MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY
and
CENTER FOR BIOLOGICAL INFORMATION PROCESSING
WHITAKER COLLEGE

A.L. Memo No. 1354 February, 1992
C.B.L.P. Paper No. 71

A Novel Approach to Graphics

Tomaso Poggio and Roberto Brunelli

Abstract

We propose a new, memory-based approach to graphic animation
of 2D and 3D objects. Instead of the standard paradigm in computer
graphics of 3D modeling, physical simulation and rendering we prop-
ose to use a set of 2D views to synthesize a network that generates
desired images and image sequences. The approach is based on a
new approximation technique which can be regarded as a scheme for
learning from examples.

(© Massachusetts Institute of Technology, 1992

This memo is a slightly modified version of an unpublished manuscript (May,
1990) that represents the basis for a patent application on “Memory Based
Method and Apparatus for Computer Graphics,” filed by the Massachusetts
Institute of Technology and the Istituto per la Ricerca Scientifica e Tecnologica,
Trento, Italy, on 13 January, 1992, No. 07/819,767. The memo describes research
done at I.R.S.T. in 1990. Support for the A.I. Laboratory’s artificial intelligence
research is provided by ONR contract N00014-91-J-4038. Tomaso Poggio is
supported by the Uncas and Helen Whitaker Chair at the Massachusetts
Institute of Technology. R. Brunelli is at I.R.S.T.



1 Introduction

The paradigm that currently dominates work in graphic animation consists
of 3D modeling of surfaces, physically based simulation of movements and
rendering. While this approach is clearly fundamentally correct and poten-
tially powerful, current results are still far from obtaining general purpose,
realistic image sequences. In this paper we propose a parallel approach which
is a short-cut to the ultimate goal of creating simulated worlds but also has
interesting aspects in its own (it may be better for production of cartoons
for instance).

We propose a Q%D memory based approach to 3D graphics and animation.
The main idea is to use a few views of an object such as a person to generate
intermediate views, under the control of a set of parameters, such as the 3D
pose of the object or the expression of a face. The process can be framed as
consisting of a stage of learning from examples — in which each of the given
views is associated with its parameter values (such as the pose) - followed by
a stage of generalization or interpolation in which new views are generated for
desired values of the parameters. The set of views used during the learning
stage are real high resolution images of the object.

The learning technique we propose is that of Hyper Basis Functions
(HBF'), which is equivalent to the network of Fig.1. A special case of HBFs
are the so called Radial Basis Functions, used in this paper, in which an un-
known multivariate function is approximated by the superposition of a given
number of radial functions whose centers are located on the points of the
learning set (see [7] and Appendix 1).

The technique of Fig. 1 can synthesize smooth mappings between the
input parameters such as the pose of a 3D object and its views. As shown
in Appendix 2 and as it is intuitively clear, the mapping between input
parameters (for instance Euler angles) and pixel grey-level or color values
is not smooth in general. For this reason, we use the network of Fig.1 to
produce 2D views of the object that are not images but rather consist of the
image coordinates of a set of characteristic knots, such as body junctions,
face features etc., that in this paper we also call control points. A similar
definition of 2D views has been used in the inverse problem - the problem
of object recognition and pose estimation (see [4, 3]). Each view is similar
to a skeleton of the object that can be used as a basis for texture mapping
in order to recreate a high resolution image of the object. Thus a realistic —



Figure 1: A network diagram of the Hyper Basis Functions technique

even if only approximate, from the point of view of physical truth — rendering
can be obtained without an explicit 3D physically-based model of the object.

The space of all perspective projections can be factored into a set of char-
acteristic views. The correspondence between control points configuration
and characteristic views can again be learned from examples. The problem
of occlusions could, in principle, be solved by the same paradigm.

The approach is said to be memory based because a set of 2D views is
used for texture mapping instead of an explicit 3D model which is rendered
each time. Notice that a limit case of the network of Fig. 1 (for Gaussians
with o approaching zero) is a look-up table, in which case the network will
generate the view, if it exists in the training set, that exactly corresponds
to the input parameters. The reason it is neither 3D nor 2D is that a set
of characteristic views is more than 2D (a single perspective view) but less
than a full 3D model (every perspective view is computable). We emphasize
that the set of characteristic knots does not correspond to a wire-frame solid
model: the control points are 2D points, defined on the image plane.

2 The memory-based approach to graphics

Let {C;}ic1 € R? be a set of control points. To each different object (such as
a cartoon character) or movement (such as jump, walk, run) we can associate



a map:

M, :z € R*— {Ci(2)}ier, @ € {jump, ...} (1)

where Z € R" represents a vector in the space of the parameters specifying
the object “state” or the given movement. From each set {Ci}icr we can
obtain another set transforming from absolute coordinates to barycentric
coordinates. This new set, {C2};cs, can be used to learn the correspondence
from control point configuration to characteristic views. This mapping can
be seen as a simplified attitude recovery. Barycentric coordinates are used
because this correspondence is intrinsic to the object, while movement of the
object is relative to the environment. This map can be shared by a class of
objects with a reasonable degree of approximation. Another map that can
be synthesized and shared is the one giving relative depth of the different
control points. This map allows the use of simple z-buffering techniques in
texture mapping. In order to share these maps we must have a map from the
control points of the instances of the object to those of the class prototype
(and its inverse). In the following, we give some examples.

2.1 Simple examples
2.1.1 One-dimensional in-betweening

Let U; be an element used for texture mapping (it could be a square or a
triangle or more complex polygon). Our object O is then composed of a
given number of elements and we can represent it as:

0= {Ui}iel (2)

The animation of this object, using a particular movement map, amounts to
introducing a known temporal dependence:

O(t) = {Ui(t)}iel (3)

Each element U;(t) is computed using the map M for the given movement
(each single point of unit U, is mapped by this function giving the transformed
unit). An example of such a mapping is given in Fig. 2.



Figure 2: Jump in-betweening (lower half: frames used as examples. Upper
half: in-betweening using RBF interpolation)



2.1.2 Multidimensional interpolation

A slightly more complex application, that better shows the new features
of our proposal, is presented in Fig. 3. In this case the parameter space,
expression and poses of a face, is bidimensional and not homogeneous. A
set of control points was manually matched among five examples (appearing
as framed drawings in Fig. 3) obtained by a perspective projection of a
wire frame model. The resulting sets of two dimensional points were used
as examples for an in-betweening RBF network. After a learning phase, the
network was able to generalize and to produce realistic drawings for poses
and expressions it had never seen before.

2.2 From views to grey-levels: texture mapping

The next step is texture mapping. Let us assume for simplicity that we need
just one characteristic view. Let R; be the i-th element in the characteristic
view. We can consider the characteristic view as a reference frame from
which texture mapping is performed. Texture mapping is fully specified,
in our simplified approach, by the transformation that maps the reference
element, such as R;, into a transformed instance of the same element, such
as U;(t) . Let us denote with Ti(t) this set of transformations (one for each
element):

Ti(t) = T(Ri, Ui(t)) (4)

In this way it is possible to generate desired views of the object — with
the HyperBF technique - from a set of examples and to produce images from
the views — with texture mapping.

2.3 One example of many obvious extensions

Suppose we have synthesized a network capable of generating views of John
walking. As shown in Fig. 6 and explained above, this can be done from a
set of examples, that is views. Assume that I would like to generate images
of a different person - say Jayne — walking. Of course, I could repeat the

1 An affine transformation can be used for triangular elements while a bilinear trans-
formation is needed for quadrilaterals. For a brief review of such simple deformations see

(5]



~

3) G 0)

G0 @D 6@ G

Figure 3: An example of in-betweening in a two dimensional input space
of pose and expression parameters: vertical axis represent expression from
astonishment to anger while horizontal axis represent rotation from 0° to 60°
degrees. The framed drawings represent the examples used for learning: all
of the remaining drawings are generated by the network. A large number of
additional ones can be generated as easily.



Figure 4: Parallel deformation of the prototype movement

same procedure. But shortcuts are possible. Consider the following case that
exploits the network synthesized for a prototype (John) to animate another
object of the same class (Jayne) with minimal additional information.

The simplest way of mapping Jayne onto an available prototype (John) is
probably that of parallel deformation. The first step consists in transforming
the control points of the reference frame of the prototype and of the new
object to their baricentric coordinates. This operation allows us to separate
the motion of the baricenter, which we can consider to be intrinsic to the
learned movement, from the motion around it, which depends on the partic-
ular instance we map. The set of the control points is then embedded in an
2n-dimensional space. A parallel deformation is defined by (see Fig.4):

Op(t) = Rp + [Os(t) — Ra(?)] (3)

where the subscript B means that the control points are considered in their
baricentric coordinates, and the objects are considered embedded in a 2n-
dimensional space (n being the number of control points). From t we can
obtain the map of Jayne at time ¢ transforming back into the set of control
points and displacing the result by the baricenter of the prototype at time ¢

7



(see Fig. 5). The reason this type of mapping is called parallel deformation is
the following. If we look at the 2n-dimensional vectors, we see that views of
Jayne are obtained adding the displacement from the reference frame of the
prototype to its version at time ¢ to the characteristic view of the instance:
the deformations (i.e. the difference between the objects at time ¢ and its
characteristic view) of the prototype and of Jayne are then parallel by con-
struction 2. The examples show the animation of John (the prototype) (see
Fig. 6) and that of Jayne (the new object) (see Fig. 7) of the same class
obtained through the above steps.

A similar approach can be applied to the expression-pose space, so that a
face of a person can be animated by the expression of a prototype (possibly
a professional actor): possible applications to the production of cartoons, to
the animation of real subjects or a mixture of the two are natural.

3 Conclusions

One of the obvious applications of these techniques is animation of cartoons
characters. The ultimate goal is the synthesis of network that capture, say
Donald Duck, in the sense that they can generate any desired view of Donald
Duck starting from a ”training set” consisting of a large set of available views
of Donald Duck. Another natural application is teleconferencing. The pos-
sibility to animate an image, say of a face, using a limited number of control
points reduces drastically the amount of information that needs to be trans-
mitted. The automatic tracking of control points is possible at present, even
if their automatic identification still presents a number of difficult technical
problems.

4 Appendix 1: the HyperBF technique

This section describes a technique for synthesizing the approximation mod-
ules discussed above through learning from examples. We first explain how
to rephrase the problem of learning from examples as a problem of approxi-

2 A further improvement would be the modulation of the difference vector by the change
in size of the protoptype vector. The resulting construction cannot be named parallel any
longer.



Figure 5: Motion of a new instance (down) using parallel deformation of a

prototype movement (up)

9



Figure 6: Prototype animation based on five sample frames: the other nine
frames are synthesized through the technique of this paper.

10



K AR e AN

Figure 7: Animation of a new instance using the prototype learned movement
(Fig. 6). All images here are synthetic apart from the first one in the
sequence, which is the only real image.

11



mating a multivariate function. The material in this section is from Poggio
and Girosi (see [10]) where more details can be found.

To illustrate the connection, let us draw an analogy between learning an
input-output mapping and a standard approximation problem, 2-D surface
reconstruction from sparse data points. Learning simply means collecting
the ezamples, i.e., the input coordinates z;,y; and the corresponding output
values at those locations, the heights of the surface d;. Generalization means
estimating d at locations z,y where there are no examples, i.e. no data. This
requires interpolating or, more generally, approximating the surface (i.e. the
function) between the data points (interpolation is the limit of approximation
when there is no noise in the data). In this sense, learning is a problem of
hypersurface reconstruction (see [11, 6]).

From this point of view, learning a smooth mapping from examples is
clearly ill-posed, (see [14]) in the sense that the information in the data is not
sufficient to reconstruct uniquely the mapping in regions where data are not
available. In addition, the data are usually noisy. A priori assumptions about
the mapping are needed to make the problem well-posed. One of the simplest
assumptions is that the mapping is smooth: small changes in the inputs
cause a small change in the output. Techniques that exploit smoothness
constraints in order to transform an ill-posed problem into a well-posed one
are well known under the term of regularization theory (see [14, 13, 1]). The
solution to the approximation problem given by regularization theory can be
expressed in terms of a class of multilayer networks that we call regularization
networks or Hyper Basis Functions (see Fig. 1). The main result (see [8]) is
that the regularization approach is equivalent to an expansion of the solution
in terms of a certain class of functions:

N
flx) = Z: aG(x; ;) + p(x) (6)

where G(x) is one such function and the coefficients ¢; satisfy a linear system
of equations that depend on the N “examples”, i.e. the data to be approx-
imated. The term p(x) is a polynomial that depends on the smoothness
assumptions. In many cases it is convenient to include up to the constant
and linear terms. Under relatively broad assumptions, the Green’s function
G is radial and therefore the approximating function becomes:

12



fx) = ch (lIx = &%) + p(x), (7)
=1
which is a sum of radial functions, each with its center €; on a distinct data
point and of constant and linear terms (from the polynomial, when restricted
to be of degree one). The number of radial functions, and corresponding
centers, is the same as the number of examples.

The derivation in [8] shows that the type of basis functions depends on
the specific a priori assumption of smoothness (see [12, 8]). Depending on it
one obtains the Gaussian G(r) = e~(” the well known “thin plate spline”
G(r) = rlnr, and other specific functlons, radial and not. As observed by
Broomhead and Lowe (see [2]) in the radial case, a superposition of functions
like Eq. 6 is equivalent to a network of the type shown in Fig. 1. The
interpretation of Eq. 7 is simple: in the 2D case, for instance, the surface is
approximated by the superposition of, say, several two dimensional Gaussian
distributions, each centered on one of the data points.

The network associated with Eq. 7 can be made more general in terms
of the following extension

an (Ix = ta)llw) + p(x) (8)

a=1
where the parameters t,, that we call “centers”, and the coeflicients ¢, are

unknown, and are in general much fewer than the data points (n < N). The
norm is a weighted norm

I = ta)ll}y = (x = ta) TWTW(x - ta) (9)

where W is an unknown square matrix and the superscript 7" indicates the
transpose. In the simple case of diagonal W the diagonal elements w; assign
a specific weight to each input coordinate, determining in fact the units
of measure and the importance of each feature (the matrix W is especially
important in cases in which the input features are of a different type and their
relative importance is unknown, see [9]). Equation 8 can be implemented by
the network of Fig. 1.

13



4.1 Learning

Iterative methods can be used to find the optimal values of the various sets
of parameters, the c,, the w; and the t,, that minimize an error functional
on the set of examples. Steepest descent is the standard approach that re-
quires calculations of derivatives. An even simpler method that does not
require calculation of derivatives (suggested and found surprisingly efficient
in preliminary work by Caprile and Girosi, personal communication) is to
look for random changes (controlled in appropriate ways) in the parameter
values that reduce the error. We define the error functional - also called
energy — as

N
H[f*] = Hegw = D (A2,

i=1

with

Aizyi— ff(X) =y — E caG(]|x; - ta”%v)

a=1
In the first method the values of c,, t, and W that minimize H[f*]

are regarded as the coordinates of the stable fixed point of the following
dynamical system:

éaz—waH[f*], a=1,...,n
Oc,
’éa=—w616{£’:], a=1,...,n
o _ _ OH[f]
W=—ow

where w is a parameter. The derivatives are rather complex (see Poggio and
Girosi, 1990a and Notes section).

The second method is simpler: random changes in the parameters are
made and accepted if H[f*] decreases. Occasionally, changes that increase
H[f*] may also be accepted (similarly to Metropolis algorithm).

14



5 Appendix 2: A naive approach

Is it possible to learn the movement of an object looking directly at the pixel
level of the images? A little thought shows that this approach is not likely
to work. The most basic requirement of learning — and the one assumed in
regularization techniques of which the RBF algorithm is a special case - is
the smoothness of the underlying map, which allows generalization from the
available examples.

The intensity at a given pixel can undergo sudden changes during the
movement of the represented objects. There is no way we could a-prior:
interpolate the intensities to be displayed at different times and therefore
generalize. The main reason why direct learning of the image at the pixel
level does not work, stems from the discontinuos nature of the underlying
map. Learning a mapping that is not sufficiently smooth is hopeless because
it requires a very large number of examples. The use of a Fourier transformed
image does not help: a Fourier transformed image is a linear mapping of the
original image, since the Fourier operator commutes with the RBF interpo-
lation operator. The example of Fig.8 illustrates two interesting effects of
using this simple (and wrong) approach. The strip represents a wire frame
cube from different viewpoints. The dark pictures are due to the lack of gen-
eralization from the available examples (uniformly distributed on the viewing
sphere) while blurring and superposition of views is due to the inability to
recover correctly the discontinuos intensity changes.

15



Figure 8: Direct bitmap learning. The different columns are obtained using
different learning parameters: for the first three columns gaussian RBF was
used with increasing sigmas (increasing generalization) while the last column
was obtained using multiquadrics.

References

[1] M. Bertero, T. Poggio, and V. Torre. Ill-posed problems in early vision.
Proceedings of the IFEE, 76:869-889, 1988.

[2] D.S. Broomhead and D. Lowe. Multivariable functional interpolation
and adaptive networks. Complez Systems, 2:321-355, 1988.

[3] R. Brunelli and T. Poggio. Use of rbf in real object recognition. Technical
Report 9011-09, I.LR.S.T, 1990.

[4] S. Edelman and T. Poggio. Bringing the grandmother back into the
picture: a memory-based view of object recognition. A.I. Memo 1181,

16



(5]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

Artificial Intelligence Laboratory, Massachusetts Institute of Technol-
ogy, 1990.

Z.C. LI Y. Y. Tang, T. D. Bui, and C. Y. Suen. Shape transformation
models. Int. Jour. of Pattern Recognition and Artificial Intelligence,
Vol. 4(1):65-94, 1990.

S. Omohundro. Efficient algorithms with neural network behaviour.
Complex Systems, 1:273, 1987.

T. Poggio and F. Girosi. A theory of networks for approximation and
learning. Technical Report A.I. Memo No. 1140, Massachusetts Institute
of Technology, 1989.

T. Poggio and F. Girosi. A theory of networks for approximation and
learning. A.I. Memo No. 1140, Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, 1989.

T. Poggio and F. Girosi. Extension of a theory of networks for ap-
proximation and learning: dimensionality reduction and clustering. A.L
Memo 1167, Artificial Intelligence Laboratory, Massachusetts Institute
of Technology, 1990.

T. Poggio and F. Girosi. A theory of networks for learning. Science,
247:978-982, 1990a.

T. Poggio and the staff. MIT progress in understanding images. In Pro-
ceedings Image Understanding Workshop, Cambridge, MA, April 1988.
Morgan Kaufmann, San Mateo, CA.

T. Poggio and the staff. M.I.T. progress in understanding images. In
Proceedings Image Understanding Workshop, pages 56-74, Palo Alto,
CA, May 1989. Morgan Kaufmann, San Mateo, CA.

T. Poggio, V. Torre, and C. Koch. Computational vision and regular-
ization theory. Nature, 317:314-319, 1985b.

A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed Problems.
W.H.Winston, Washington, D.C., 1977.

17



