;(3p, 3p) defines the structure of p points in the symmetry plane and Spi(2%3b,2x 3b)
of b pairs of symmetric points. Both S,; and S;; can be written in a diagonal form

Spl 0 . 0 Spi 0 . 0
Sy = 0 s . 0 S, = 0 s . 0
0 0 . Spl 0 0 o Sk
where s,; and s; are a square matrix
1 0 0 0 00
0 1.0 0 0 0
—3(1)8 s-—(I 0)_001000
SP"OOI “T\M, 0/ |-1 000 0 0
0 1.0 0 00O
0 01 0 0O
where
1 00 -1 0 0
I=10 10 Mi=|0 10
0 0 1 0 0 1

The final dimension d of such a class {Xg} is determined by the number p of feature
points in the symmetry plane and the number b of symmetric feature pairs. Feature points
in one symmetry plane reduce the dimension from 3p to the upper limit of 2p. Points and
their symmetric counterparts reduce the dimension from 2 x (3b) to 3b.

3.3.1 Learning the Transformation Component by Component

In the previous section we considered learning the appropriate transformation from full views.
In this case the examples (prototypes) must have the same dimensionality as a full view.
Our arguments above show that dimensionality determines the number of example pairs
needed for a correct transformation. This section suggests that components of an object —
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Figure 6: Two ezamples of symmetric objects. The § symmetry planes of a cuboid reduce the
effective dimensions of the object space of all cuboids from 24 to 3. The bilateral symmetry
of objects consisting of 9 feature points with 5 points on the symmetry plane (see right figure )
reduces the dimensions from 27 to 16.

i.e. a subset of the full set of features — that are element of the same object class may be
used to learn a single transformation with a reduced number of examples, because of the
smaller dimensionality of each component. The basic components in which a view can be
decomposed are given by the irreducible submatrices S; of the structure matrix S so that
§$=5®..6S85..

Consider again the linear class of bilaterally symmetric objects. The “diagonal” structure
of S with only two submatrices is preserved after a linear transformation of the feature points

in R3:

I3 Xs = L*SXs
X5 =S5 Xs

This shows that the problem of transforming the 2D view xs of the 3D objects X into the
transformed 2D views X7, can be treated separately for each component of x5. For simplicity,
we deal in the following only with symmetric pairs of feature points (points on the symmetry
plane are degenerate pairs). The components are determined by the submatrix sy on the
diagonal of S and are the 2D coordinates of a pair of bilaterally symmetric points x3;. The
constraint Xg = SXg leads to :

Xb,' = Sb,'XH

This equation is equivalent to equation 5. Therefore the linearly independent column vectors
of sp; span the 3 dimensional space of a pair of symmetric points. It follows that 9 ezamples
are sufficient to learn a transformation of a pair of bilateral symmetric points (using a linear
network).

This observation shows the dramatic decrease in the number of examples necessary for
learning the specific transformation if a bilateral symmetric object is transformed by compo-
nents. In this case a single basic component consists of a symmetric pair of points. A total
of 3 examples for each pair of points, are sufficient to learn a specific transformation (such
as a rotation from a to 8 around a prespecified axis) of any bilaterally symmetric ob ject. As
shown earlier the lower limit for the number of examples is 1 /2 % 3n for a symmetric objects
consisting of n points if the objects is transformed as a whole.
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4 Concluding Remarks

o Classifying a novel view in terms of an object class

We have left open the question of how to classify the object from a novel 2D view. This
is the first step for then inferring certain symmetry properties or for applying learned
transformations. Notice that hypotheses about symmetries can always be attempted
and tried out.

e Identifying a symmetry pair (or a n-ple)

The techniques of Part I require identification in the novel view of symmetry pairs (or
quadropoles). Additional information may be available (e.g. once the two eyes are
identified as eyes, it is known that they represent a symmetric pair). In other cases
(e.g. line drawings of geometric objects) algorithms capable of identifying feature
points likely to be symmetric should be feasible. Though we have not worked on this
problem yet. It is intriguing to speculate about relations to known human abilities of
detecting symmetries and with human tendencies of hypothesizing symmetry in visual
perception.

o Ezact frontal model views should be avoided

Our results about bilateral symmetry imply that one should avoid to use in the data
base a model view which is a fixed point of the symmetry transformations (since the
transformation of it generates an identical new view). In the case of faces, this implies
that the model view in the data base should not be an exactly frontal view.

o A symmetry of higher order than bilateral allows recovery of structure from one 2D
view
Our results imply that even when other cues that provide structure from 1 view (such
as shading, perspective, texture etc.) are absent, an object symmetry of sufficiently
high order may provide structure from a single view. An interesting conjecture is that
human perception may be biased to impose a symmetry assumption (in the absence of
other evidence to the contrary), in order to compute structure.

e A new algorithm for computing structure from single views of polyedric objects

Marrill (1991) proposed an iterative algorithm that is capable of recovering structure
from single views of some simple geometric solids. Sinha (1992) has improved consid-
erably the algorithm and shown that it works well on a wide range of line drawings.
Our result on structure-from-1-view may explain some of these results in terms of the
underlying algebraic structure induced by symmetry properties (or other properties,
for instance constraints on angles). It also yields a new non-iterative algorithm for
the recovery of structure since it provides (once symmetric n-ple are identified) a sim-
ple algorithm generating a total of 3 linearly independent views to which any of the
classical S-f-M algorithms can be applied, including the recent linear ones (Huang and
Lee, 1989). It remains an open question to characterize the connection between the
minimization principle of Marrill-Sinha and our internal structure constraints.
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e A practical algorithm for face recognition, based on features

Assume to have one almost-frontal image per person in the data base. The matrix B
is synthesized for each person by identifying a set of symmetric pairs (eyes, etc.) and
performing the operations described earlier on the model view. When a novel view is
presented:

1. Assume or infer that the image represent a face
2. Identify pairs of symmetric points, such as the eyes

3. Apply to the vector associated to the novel view the operator B(BTB)_IBT to
verify recognition.

o An even more practical algorithm for face recognition, based on “grey”-levels

Assume to have an almost-frontal quasi-grey-level image per person in the data base
(Brunelli and Poggio, 1991). Assume that symmetric pairs are identified in the data
base image. Assume further that four points can be found (such as one eyes, the corners
of the mouth, and the top of the nose) and matched between the novel view and the
model view. Then all other points (assuming that faces are suffciently sy nmetric!) can
be matched (disregarding self occlusions) and a distance (or correlation) measure can
be computed. This technique assumes quasi-constant illumination and is not invariant
to expression. It is invariant to scaling and pose (modulus self-occlusions). We are
presently working towards testing and extending this basic technique. It may lead to
practical applications in model acquisitions and 3D object recognition, since it makes
possible to combine features and grey levels in an elegant and efficient way.

o From views to grey-level images

The obvious way to go from views (see Appendix for definition) to grey-level images is
through texture mapping (Poggio and Brunelli, 1990).

o Other definitions and uses of prototypes

S. Ullman has suggested that it may be wiser to define — instead of the several proto-
types of equation 5 — one single prototype and a small set of “perturbation” vectors.
This is formally completely equivalent to the formulation of section 3.1, but it may
better capture the psychophysics of object recognition.

We should also mention, though this is somewhat outside the scope of this paper,
that it is possible to use prototypes — say of a face — to compute parameters, such as
illumination and pose, that may help to “normalize” a later recognition step. Poggio
and Edelman (1990) used a HyperBF network to learn to associate to a 2D view of a
specific object the correct 3D pose parameters. It seems that a reasonable performance
may be achieved for similar tasks by using appropriate prototype(s) of the specific
object (R. Basri also suggested a similar idea).

o Nonlinear object classes and nonlinear transformations

The basic idea of Part II - to learn appropriate transformations from instances of the
same object class — can be applied to object classes other than the linear classes we
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have defined and characterized. In addition, transformations to be learned may be
nonlinear or non-uniform (we have only considered linear, uniform transformations on
2D views): an example is the transformation that changes expression of a face from
serious to smiling or the transformation that “ages” a face. Nonlinear object classes
and nonuniform, nonlinear transformation require learning techniques more powerful
than the linear ones we have considered in Part II. Approximation networks such as
Hyperbf (Poggio and Girosi, 1990) may be needed.

An alternative to elastic templates

Elastic templates have been used for at least twenty years to perform recognition when
only one (or very few) templates are available. Elastic templates are equivalent to
using complex metrics (i.e. cost functionals) that take into account prior knowledge
about allowed deformations and penalize them accordingly. Though there are tech-
niques, such as Hyperbf (Poggio and Girosi, 1990), that can learn - to some extent —
the appropriate metric (through the matrix W) from examples, in general the art of
generating good elastic templates is “black magic”. In addition, elastic templates are
usually very expensive computationally at run-time (because of the usually non-convex
minimization problem). A more classical and formally more satisfying approach is to
have a fixed metric (or almost fixed: certain invariances such as translation for which
the cost is zero, if valid for the specific problem, should be embedded in the cost func-
tional or in the choice of the input features from the very beginning) and to provide a
sufficient number of examples of allowed and not allowed deformations. One could then
use classification or approximation techniques such as Hbf. In some cases, however,
only very few examples of deformations (or none) are readily available. The idea is
then to generate artificial examples of deformations for the specific object of interest
by learning the allowed deformations from a set of examples of objects of the same
class, using standard approximation techniques.
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A The 1.5 view theorem and other useful background
math

A.1 Summary of the Appendix

This appendix ® introduces definitions and results that characterize the algebraic structure
of the views of one 3D object under orthographic projection. Consider the linear vector
space B3V of 3D views of all objects, with a 3D view being the vector of the z, y and z
coordinates of each of N feature points. Consider the suspace Vo'ﬁv generated by one view
of a specific object and by the action on it of the group of uniform linear transformations
L (i.e. the same linear transformation is applied to each feature point). L is an algebra
of order 9, and therefore a linear vector space isomorphic to M, (that is the space of the
3 x 3 matrices with real elements). Thus, V3V is a linear vector space isomorphic to R°.
The projection operator (orthographic projection) that deletes the z components from the
3D views, maps V3" into a linear vector subspace V2N, isomorphic to RE. V2N consist of
vector with z and y components and can be written as the direct sum Voﬁv =VNe® VyN ,
where V¥ and VyN are non-intersecting linear subspaces, each isomorphic to ®2. In addition,
Poggio (1990) has proved (Basri obtained this result independently, see Ullman and Basri,
1991) that V.Y = V¥, which implies that 1.5 snapshots are sufficient for “learning” an object
(generically) and performing recognition of a novel view. If 3D translations are included,
a linear subspace, isomorphic to R®? must be added to the linear space spanned by the 2D
views of one object. The 1.5 views theorem implies that the = and the y vectors obtained
from the 2 frames are linearly dependent. This in turn implies that 4 matched points across
two views are sufficient (generically) to determine 1-D epipolar lines for matching all other
points. This is an useful result (first obtained in a different context by Huang and Lee, 1989,
see also Basri, 1991 and Shashua, 1991) in correspondence problems involving 2 frames and
affine, uniform transformations in 3D.

A.2 Introduction

Basri and Ullman (1989) have recently discovered the striking fact that under orthographic
projection a view of a 3D object is the linear combination of a small number of views of
the same object. In this note, we reformulate their results in the more abstract setting of
linear algebra. This framework makes the result very transparent: the constraint of uniform
linear transformation (the same linear transformation for each vertex) implies immediately
that the set of views of an object spans a 9-dimensional linear vector space, independently
of the number of vertices; orthographic projection preserves linearity while reducing the
number of dimensions to 6. Simple considerations show that the linear spaces of the z and y
coordinates are nonintersecting and that each has dimension 3. Furthermore it can be proved
(Poggio, 1990) that they are equivalent, implying that 1.5 snapshots are sufficient to learn
the model of one object. We do not consider here the additional constraint of restricting
the uniform affine transformation to be rigid, i.e. to be a rotation. Rotations generate a

5The content of this appendix is from Poggio, 1990 (IRST Technical Report 9005-03, 1990)
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nonlinear subspace of Vo?;,fv . It is easy to test for rigidity; it is more difficult to understand
the (nonlinear) algebraic structure (see last section in Poggio, 1990).

A.3 Any view of a 3D object is a linear combination of a small,
fixed numer of views

This section provides the main result of Basri and Ullman (in the second subsection).

A.3.1 Any 3D-view of an object is a linear combination of 9 views

Let us define a 3D-view of a specific 3D object as:

(=)
n
Z
T2
Y2
22

X% =

Tn
Yn
-y
with X € R%", which is a vector space in the usual way.

We consider the set of uniform (my definition) linear operators on R3", defined by the
3n x 3n matrices L*", where L*" = I, ® L is the tensor product of I, and L:

L 0o .0
|0 L .0
0 0 . L

where

by Ly s
L=|1Iln I bs
Iy by s
is an affine transformation on R3. Translation in 3D space is taken care of separately (see
later).
The space of the L3" operators is a vector space which is 1somorphic to the vector space

of the L matrices. It therefore has a basis of 9 elements independently of n.
We can express

9
L = Z a,-L?"
=1
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where a; can be identified with the appropriate I;; and L3™ with the usual basis for L3, i.e.
with the elementary matrices E, and thus

9 9

X = L3"X0 = Z a,'L?"XO = Z a,-X,-
where X; are 9 independent 3D views of the specific object, needed to span the 9 elements
of L, 3 for each coordinate, and X is a particular view chosen as the “initial” view. Thus:

Theorem A.1 The vector space V32 generated by the action of uniform linear transforma-
tions on a 3D view of a specific object is a 9-dimensional subspace of R3", 3 dimensions for
z, & fory and 3 for z.

Thus any object ob; corresponds to a low dimensional subspace I{;’{,? of the space of all
possible views of all objects ®°". Of course, V3P # R°", iff n > 3. In other words, to have
object specificity, i.e., for this result to be nontrivial, it is necessary that n > 3 (translations
are supposed to be factored out by using an extra pair). Notice that R3" = Voo, + Vop, + .. ..

A.3.2 Any 2D-view of a 3D object is a linear combination of 6 2D-views

Now consider the orthographic projection P : %" — R2" defined by PX = x, that is

(ml \ ( T \
0N y
27 z;
T2
Y2 Zz

p 2 =19

T -
Yn "

\ %/ \ ¥ /

with P being a linear operator with the matrix representation

1 0 0
o10 . ... .0
P=00010...0
. . .00 . 100
oo . . . .010

We define x as the 2D-view of a 3D object.
The result below follows immediately (6 views span the elements of L in the first 2 Tows)
and is the main result of Basri and Ullman (in a different formulation):
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Theorem A.2 The vector space V,y, given by V,,, = PVO%? s a siz-dimensional subspace of
R?" (the space of all 2D orthographic views of all 3D objects), i.e. Xo1, = S axt,.

The inclusion of rigid translations is equivalent to the addition of a two-dimensional linear
subspace (the same for all objects), spanned by the vectors

o)

1
tx=1]0

and

A.4 The z and the y coordinates of a view are each a separate
linear combination of 3 views

In the previous section we have seen that any 2D-view of a 3D object under orthographic
projection is the linear combination of 6 2D-views. This section reformulates another ob-
servation of Ullman and Basri: the z coordinates of a 2D-view are a linear combination of
the = coordinates of 3 2D-views and the y coordinates are a linear combination of the Y
coordinates of 3 2D-views, the two combinations being independent of each other.

Let us consider a similarity transformation of x:
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()
T3

)1
Tx — Y2

2

)
Under this similarity transformation, L** becomes a 323 matrix of 9 (that is 3z3) blocks.
Each block is a multiple of I € ™" (notice the “isomorphism” to L!).

Ill Il2 113
TTLT = | Iy I; I

Iy I3p I
where
Li 0 O
_ 0 111 0
by = 0 0 Iy

and so on for the other blocks.
The same argument of section A.3 makes it clear that defining

(“’.1\

\z,/
(Y1)

\ 4./

the following holds:
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€= L&
=1

3
n= L,

=1

that is,

Theorem A.3 The subspace spanned by the vectors £ - the © components of x — which
is a n—dimensional subspace of VAP (which is 2n-dimensional), is spanned by three views
of the © coordinates of the object undergoing uniform transformations, i.e., each £ can be
represented as the linear combination of 3 independent ¢;. The same is true for the n: each
7 is an independent linear combination of 3 independent ;. Again, n > 3 in order for this
to be non-trivial (since { = R" for n < 3), once translations are factored out.

Remark: The basis of ¢ and the basis of 7 depend on the specific object.

A.5 V., and V, have the same basis, i.e. 1.5 snapshots suffice

We know from the previous sections that Vo'ifv =VNo V;N , where dimV, = dimV, = 3. A
stronger property holds

Theorem A.4 (The 1.5 view theorem) V, =V,

Proof. Assume that V, and V,, are not identical (I consider the projections of the z and Y
components expressed originally in the same base in V): then there is a vector y which is in
V, and not in V, (or viceversa). Then we can take the 3D view that originated y (through
orthogonal projection) and apply to it a legal transformation consisting of a rigid rotation
of 90 degrees in the image plane (such a transformation is in L and therefore is legal). The
z view of that 3D vector is the y, contradicting the assumption. It follows that V, = Vy.

Remarks
1. The same argument shows that V., =V, =V,
2. The same basis of three vectors spans V, V, and V, (separately).

3. The property that the z views and the y views of the same 3D object from the same
snapshot are independent is generic, since if they were dependent, a very slightly
different object, differing only in the y coordinate of one vertex would have independent
views (Bruno Caprile, pers. com.).

4. In general, 1.5 snapshots are sufficient to provide a basis (with n > 3, once translations
are factored out, in order for this to be nontrivial).

5. Any 4 vectors from V, and V,, are linearly dependent.
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A.6 A corollary of the 1.5 views theorem: given four matched
points, correspondance for motion or recognition is easy

A direct consequence of the above 1.5 views theorem is that the 4 vectors (from 2 orthographic
views) of the x and y components of an object undergoing an uniform affine transformation
in 3D (in particular a rigid transformation in 3D) are linearly dependent, that is

a1X; + B1y1 + aax; + B2y, = 0.

This implies that the correspondence of at least 4 non coplanar points (including translations)
in two frames determines epipolar lines for the matching of all other points (the observation
is due to Ronen Basri, 1991; see also Amnon Sha’shua, 1991; a similar result — but not this
proof- was first obtained by Lee and Huang, 1988). This means that for each point (z;,%;)
in frame 1, the corresponding point in frame 2 satisfies the equation

y=mz+ A

with m = —aj and A = —(ajz, + By1) and o} = /B, and so on. Translations are taken
care of by matching one point (the origin of the coordinate systems) in the two frames. Three
additional “generic” points are needed to solve for of, o} and 3.

Therefore in problems of matching between 2 frames - in motion or recognition — four
non coplanar points are sufficient to determine epipolar lines along which the matching of
the other points can be more easily found.
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