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This paper explains our approach to the problem of pattern
recognition by serial computer. The rudimentary theory of
vigion presented here lies within che framework of automata
cheory, Qur goal is te classify the types of patterns that
can be recognized by an automaton that scans & finite
4-dimengional tape. Tor example, we would like to know if
an automaton can decide whether or not a given pattern om a
cape forms & connected regien.

This paper should be viewed as a Progress Report on work
done to date. Our goal now is to generalize the theory
presented here and make it applicable to a wide variety of
pattern-recognizing machines.



1. The [inite automata we consider are free to scan the tape horizentally
and veriically. The tape itself is a finite square ruled horizeatally and
vertically into eé-squares, i.e., squares of sidelength e. The boundinz g=-sguares
af the cape are marked with the special symbol B (border), while the interior squati
are warked with either a 0 (white) or 1 (black):
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Example of a Tape

411 rows and columns except for the border rows and columpns are labeled
Fioowees T and Tys weey ém’ respectively. Thé automaton begins ics

SCATN O SquUare {rl, clﬁ and continues the scan until it either accepts or
rejects che tape, or else cycles. The automacton is not allowed to fall off
the tape. At each moment of time, che automaton scans_exactly one sguare,
and shifta its scan by one square north, east, south, or west, depending on
it internal state and on the symbol that appears on the scanned squara. The
automateon can not write on its tape; it can only scam it.

Formally, a 2-dimensional automaton is a system M = (8, £, g, 850 By 32}.
where 5 is a finite set, the set of states. £ 1s the "next state" functiom
mapping 5-{51, 52} X 10, }, B} into 8. g 1s the "direction of metien™
funetion mapping E—{El, EE} ¥ {0, 1, B} inte {NW, E, &, Wl.



B iz the inicial state, 51 iz Che accepting state, and s, is the rejecting

state.  We say :hatli accepts a tape if, by starting i in state s

il LG
gquara {:L' :l),iI eventually hales in state 81 %rrﬁjEE:E the tage if it
halts inm scate g We say that ‘[ can decide whether or not the pattern
on a4 cape has property P OAf it accepts all tapes with the property P and
rejacts all tapes that are without it.

Exzauples. The following properties of tapes are decldable by sucozata:
L. Tha cape contains precisely k 1's. To decide whether a tape 1s of
this kind, the automaton scans the tape and counts 1's.
2. The tape is white except for a single rectangle (i.e., the 1l's
on the tepe form a filled=-in rectangle) with sides parallel to the sides
of the tape. The automaton decides whether a tape has such & pattern on 1t

by sczmnning the columis of tha tape one after the other, starting with 2y

and coding with e Ezach time the automaton passes through a boundary of the
inscribed rectangle, 1t checks the glepe of the boundary at that point by
stanning o neighborbood of che podnt: It makes sure that the slepe is zero
axcept when the scan 1s st the left or right edge of the rectangle.
3 [he tape contains & single square with sides parallel to the sides of
the cape. dnce the sutomaton has checked that the pattern 1s a rectangle,
it can chack whether or not it 1s a square by finding a vertex of the rectangle
and then scanning from that vertex at 45° to the vertical toward the other
vertex. Lf the opposite wertex is reached, then the rectangle is a square,
otherwise it is not.
&, At least one of any number of pathwise-:annected.cﬂmpnnenta on the tape
is square: 1o is easy to see how the sutomaton can svstematically check each
of the individual components without e¢ycling. BEach of the components must be
clacked in such a way that if the component 1s mot a square, then the automaton
cay retura to the polnt of entry into that componeat.

A propercy that is not decidable by an automaton is whether a tape is
syepmerrical about the central column. This fact can be proved by the methods used

co prave thecrem 1.



Meoy problems about finite automata that are easy to solwe {n the
l=diivonelcnal case asre impeossible in the 2-dimensional case. For ¢xag..e,
tiie pvoblew whether & l=dimensicnal zutomaton accepts a tape is soivab.e
by en effeciive alporithm, while the problem whether a 2-dimensional
autcmaton accepts even a blank tape is vecursively umsclvable. This follows
irmeciately from the fact that a4 Z-counter automaton is vuniverszl (cf. Xinsky

i Hence, the x, v coordinates of the automaton on the Z-cimezsionsl

tape serve In place of the counters,

Ir che vemainder of this paper, we use the word "automaton'" to mean

2=dinenszionsl automaton.

2. Tne cheorem in this section provides anm example of a problem that an

1

autozaten cannot selve. The proof of the theorem is particularly imporcant
bacz.se it embodies am idea that reappears in the proofs of several ather
theorazs., This 18 the ldea of two chumks of tape being indistinguishable
ta tha automaton.

Def'altion. A chunk of tape is a borderless subsquare of the tape with
gome finze pattern of 0's and 1's oo it. The length x of the side of the
chuns 1s called the sidelength of the chunk. We suppose that the squares

fovaing the boundary of & chunk are numbered x around the

l, IE, “ang
peciceter of the tape.

Definiticon. We say that 2 chunks of squal sidelength are - equivalent

if the [ollewing helds: Let Xy be aasy polnt on the boundary of a chunk,
#ns «2f 5, be any stace of &L . Suppose that if i enters ome of the
chunks at %, and in state 5. it exics chaco chunk at some point Ij and

in some state Ej' Then if ¥ enters the other chunk at Xy and in state
.a if alsc exits that chunk at xj and in EtatE-Hj.
L

Thus if 2 chunks are {d =equivalent, we say 4 cannot distinguish

&

batvecen the patterans on those chunks. Clearly, l[-equivnlenna is am

aodiwaleace relation on chunks.



dueecrenm 1. In general an avtomaton cannot decide whether a tape whose
sicy has coo length has a4 1 in its center square.

Proaf  We assume that an automaton, W v an make this decision. e
#lsu suppose, without loss of genmerality, cthat when 4 halts, it does so
a0 Bquars irl’ﬂl}‘ A chunk of tape of sidelength = has 4x squares aloag
its parimeter, so for each entry inte that chunk, an automaton with o
BLates Lan eXib in one of 4xn ways, or else not exic at all: a totsl aof
4xn + L possibilities. Since an automaton has 4xn ways to enter a chunk,

4xn .
U -equivalence elasses

it follews that there are at most (&xm + 1)

of chunks of sidelength x. Thus A can distinguish among at most this

many chunks, However, the total number of chunks of sidelength x is 212+

Sinca 2‘-‘2 * (Lxn + l}q]m for ®x%n, it feollows that there are at least

2 dazferant M -equivalent chunks. These 2 chunks differ, say, in square

"sq". Cosstruct two tapes to contain these chunks, and make the tapes

sufficiently large so that the square sq appears in the center of both Lapes:

Fow notlee that M cannot distinguish between these two tepes, Hence 3

cannet declde whether the center of a square tape containg a 1 or a 0. QED
The idea of a nondeterministic l-dimensional automaton (ef. Rabin & Scott)

excends naturally to that of a nondeterministic 2-dimensional automaton.

Lorollary 1 A nondeterministic automaton is morve powerful tham & deterministic

froot A nondeferministic automaton can decide whether a square tape contains
a - ¢cr a0 in its center square. It does this by initiating a scan from
L :;l} along the diazonal to (r:Trl . v:.m}. Whenever the automaten sees &

i
aling this disgonal, it may make a 90° left turn, and move toward the

=

worder, or contioue along its way to Erm . cm}4 If it can reach {rl ’ qm}
Ly making the correct 90° turn, then the tdpe contains & 1 in its center

squire. Jtherwlse the tape does not.

QED



3. We extend the power of an automaton by giving it a finite number

of markers, labaled iy wess mk. At amy moment che automaton may place

a marker @, on the particular square of the tape it is scanning, and at
Chat moment any other oceurrence of m 4 on its tape instantly disappears.
We call this marker an “abstract marker'. Another kind of marker, also .
denoted by My evey @, is called the "physical marker": The physical
marker is & kind of labeled pebble that an automaton moves about on the
tape. To get the physical marker transferred from one position te another,
the automaton must actually go to the marker and move it to its new
position.

Both abstract and physical markers may be stacked like poker chips
on & single square. Actually, it is easy to prove that they need not be:
Theorem 2.1 k-marker automata that can place at most one marker on any
g=gquare are just as powerful as k-marker automata that can stack any
nunber of these markers on an c—square.

Obviously, an automston with k abstract markers can simulate one with
k physical markers. The reverse is also trua, as we shall see. In this
paper, depending on the theorem we wish to prove, it is sometimes convenient
to switch from one type of marker to another,

Thecrem 2.2 An automaton with k abstract markers can be simulated by one
with k phystcal markers.

Proof Let Y dencee the automaton with abstract markers, and let P denote
the automaton with physical markers. P sinulatesﬂ.h}r_ moving about on the
tape, placing markers just as ¥[ would, (This is okay until ¥ is required
to place @ marker than appears elsewhere.)

During this simulation, F vepenbers the marker, call it mi,

that 1t last saw and the state, call it s , it was in when it last saw m

i
How when ¥ is required to put down a marker, By that has been placed



elssviere, P oachieves this same result by the following roundabout -et.-c:

fizesv locates T, by scanning the tape. ? plcks up o, and cavrles ig

s

as Lt seone for ml. When T finds ni, it recalls what state if was in when

it Last Ieit L,  cObars Lthat state, and proceeds with the simulation. QED

iz have menticned that the markers are labeled 1 through k. Actually,
this s uonecessary:

-

Theoram 2.3 A automaton with unlabeled markers can simulate one with
lebelad markers.

The automzzon does so by keeping track of the positions of the markers
relative ¢ One another.

A0 Rueonaton with 1 marker is more powerful tham an auvtouwaton withouc
any marxers. For one thing, the automaton with a marker can decide whether
the center square af a tape contains a 1 or a 0! The automaton starting at
{rl‘ :iJ swves 1ts marker aleong the diagonal toward {rn, cn}. Each time it
moves 1i8 WArder one more square along che diagomal, the automaton drops the
marker and runs off at 90" to the diagenal looking for the tape square
{rl, :n}- #hen it finds that square, the marker is on the center square,
ana ¢o the automaton can make its decision.

BOASTES 3 automata with ZKk + & marxers, k%0, are more powerful than

autornta with K markers: There ig a cercain property P such that a 2k + 4
marker aucomaton can decide whether or not 4 tape has the property, but no
w=ncvlar automaton can make chis decision.

Chgerve that it is possible to represent the state diagram of any
WSmATL2TY @ulomaton on & tape. This can be so formalized that a O-marker
LaLTaTon cén deciue whether or not & tape contains the representatiom of
o h=macsker automaton. We suppose that such & representation of automats
e @an formalized, and we let t{i@ﬂ- be the tape description of the state
dragrem of an automaton 15 « We note the somewhst curious fact chat any ;h
may we vefuirad to decide about tiib), and that P must accept, reject ar

- -

eyele on chat tape.



Qutline of a Froof LEI‘:':E] be apy k-marker automaton. LetP be the property:

(1) The tape is of type € I:E.]l.

(2} The gidelength % of the tape is greater than the number, n, of states of P .
(3} B does not accept this tape.

4 iz a Ik + 4 marker sutomaton that accepts tapes with property P and

rejects all othera. U s degscribed as follows: It uses marker oy to

kaap track of the state of I as B scans e{P). The marker m, iz used to

keep track of the pesition of P as?} SCAanS E{}L The k markers Masenny By o
sre uged fa ragr&a&nt‘_‘l‘ﬁk markera. The remafning k + 2 markers are used to
cell whethey or act ﬂi is cycling; these markers are used for counting the
nurber of steps taken by B. They are started together on {rl, ""1:" and
they sre moved in such a way that, :i_fﬂ- cycles, they eventually appear in
all possible combinations of positions om the tape. In this case, the
markers can be made to end up together on {rm, cm}l, and thie 18 the only
case in which they de. Thus if all the markers reach (r_, c ), # concludes
that Jp cycles on o{f) and so Haccepts ().

On & cape of sidelength %, k + 2 markers can asssume I::-:Ej I
different positions. Thus A iz able to simulate up to [32)1&'{-2 moves
o Pr. E:.t:b has n states, so It can make at mosrt {xz}kv xz s
moves without ¢ycling. For large x, I:}LE:ILH-E - {::EJ k, :vn:E * f. Inersfore
there exists a tape t[ﬂ) of sufficiently large sidelength x such that

W accepts t(®) if and only if P does not. GED



9.

&, Dafinition The pattern on a tape is the set of all black scuares that
appeer there. Two squares are adjacent if they share a common edge {not just
& commorn vertex). The boundary of a pattern is the set of all black squares
that &re adjacent to white squares. A pattern is connected 4if and only if
&y « black squares are joined by a string of adjacent black squares.

Although it seems certain that a O-marker automaton cannot decide if s
pattern 1s pathwise-connected, we have no proof of this result. On the positive
gide, we can prove
Theorem & A l-marker autn:atnn,‘¥[, can decide if a pattern is pathwise-
conniected.

Lemma 1 Let K ke & pathwise-connected pattern, and let Pis Py be two
bouwndary poincts of K.  Suppese a curve joins Py and Py without intersecting

B &t any other points. Then there exists & curve joining Pl and FE that lies
entirely on the boundary of R.

Cefivition We say that a column cufs & pattern in twe if and only if & black
squatre lies co the vight of the column, and a black square lics to the left acd
oo black squate that lies to the right is connected by a string of adjecent
black squares to & black square that lies to the left of the column, HNote that
the cutting column may contaln black squares.

Lammpa 2 A pettern R 1s pathwise-connected if and only 1f (1) Ko column cuts
the pattern in two, and (2) Any palr of boundary squares chat lie in the same
calune and have only white squares lying between them are connected.

Pract of Thesrem ;E checks condicions (1) aﬁd (2) of lemma 2:

(1) ¥ scans the tape column by column from ¢y te ¢ te decide whethey

a column cuts the pattern in two. If U finds such a colupn, it announces
that & iz not connected. Otherwise, 2 proceeds with (2},

{2y & secans the columns from Cl ta cm. Each Ei 15 scanned fram (r

1* ©y)
to {lﬁ, Ci}* and this scanning is interrupted whenever 4L y during

its southward sovement within s leaves R at some point (rk, ci] and

ra=gnters it at some polnt {rE, cij, @ »k. When this happens, ¢ leaves the



1.

markar at the point (ra, o) where it re-entered R. Then, starting at that
point, L travels around the boundary containing that marker. Eventuzlly,
one of twe things happens: (1) ¥ finds itself at the point [rk, ci} an
the R-beundary directly above the marker. In this case, the point
(ﬂa, cil on which the warker lies is connected to the peint {rk . c:} above
it. In this case, ¥ continues the vertical scanning interrupted sbove,
(2) H retures to the marker witheout passing through the point {rk \ cij.
In this case, we koow from lemma 1 that the pattern is not pathwise-connected.

If ¥ scans the whole tape witheut finding that B is disconnected, it
enmources that B is connected. QED
Cerellsry A l-marker sutomaton can decide whether a given pattern is simply
CoOnnested.
Proof The idea is to have the automaton check that the pattern R and its
complement are pathwise-connected. This is complicated by the fact that R an split
the tape into several disjoint components. The details of what the

autonaton must do in this case are left to the reader. QED

5. Ia this secticn we study the problem of deciding whether cne region
is a translation of amother. As a first example, we note that a l-marker
autcmaton can declide whether a sguare region is & translation of another.
As we shall see, however, & l-marker automston cannot decide whether a
gimplv-connected reglen 1s & translation of another,

We extend our definition of MW -equivelence to the case where 3 has

phwslcal markers.
Defindticn  We say that two chunks of equal sidelength are L -equivalent
if they are {Il ~eguivalent, where ;fris gotten from theé automaton 1 by
taking away the merkers from L . (We realize that this definition is rather

iaformal).
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Theoran 5 suppose that W , a l-marker automaton, is presented with

tape that contains exactly two disjoint simply-connected regions. Then 20

cannet decide whether one of these regions, & ig A tramglation of che

ll
cthar, HE'

Defipition The_pattern om a chunk is the set of all black squares om
that cowni,

Lemma The number of different simp_y-cnrnected pntterns that fit in
a square of sidelength x is at least EE D% 4oz .

toof of Lemna The square on che rignt contains a simply-connected Pattern
o

and {==2) - £l checkmarked unit-squares. el wlwle |l vl v
Any subset of these checkmarked unit-squares elelef el s q:
may bhe filled im, and the resulting Pattern ’F"Eﬁiiéf
will still be simply=-connected. The result RECOEEE SN

Broot of _heorem Setually, we prove the somewhat stronger result Chat

an autcmaton cannot decide whether Rl iz a cranslation of Rz= given chat
Rl is vestricted to the left half {LH} of che tape while R
te the right half (RH).

Wa assume Co Che contrary that the automaton L can declde. We

3 is rastrictad

furtiier sssume without loss of generalicy that (1) 2l has a phvaical marker,
and (2} %I ends up with the marker at the top of the central column in
case 1f decides '"yes', but with the marker at the bottom of the central
coluzn in case it decides 'no'

The Zzea of the preof 1s to show that there exist different simply-
connected regions R & RE 5.8, ¢ must carry its marker back and forth acress
Che cuntral column im the same way when both LH and BH concain Rl a5 when
LH coataine Rl and RE contains RE'

Suppase the tape has sidelength I Gunsidurichunks of sidelength
x =« £/2., These chunks may contain any one of 2 gimply-connected patteras.
If % has n states, there are {&xn)ﬁxﬂ 3L -equivalent classes of chunks.
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Xty The
The lavgest such clagss has at leasc y = 2. 2 different
- = 2in
)™ T (2tn)

W —cquivalent S'l.mr'lir_f.mntd'ﬂa regioms .

To bepin, we suppose the tape has any one of these ¥ regions in LH
and azay one In EH. We partitiom the vy different af'—equivalent simply-connected
vegions which appear in LH inte £n 4,-equivalence classes: First note ’
that if ¢l is started with its marker in LH, then 4{ carries its marker into RH
ity ofne of .fﬁ ways ( H must carry the marker across thé cemtral column in order to
decide which one of the v regions appears in RH). How say any two

£28 =gguivalent regions ara 3{; =aquivalent provided that, no matter

which one of these particular 2 regions appesrs in LH (and no matter which
of the ¥ A —equivalent reglons appears in RH), < carries its marker
across the central column i the same way for both regions.

At least one of these -3]; =zfulvalence classes has Y, = v/ £ n members.
¥ow suppose the tape has aoy one u;‘ these y, reglons Iin LE and anyone in RH.
The argumenc concinues now with 4 's marker being in RH. ¥ may move across
the central column without its marker any number of times. However, ¥ must
eventually carry the marker alcr-:nss inte LH if it is to distinguish which of
the Fl {different U =-equivalent) simply=-connected regions appears in LH. W can carry
the marker across in one of Jn-1 ways. By the same argument as above, at
least ¥o =¥ -"Fh-{fn—ﬂ of these regions are Hi-aquiualent in the sense that
no matter which one of these ¥y regions appears in RH (and no matter which

of the regions appears im LH) the sutomaton moves its marker across the central

¥
column frtm EH to LH in the same way.

Continuing in this way, one finds that there are y/(fn)! reglons which
are EE.“ —equivalent in the sense that they are indistinguighable to an L
that carries its marker across the cemtral colu=m at most (fa)! cimes.
But ¢ cannot carry its marker across the central column mere than (fa)! times
without eyeling. But vw/(fn)! B> 1 for £ 0. Hence U cannot decide if the
region in RH is really a tranglation of the ome in LH. QED

it iz trivial ta show that a IZ=marker automaton can decide whether one
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sicply-connected region is 4 translation of another. Hence we have

Corollary 1 4 Z-marker automaton is more powerful than a l-marker automaton.
It is considerably more difficult to prove that a 2-marker

automaten can decide whether an arbitrary pathwise-connected region is

a4 translation of another. The following proof was suggested by Mr. Terry

Zeyer. It is a considerably simpler wversion of our criginal proof.

Theorem &, Suppose a tape containsg two disjoint pathwise-connected regions,
Rl and 12. 4 sutomaton with two markers can declde whether ar not Rl

ig a translation of Rl'

Praof We shall give g set of iastructions for the automaton, and
prove that these instructions do the job. Here is a general outline:

(Lh=03) 2L puts m, on an outer boundary point, Fl’ of R., and

1
AL puts m, OB an outer boundary point; Py af RE’ which
is chosen so that 1f RE = T{El), then P, = T(pl}.

(%) 2l moves m about the outer boundary of Rl and ml
about the outer boundary of E2 snd checks that these

boundaries aré alike.

{31=-(6) <[ scans and compares the interiors of K. and R,

1 2
checking that these intericrs are alike.

This completes the proof.

We £ill in this outline now, because it is non~trivial to show

thaet € can really do these things.



14.

(1) A standard way for an automston to find a peint Py on the outer boundary

of a component R, 18 to have it scan the tape column by column, from o, to ¢ ,
& m

1
and sean 2ach ci from {r1 . ci} (o] (rﬁ . :i) until it finds the first

shaded squara, Py Note that ¥ can always find this p, Do matter whet &

2 may be, by going to {rl . cl) and scanning as above. To find a point

of 32, &l scans the tape in reverse from S L geanning €4 from

(¥, &) ka {rl ) ¢iJ- ILf RE - T (le. then the point that ¥ finds must be

& point, ngﬂﬁ R, - However , q, WAy be a pedint of R, if R, # TEle. Sinee W does

1
on g, and procesds in

not kiow whecher R, = T{Rl}. it puts =, on Py W

1 2

(i} to check whether 4, € al+
(2) U checks whether 1, ¢ R,

contalns m,. 1f ¥l finds m, then 9, € Rl' 1t ¥ returns to y without

. &
, them gy & Ry, If g, € Ry, 3L answers that Ry # T(R,). If

4y E R, , & oproceeds as in ' (3).

by scanning around the boundary that

finding m

(3} ¥ finds the point py & Ry that corresponds to p, € R, in the sense chat

f 1; = T{Rl}, then Py = T{p.). To do this, €L finds the easteromost point

of A, and 1if there are geveral such polnts, 1t finds the northernmost one
4

(=

among Chew, This polnt is Pye {(We have cmitted some decail of how 2L does
tals: It finds the point Py € R2 by placing both =y and m, on the outer

boundary of RE' and shuffling them about on that boundary. < keeps m,

on the easternmost point it has so far found on K,. The marker o, is
moved sbout on the same boundary of Rl* and each time it is mowved, 2L

leaves 1t snd scans the tape looking for T . If =, is '‘east or north of =

2L  puts m, in place of =, and continues te move Ty about oo the boundary
et By L koows that m, is at poiat p, when 4 has moved my arcund the boundary
from Z, back to m without shifting the posicion of ml.j

Ly In (33, a placed m, on PL and m2 On Poe Kow compares the cuter

1
bouncaries of Ry and R, by woving m; on the boundary of R, in unison with



m

X

o the boundary of EE' ( % czan tell when the markers have returned

to the starting points Py and By Each time moves the markers, <L EOES
ta Erl ’El]’ gcans for Py and checks whether oy iz on IR Lf m, is not
9n Py L continues to mowve my and m, on their respective boundaries),

(5) %L next uses the merkers te scan and compare the interior of R,

with that of RE' # does this by moviaog my vartically through Rl and m

in unison through R,. Each move of my iz from an outer boundary of

2

%, (across any number of inner boundaries) to the next outer boundary of

RI* By cowpletely scanning Rl and &2, 3L dacides whether or not they are

glike. To be explicit, suppose m. is on an outer boundary point p of R,

1
and m, is on the corresponding point T{p)} of R:, U moves my south
through R, until it reaches a boundary poinmé. It drops m, at that point,
and it drops m, on the corresponding point of R2' Then 2 determines

whether my is cn an outer beundary of Rl‘ { 2f dees this by moving along

the boundary that contains m., checking at each point whether a shaded

ll
square lies on the same row to the east. If a shaded square appears east
of 2ach point on that boundary, then m, lies on an inner boundary of Rl.
If a border asquare appears east of some point, then ml lies on the suber

boundary of R,). If m, iz not on the outer boundary, # continues the

1

gcan with By and mz; checking whether both reglons are alike, until m

dees et placed on the outer boundary. If m, does lie om the outer boundary

of al, =, must be on the outer boundary of RE’ because the outer boundaries

of RL and R2 are ldemticel., Finally, e shifts ™y and m, north and places

them on the first cuter boundary point it finds, the ones whence it came.
LY 2L shifts from one point on the boundary toe the next adjacent one.
IL is casy to sea how # dees this. Then ¥ continues ac (5).

By the procedure described sbove, m, scans all of R, and m

1 1 2
simultancously scans all of Ry, s0 Ry and R, arve properly compared, QED
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