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Abstract: Perceptual information processing systems, both biological and non-biological,
often consist of very elaborate algorithms designed to extract certain features or events from
the input sensory array. Such features in vision range from simple “on-off” units to “hand”
or “face” detectors, and are now almost countless, so many having already been discovered
or in use with no obvious limit in sight. Here we attempt to place some bounds upon just
what features are worth computing. Previously, others have proposed that useful features
reflect “non-accidental” or “suspicious” configurations that are especially informative yet
typical of the world (such as two parallel lines). Using a Bayesian framework, we show how
these intuitions can be made more precise, and in the process show that useful feature-
based inferences are highly dependent upon the context in which a feature is observed.
For example, an inference supported by a feature at an early stage of processing when
the context is relatively open may be nonsense in a more specific context provided by
subsequent “higher-level” processing. Therefore, specification for a “good feature” requires
a specification of the model class that sets the current context. We propose a general form
for the structure of a model class, and use this structure as a basis for enumerating and
evaluating appropriate “good features”. Our conclusion is that one’s cognitive capacities
and goals are as important a part of “good features” as are the regularities of the world.
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Figure 1 Typical features proposed by machine vision, neurophysiology, and ethology.
What common properties do these features satisfy? What makes one feature better than

another?

In contrast, consider configurations of features that exhibit very special relations to
one another, such as two line segments which intersect to form a “T” or a “V”, or two
line segments that are collinear. As noted by many (Barlow, 1985; Binford, 1981; Lowe,
1985), intuitively, such coincidences imply very special “suspicious” and informative events.
Surprisingly, however, in an unrestricted context, such as a world where sticks are posi-
tioned arbitrarily, the observation of a “non-accidental” feature typically does not imply
the intended world property. Again, context plays a crucial role, as illustrated in Figure 2
for the T-junction, which can arise in many different ways. To correct this situation, the
corresponding world event must express a generic regularity in that context (Bennett et
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Figure 2 If the image primitives are contours (such as zero crossings), then features
typically can be created in many ways. For example, the T-junction may arise either
from an occlusion or from an actual T-vertex in 3D. Hence the interpretation associated
with a feature depends strongly on the context. Alternate contexts can reverse the
interpretation. For example, consider the peanut shape as a wire frame, or the bottom
right figure as the view of a crack through a polygonal hole.

al., 1989; Marr, 1970; Reuman & Hoffman, 1986; Witkin & Tennenbaum, 1983). Our task
here is to make note of such conditions needed to support our intuitive notions of what
‘makes a good feature’. In the process, we will place a measure on just how “good” a
particular feature is for inferencing, and show that such measures depend upon the current
conceptualization of the world.

2.0 Bayesian Framework

To explore conditions that should be satisfied by a good feature, we use a probabilistic model
as the analytical tool for modeling the perceiver’s world and the reliability of its feature-
based inferences. Our choice of a probabilistic model is not a claim that the perceiver
necessarily has access to the various probability density functions we use in our analysis.
Whether or not the perceiver itself needs to incorporate such a probabilistic model to
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distinguish between good and bad features, and whether the world needs to satisfy this
particular model, are important issues addressed later in the second part of our proposal
regarding the inference process itself. However, a Bayesian probabilistic formalism allows
us to state clearly some conditions that a “good feature” should meet, and to explain why
other, seemingly obvious proposals are inadequate.

The structure of the model is as follows. The external world consists of different
classes of objects and events. We refer to each class as a context, C, within which are
various properties that occur probabilistically. Our canonical property is denoted simply
by P, and we assume it occurs in context C with the conditional probability p(P|C). We
denote the absence of property P by notP. Next, we consider that some measurements are
taken of the objects and events in the world. We refer to a particular collection of such
measurements as a feature F. Hence a feature will be identified with the set of all world
events having measurements specified by F, and thus probabilities such as p(F|C) are well
defined. We wish to study the inference that property P occurs in the world, given both
that the world context is C and that the measurements F are satisfied. Note that the
probabilities p(P|C) and p(F|C) are considered to be objective facts about the world (or
at least an idealization of the world), and are not statements about the perceiver’s model
of the world. In this section we keep the issue of whether or not a perceiver needs to use
any probabilistic model of the world quite separate from our analysis of a good feature.

2.1 Reliable Inferences

In the probabilistic formalism a measure of the success of inferring property P from F is
the a posteriori probability of P given the feature F in the context C. A reliable inference
makes this probability, namely p(P|F&C), nearly one, and the probability of an error,
namely p(notP|F&C), nearly zero. It is convenient to consider the ratio of these two
quantities, that is

_ p(P|F&C)
Rpost = Lot PIF&C) 1)

We consider the feature F' to provide a reliable inference, in the context C , precisely when
this probability ratio Rpost is much larger than one. Below we consider how such a condition
can be ensured.

Bayes’ rule can be used to break down the probability ratio Ryt into two components.
The first component, L, is a likelihood ratio and relates to the measurement F of property P.
The second component is another probability ratio, R, .. ., and is related to the genericity
of the world property P in context C. The decomposition of Rpost has the simple form:

Rpost =L- Rprior . (2)
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Here the prior probability ratio Ry ior is given by (compare equation (1))

p(P|C)

. = ———- 3
Rprzor p(notPlC) ( )
and the likelihood ratio L is defined to be
p(F|P&C)
= T PR (4)
p(F|notP&C)

From equation (2) we see that the likelihood ratio L acts as an amplification factor on the
prior probability ratio an-o,. Thus it makes sense that a good feature F have a large
amplification factor:

Measurement Likelihood Condition: In context C, a good feature
F for world property P provides a large likelihood ratio, that is,

_ p(F|P&C)
~ p(F|notP&C)

(5)

>>1

At first blush, a large likelihood value for L seems sufficient to capture the intuition that
good features should point reliably to some property in the world. However, because L
appears as a product with Rprior in equation (2), it is clear that we can not afford to let
the prior probability ratio Rprior become too small. That is, we also require

Genericity Condition: Given a context C and a constant § > 0, the
property P occurs with probability p(P|C) > § or, equivalently,

pPlO) 8§ . ©)

R .. .= >
pPTor — p(notP|C) ~ 1-6

By “generic” we mean that P occurs with a probability greater than zero within context
C. The Genericity Condition puts a lower bound of 6 on this probability. Given that L and
Rprior satisfy the likelihood and genericity conditions, it follows from equation (2) that

Rpoet > L6/(1 ~ 6). Hence, when L >> (1 — 6)/5, the two conditions together ensure a
reliable inference.
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Figure 8 Two sticks in 3D form a near-V vertex to create property P, which projects into
the V-junction image feature F. The resolution for the sticks forming a V is taken as a
disc of radius ¢ in the image (assuming orthographic projection) and, for the 3D tolerance,
the sphere of similar radius. Although the measurement likelihood ratio condition is
satisfied, the conditional probability of P, given the observation F and a random world
context, favors notP - i.e. that the endpoints of the two sticks lie at separate locations
within the cylinder of radius e.

that case Rpost = §/€2 >> 1. But this is simply the genericity condition, which requires
a context in which the 3D “V” structures are fairly common. In other words they are a
regularity in that context (Bennett et al., 1989; Marr, 1970; Witkin & Tennenbaum, 1983),
such as if we are in a blocks world where edges form V’s, or perhaps another where “victory
signs” are created by finger arrangements. Once again, then, the context plays a major role
in the inferences that features support.

2.3 Informativeness

By requiring that both the genericity condition be satisfied as well as L >> 1, we now can
be assured that the feature F' in context C will be a reliable predictor of world property
P. However, a third condition is needed to ensure that the inference of P is actually
informative. For example, in a context of randomly placed sticks (e.g. Copen) consider a
world property P such as two skewed sticks. For simplicity we assume an orthographic
image mapping and let the feature F correspond to two skewed lines in the image. Then
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Figure 4 A blocks-world example where the non-accidental property “collinear” is
ignored (see text for discussion).

Here we have written the conditions using the probability ratios appearing in the Bayesian
formula (2). The constant § should be chosen such that we consider probabilities larger
than 1 — § as virtually certain in order that the information condition rules out features
that simply confirm virtually certain events. Also, in terms of §, the genericity condition
requires that the property P have a probability larger than § and thus P is not virtually
impossible. The particular choice of § and a quantitative threshold for L are left open in
the above proposal. We expect that the choice of these quantities would depend on the
utility or risk involved in making, or failing to make, the appropriate inferences, which we
do not pursue here. Finally, note the desirability that the inference can be made reasonably
often. That is, the context C should not be too rare, and given the generic property P, the
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measurements F' should also be common. This new requirement has been incorporated as
part of the informativeness condition.

2.4 Non-monotonicity of Inferences

We close this section with one final example of the role context plays in our proposal. Most
people see Figure 4 as depicting three blocks: one block resting on top of another, and a
third twisted block that lies behind. Note that two of the vertical lines associated with
the Y-junctions are actually collinear in the image, creating the useful (non-accidental)
collinear feature suggested by Lowe (1985). This feature certainly satisfies our likelihood
ratio condition. So why don’t we see the two blocks as having collinear edges in 3D with
one block floating above the other? (A similar example having an accidental view of a “Y”
vertex, due to Steve Draper, is given by Hinton (1977).)

To understand the use of collinearity as a feature, we consider inferences appropriate
for three different contexts. Each of these contexts is simply a statement about regular-
ities in the scene generating process, and are not meant to imply different stages in the
perceiver’s visual information processing system. The first context is an “open context”,
Copen, which consists of randomly placed line segments. In particular, collinear, cotermi-
nating, or parallel lines in the world are non-generic (i.e. probability zero) in this context.
However, although the likelihood ratios for all these properties are easily seen to be large,
as was the case for the “V” feature discussed earlier, the a priori probabilities for these
“non-accidental” properties are too small to warrant their inference. Hence in the context
Copen the overwhelmingly probable conclusion is that the collinear, coterminating, and
parallel lines in the image simply arise due to some cause other than being the projections
of their corresponding 3D properties. (An obvious possibility is measurement noise and a
special view of the scene.)

Now consider a second context, C group, similar to the first, but with regularities added
that make, say, collinear lines or parallel edges much more probable than they would be
in the unstructured context Copen. For example, such a context would result if there
are processes in the world that cause the 3D line segments or edges to form structures
having particular regularities such as textured flow fields (Stevens, 1978; Kass & Witkin,
1988) or blocks with parallel faces (Lowe, 1985). Now the significant prior probability of
these specific structures in that context and the large likelihood ratio provided by the non-
accidental feature, together ensure that the inference of the corresponding 3D structure is
reliable. Given Figure 4 in this context then, and given the alignments and parallel edges,
one might infer that these image elements arose from a related group of 3D objects (as
indeed they did!).

The third context involves a collection of blocks, Chlock> Where the blocks can rest on
one another or float about freely. If blocks float freely then their position and orientation
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with respect to the other blocks is assumed to be random, with vanishing a priori prob-
abilities Rprior for collinear or parallel edges. So again the situation is analogous to the
case of the V-junctions presented earlier (Figure 3). Hence, although the likelihood ratio
L is high in context Cj;, ., the prior probability that the two blocks would be floating in
just such a way to make a pair of edges collinear is vanishingly small, and the resultant a
posteriori probabilities Rpost rule against the interpretation that the two edges happen to
be collinear. Instead, we favor some other cause, such as an accidental viewpoint. Finally,
we note in passing that the occluded twisted block in Figure 4 is seen as just that — a single
block but not as two, although none of the edges are collinear. However, in the context
Chlock> 1t is reasonable to expect that the implicit axes of the right and left portions of the
twisted block could be extracted. Such features satisfy a cocircularity regularity (Parent
& Zucker, 1989), which is also a “non-accidental” property, and hence the “one block”
inference is justified.

Our point then is that the context in which the scene configuration arose is crucial
to the interpretation of a feature, since a change in context can reverse the appropriate
inference. In our example, the 3D collinearity conclusion is justified only in the middle
context Cgroup; in the less structured context Copen and in the most structured context
Chlock the 3D collinear regularity for these lines is not viable. Hence the appropriate
inference is non-monotonic with the degree of structure or specification within the context
(McCarthy, 1980; McDermott & Doyle, 1980; Reiter, 1980; Salmon, 1967).

3.0 Model Classes

A major point of our analysis of “what makes a good feature” is that supportable infer-
ences are context-sensitive. Features must be evaluated in terms of generic properties or
regularities in a specialized context or model class, as contrasted with an open context like
a “random-world” model. Implicit in this treatment is that the external world indeed has
some non-arbitrary structure, and that our own internal models can express this structure
in terms of certain regularities explicitly stated as part of the model. How are these regular-
ities expressed in the Bayesian formalism, and how can they be mirrored in the perceiver’s
conceptualization of the world?

In an attempt to capture the notion of a regularity, within a probabilistic represen-
tational system of a perceiver, Barlow (1985) proposed “good features” should satisfy the
“suspicious coincidence” condition p(A&B) >> p(A)p(B), where A and B are two obser-
vations.? The intent of the condition is to notice special situations that are not expected by
an independence assumption of the occurrence of A and B. Although “suspicious” implies
to us that there is a current context, this is not an explicit part of Barlow’s proposal, which

?Based on the text, we assume that the intended inequality is as appears here. However, note
that for the independent event hypothesis, the inequality can be applied in either direction.

11
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requires the very controversial computation of estimating context-free probability distribu-
tion functions (i.e. p(4) = Ep(A|C)p(C) summed over all possible contexts). Barlow (1990)
discusses at length elsewhere how a neural system might learn the appropriate distribution
functions (see also Clark & Yuille, 1990).

One way to capture the intent of Barlow’s proposal within the Bayesian framework
is to consider the feature observation in the context C, where the associated property is
generic, as contrasted with the current, less specialized context C, where the property (or
properties) are non-generic. More specifically,

Suspicious Coincidence: The observation of a feature F represents
a suspicious coincidence in the context C, if there is a more specialized
(i.e. detailed) context C, such that,

(i) the likelihood ratio involving feature F and property P is large in
(9)
both contexts, and

(ii) the probability of P in the specialized context C, is much larger
than in the current context C,, that is
p(P|Cp) >> p(P|Cs).

For example, in our discussion of the blocks in Figure 4 we first considered the open context
Copen of random lines. The collinearity feature F has a large likelihood in context Copen,
but the prior probability of 3D collinear lines is negligible. However, in the grouping
context Cgroup, the prior probability is significant and the likelihood ratio is still large.
Hence, we would consider the observation of collinear lines in context Copen as a suspicious
coincidence with respect to the more structured context such as Cgroup. Note that this
conclusion is not to be considered a reliable inference that context Cgroup actually occurs
in the world. (An analysis similar to the one presented in Section 2 could derive suitable
additional conditions to ensure a reliable inference of the new context.) Rather, Barlow’s
notion of suspicious coincidences simply provides an approach for chaining through to more
detailed contexts as further regularities are uncovered and assimilated. We do not pursue
this chaining process here, and instead concentrate on how a specific context might be
represented.

Clearly an internal model can not be expected to match exactly the behavior of external
events. In terms of our Bayesian proposal, the internally represented probability density
functions p(P|C;) can not be identical to their external world counterparts, p(P|Cy), say.
In particular, as the.contexts become more and more specialized (and hence the measures
on the probability density functions become more and more biased), the world model and
the perceiver’s conceptualizations may diverge. We would like to minimize the effects of
this divergence. In other words, we seek model contexts, properties, and features that are
robust under errors in our estimates of the conditional probability measures. This is a

12
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Figure 6 Two kinds of regularities, transverse (left) and non-transverse (right).

lines in 3D is a non-transverse event, but two lines skewed and non-intersecting in 3-space
would be a transverse arrangement.
‘ Non-transversality, then, appears at first blush to be the “non-accidental” proposal
of Lowe (1985). However, here we use the terminology “transversal and non-transversal”
! because these terms are context-sensitive and can be applied to world models with ar-
bitrary statistical properties. Thus, in a non-random world model, say one describing
body parts, the arrangement such as the V-vertex which we previously considered non-
! transverse can become transverse (because this is the configuration of an arm). However,
in this same model class, the T-junction or parallel line configuration would continue to be
non-transverse. Still another example would be an assumed model context where objects
are taken to obey two-fold reflectional symmetry. Then a line perpendicular to a plane will
be a transversal arrangement, whereas in the absence of such a symmetry constraint, such

14
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a 90 degree intersection is non-transverse. Hence the notion of transversality also involves
categorical properties considered special in the current model class. An important type of
world regularity can be specified by adding on top of this categorical structure an indication
of whether or not a particular non-transversal category has a non-zero prior probability of
occuring.

3.2 Key Features

Let us define a model space M simply as a manifold constructed by parameterizing some
modelling domain. The parameters could be involved in descriptions of (3D) position,
attitude and shape of various parts, or reflectance properties of surfaces, or higher order
structures such as the sounds of a babbling brook. Also various categories P are represented
as subsets of the model space, some of which form non-transversal submanifolds within M.
For example, our two sticks “V” example corresponds to a model space R!°, where the ten
parameters describe the position and orientation of the sticks. Consider the category P for
which the two sticks form a V-junction (for simplicity, with a particular pair of endpoints).
This is a 7-dimensional hyperplane in our model space. We note in passing that this 7-
dimensional space has other “special” configurations within it, such as the 5-dimensional
hyperplane representing the situations when the two sticks are also collinear.

Next we need to specify how M and the various categories are meant to represent
(or “mirror”) structure and events in the world. In particular, we assume a fixed mapping
between events in the world and categories within M. The stick example suffices to illustrate
the mapping between coterminating sticks in the world, and the representation of this
event in M. To avoid unnecessary details we simply identify a world property as P,,
and use P,, to refer to the corresponding category within M. Given this correspondence,
we can take a world context C,, (which the reader may assume is simply an index to an
appropriate probability density function) along with the associated probability distribution
P(Pw|Cy), and consider the “ideal probability distribution” induced on the model space,
namely p(Pp|Cy) = p(Pu|Cy). Of course, this ideal probability measure in NOT to
be considered part of the perceiver’s conceptualization. However, we need to make an
assumption about its general structure, namely

15
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Mode Hypothesis: Given a model space M and a context C,, then
the probability measure p(m|C,) can be decomposed into the sum
Y i o Pi(m|Cy) for m € M. Here p; is the background measure and i
for 1 > 0 is a measure having support only on the non-transversal cat-
egory P; within M. Each of these measures is assumed to have density
functions of the form

pt(mICIU) = “i(m)ﬂiezp(_Hi(m|C'ﬂ)))i =0,...,n (10)
for m € M (see Skilling, 1991). Here uo is the Lebesgue measure on

M and u; for ¢+ > 0 are Lebesgue measures on the property spaces

P; (i.e. delta distributions). The terms §; can be taken to be 0 or

1, depending on whether the ¢** mode is a regularity in context C,,.

Finally, the remaining terms involving H; provide a reweighting of the

uniform Lebesgue measures; they are exponentiated simply to insure

the weights are positive.

The Mode Hypothesis can be seen to be a hypothesis about the form of the “ideal”
probability density, for properties within a model class (Bobick, 1987; Marr, 1970). The
basic idea is that robust features should supply reliable inferences over a wide range of
possible choices for the specific background probability density and for the non-transverse
probability densities. In other words, the robustness of the inferences should follow from
the structure of the probability density, which in the ideal case will be a collection of
delta functions. Ideally, all the perceiver needs to maintain is the locations of these delta
functions, but not knowledge of their probability distributions p(P,|C,,) because typically
this information will not be available. Instead we take the (perhaps, extreme) position that
an assumed context, Cp,, is simply a specification of which categories P; have a non-zero
probability mass. In terms of equation (10), C,, specifies which normalization constants
P: are nonzero, but says nothing about the details of the actual density functions in terms
of the weight functions H;(m|C,). Different modes can be selected in different contexts,
and that is the only control of (assumed) context the perceiver has. For convenience we
will abuse the notation, and take p(m|Cy,) to mean any one of the set of density functions
which satisfy equation (10), and is nonzero only on the selected modes specified by the
model context C,,.

The stick example provides a concrete case, where the world context consisted of two
randomly placed sticks. The particular probability density po is assumed to be a smooth
function of both the location and orientation of the two sticks. Such a distribution can be
written in the form presented for a background measure. Many different choices for Hy,
are possible, describing for example a uniform distribution within a cube, or a Gaussian
distribution, etc. The important property of po is that, independent of the choice of Hy,
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it assigns zero probability to all non-transversal manifolds such as the P; of M. Suppose
there are two regularities in this particular world context. One causes the two sticks to
form a V-junction with a non-zero probability, and the other causes these V-junctions to
form the degenerate case of collinear sticks. Such a world satisfies the Mode Hypothesis,
with the V-junctions and the collinear V-junctions forming the only non-transversal sets
which have positive probability mass. Within this particular context, such regularities will
support robust inferences from their measurements, even though the (unavailable) density
functions associated with the perceiver’s internal model space C,, do not match exactly
the associated objective density functions in the world, namely p(P,|Cy).

To support this claim, we now proceed to develop the relation between the special class
of non-transverse properties P; € M and their associated features F;. Hence, in addition
to a model space M, we now require a measurement space ] and an imaging mapping, «,
from M onto I. (This basic set up is similar to that used in Observer Mechanics (Bennett
et al., 1989) with the exception that for us the various spaces and mappings are all part of
the perceiver’s representational framework. For Observer Mechanics these entities are the
world.) Features F; are identified with subsets or submanifolds within the measurement
space J. To illustrate this mapping, consider again the two stick case. Then, given ortho-
graphic imaging, the 10-dimensional configuration space for two sticks will be imaged to
a 6-dimensional feature space. Within this feature space is the 4-dimensional hyperplane
(a non-transversal set) consisting of all possible images containing V-intersections. We as-
sume that the imaging map 7 correctly models the qualitative structure of the transduction
and subsequent measurement processes of the perceiver (again, detailed noise models are
not assumed). Finally, we define the probability of a feature F, say p(F|P&Cy) to be
the probability induced by the image map and the measure on M. That is, p(F|P&C,,)
is given by the probability of the set of all models m which image to F, namely n~1(F).
Similarly, given a model context, p(F|P&C,,) is taken to mean any one of the induced
measures consistent with the model context C,,,.

A model class is defined to be a pair of spaces M, I, along with the imaging map .
In addition to these spaces a model class includes two lists of categories, one a list of model
properties (or categories) P; within M, the other a list of features F; within JI. Finally, a
particular model context C,, for a perceiver is simply a selection, from the list of categories
P;, of those which are assumed to have a non-zero mass in the “ideal” probability measure.
Given this framework, we obtain our robust feature:
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RICHARDS & JEPSON

SIMPLIFIED INTERNAL MODEL

A. OBJECTS in the model space are constructed from Points,

Lines (Segments) and Planes (Facets).

B. OBJECT ELEMENTS

Point ®

Line Segment (Bar) Y /

Edge (of Region)
C. CONCEPTS (innately) available to the perceiver.

1. “Object ® Type: point, line, segment, etc.

2. “Object Relations: parallel, coincident, perpendicular, collinear,

co-planar (symmetry).

3. “Special” Property: gravity.

D. CONTEXT (or model class)

Variable over contexts.

Figure 7 The basic ingredients of the observer’s internal model.
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POINT TO LINE SEGMENT

CONCEPT DEPICTION COST CODIMENSION
sD 2D
COINCIDENT (end) / a, B, 3 2

COLLINEAR (on) Jee—"
et

a, fp 2 1
o*®
o"'
(off) /
PERPENDICULAR H 5 1 0

CO-PLANAR \ 0 0 0
4 -
.." asee®

PARALLEL - undefined - N/A N/A

Figure 8 Non-transverse arrangements of a point to a line segment.
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LINE TO LINE SEGMENT

CONC DEPICTION CODIMENSION
2

w

COINCIDENT / b

COLLINEAR guss®” 4 2

—

PERPENDICULAR

(non-planar) k'.- - 1 0
(co-planar) / e 2 0

PARALLEL % 2 1

Figure 9 Non-transverse arrangements of one line segment to another, again in a
“random world” context.
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LINE AND GRAVITY

CONCEPT DEFICTION DRESCRIPTION an n
G
]
PARALLEL Y Nme vertioal 2 1
1
[}
PERPENDICULAR *_ line Aovisontel 1 [ ]
~
;a/l
B Ve

POINT TO LINE SEGMENT (PLUS GRAVITY)

CODIMENSION
CONCEPT DEPICTION D ap
v
COINCIDENT / point at end 3 2
COLLINEAR { __@ rontenlimeand 2 1
poiat “sbove/below™
I/ ead
™
PERPENDICULAR | point 1 end ] (]
(1-fold) | point in “horiz” 1 [}
plane of end
Y
otV >
(3-fold) point both per- 2 [}
! peadicular to G
Y and line (in plane
b/ of end)
-
COPLANAR ; . point in “wertica” 1 0
plane (i.c. “sbove”
'\ line)

New Concepts : *VERTICAL®, "ABOVE" [*BELOW", “HORIZONTAL”

Figure 10 The addition of a coordinate frame, such as the gravity vector, expands the
Key Feature possibilities.
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® L ° . . d
Event y * . o. o* . : . ®
Event x Event z

Figure 11 Left: A cluster (or perhaps two!) of points whose specialness is difficult to
demonstrate statistically. Right: A pattern of points that is much simpler to show is
non-arbitrary, not only because the subspace is more coherent, but especially because
the arrangement is non-tranaversal for a simple line-segment model.

field). And, finally, the measurements on the image will be noisy. Hence, we can expect
to see distributions of points in the event spaces, not well-marked trajectories. Clearly a
random cluster of points, such as Figure 11a (left) can not support a key feature, whereas
Figure 11b (right) looks promising. How then do we proceed to test whether the observed
distribution of points in the event space supports a key feature? Fortunately, a good part
of the necessary machinery is available, provided that one knows in advance the possible
model types that apply (Kendall, 1989). But this is indeed the case because all the “low-
order” types of Key Features have been enumerated. The procedure, then, is simply to
test the hypothesis that the points in the feature space support one of the Key Feature
configurations known to the perceiver.®

4.1 Data Description

To illustrate a version of Shape Statistics, consider the configuration in Figure 11b. We
know that the coincidence of three lines is a special configuration of codimension 2 in the

5Note that Kendall & Kendall (1980) provide a very detailed analysis of the collinear Key Feature
applied to the data of Stonehenge in order to test the hypothesis that the alignments marked
some interesting astronomical event.
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event space. The task is then to obtain a probability density function (pdf) for each line
and separately for their intersection. To estimate each line (and hence its trajectory), we
can create a density function concentrated along a 1D curve or spine, following the methods
of Leclerc (1989) or Hinton et al. (1991). Denote this spine together with its associated
pdf as a “caterpillar”. An important property of these approaches is that such caterpillars
provide an appropriate form of description for each “image”. In particular, for Figure 11b
we might expect that a process similar to Leclerc’s would extract a description in terms of
three straight caterpillars. Their width would be determined from the scatter of the data
points perpendicular to the spine. In addition, the endpoints of the linear segments would
also be provided only to within the same resolution. Similarly, for 11a, the same process
might be expected to choose a description involving only one or two blobs.

Given these descriptions it is now clear how to deal with images such as Figure 11b.
Presumably we have recovered precisely three line segments along with an estimate for
possible errors in the positions of the endpoints. This provides a “stick image”, to which
we can apply our usual repertoire of Key Feature models (i.e. candidate configurations).
The only difference is that we have an explicit estimate for the noise variability, so we
could expect to get more detailed estimates of the basic probabilities and likelihoods in our
Bayesian proposal.

It is interesting to note the similarity in our proposal for good model descriptions
and good features. For example, the “three stick” configuration is a specialization of a de-
scription including polynomial spines, suggesting that lower dimensional descriptive models
can be found on particular nontransversal submanifolds in higher dimensional descriptive
spaces. The observation that an interpretation is close to one of these non-transversal
sets suggests that we collapse the description to the smaller space. This is analogous to
observing a non-transversal feature in our model class.

4.2 Decision Rules

The extraction of a good description for Figure 11b, followed by the inference of a triple
junction, is clear in principle but it raises some difficult issues. Both Figures 11a and
11b are fairly clear cut in terms of their structure, with only one model fitting very well
in either situation. However, consider adding more noise to Figure 11b to obtain some
intermediate cases. Presumably the parse into three separate lines becomes less certain, as
does the quantitative data on the parameters for the lines. In an abstract feature space the
picture is of a noise estimate associated with each feature which covers a larger region as
the input noise is increased. A final point is that, in terms of our Bayesian proposal, the
likelihood ratio L for observing particular regularity will decrease (basically, by adjusting
the width of the caterpillar we are keeping p(F |P&C) roughly constant, but this increased
width will also cause the probability of false targets, p(F|notP&C) to increase). As a
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result the inferences will become less certain or, once the Informativeness Condition fails,
uninformative.

We discussed the problem of choosing a good description of the data in the previous
section. Given a description we are now faced with choosing an appropriate inference from
our model class. How can such a decision be made? Simple structural rules, such as choos-
ing the most singular model (highest codimension) consistent with the data description, or
the least singular model, can easily be shown to be inappropriate. Similarly, the maximum
likelihood description will generically be a transversal point in the feature space, and thus
the regularities will almost never be inferred. Recall that the regularities only support
strong inferences if their a posteriori probabilities are sufficiently large, and the likelihood
ratio L for features associated with properties serves as the amplification factor from a
priori probabilities to a posteriori probability ratios. A decision rule based on maximum a
posteriori probability (MAP) estimates is possible, given estimates for the prior probabili-
ties (Clark & Yuille, 1990). However, it is not clear that such useful estimates on the priors
are possible to simply memorize, especially when we need these priors for each of a wide
range of contexts. Thus for MAP estimation to work we need to estimate the priors on the
fly from the model class, with the one glimmer of hope here being that the estimates may
only need to be accurate to within an order of magnitude, or so. A different approach in-
volves placing a partial order on various possible interpretations (see Jepson and Richards,
1991, 1992). This partial order could be made on the basis of probability estimates, or some
other form of preferance relation. For example, for the blocks in Figure 4 we may estimate
that a floating collinear interpretation (codimension 4) is significantly less probable than
an accidental view interpretation (codimension 1 or 2 depending on whether or not the
blocks are assumed to be right angled), especially since we have no way of explaining this
codimension 4 event. Difficult research issues remain for the resolution of these problems.

4.3 Ideal Observers

Recently, Bennett, Hoffman & Prakash (1989) have constructed a probabilistic framework
called “Observer Mechanics” which provides an alternative model for both the world and
the perceiver. The major component of this model is an “observer” which is the 6-tuple
(X,Y,E,S,x,n) where (loosely speaking) X is a configuration space of quantities being
observed, and Y is the imaging space formed by the many-to-one mapping 7 : X —» Y.
Within X lies a set E of “distinguished configurations” that play the role of our non-
transversal categories. The images of configurations within E form the set of features S
observed in Y. Hence S corresponds. to our non-transversal image features. Finally, for
each s € S, n(s,) is a probability measure on 7~1(s).

An ideal observer is defined in terms of an unbiased measure iz on the configuration
space X. We take this measure to be the probability of a particular configuration in X,
but in the absence of any structuring influence producing the distinguished configurations
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captured in E. That is, p, is analogous to our background probability distribution pq.
Within this framework, an observer is then said to be ideal if

pz[x71(s) — E] = 0.

In other words, when there is no regularity or structure in E, there is a zero probability of
observing an element of S that does not result from an element of E (i.e. the probability
of a false target, is zero). In terms of our earlier example, the probability of a “V” image
feature is just the probability of the set of all configurations in X which project to S ,
namely p.(r~!(S)). In a random stick world this probability is zero, and this implies
that the previous equation must be satisfied (see the discussion around equation (3.3) in
Observer Mechanics). Therefore, there exists an “ideal observer” for 3D “V”’s in a random
stick world. In fact, if we identify the set E with world property P and identify the set
S = n(E) with image feature F, then F = n(P) using our terminology an ideal observer
can be constructed precisely when:

Ideal Observer Proposal: The image feature F is non-generic
in the absence of world property P, and occurs with probability
1 in the presence of world property P.

Besides the condition that F occurs with probability one in the presence of P (which
may be regarded as a consequence of our definition of F = x(P)), the only condition on an
ideal observer is that the false target rate must be zero. Hence the measurement likelihood
ratio must be infinite. Thus ideal observers are similar to our key features, in that both
require an infinite likelihood ratio L. However, unlike key features, ideal observers include
situations such as the “V” observer in a random stick world, even in the absence of a
world regularity for “V”’s. In addition, ideal observers include the case of two randomly
placed sticks, where the world property P is simply the occurence of non-parallel sticks.
This property occurs with probability one, yet there is still a feature having an infinite
likelihood ratio. In our Bayesian proposal we include conditions that eliminate cases such
as these. In particular, the V-observer is eliminated by the requirement that the world
property is generic, and the skewed-sticks observer is eliminated by the informativeness
condition.

Observer mechanics recognizes this problem but deals with these degenerate cases
in a rather different manner. Both the V-observer and the skewed-sticks observer are
essentially “no-op” observers. The V-observer in a random stick world detects a feature
with probability zero, so it never reports a V observation. On the other hand, the skewed-
stick observer detects its feature with probability one, and always responds. In both cases,
the performance has zero probability of being wrong, which justifies the term “ideal”. The
conclusions of these “no-op” observers can reliably be used as input to other observers,
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and that is the primary requirement on an ideal observer. The problem we posed in this
paper is different, we actually want useful, robust, and informative features. As a result,
our definition of a key feature is (roughly) a subset of the situations for which there is an
ideal observer, and to specify this subset we require structure both in the regularities of
the world and in the conceptualization of the perceiver.

A second difference between our formulation and observer theory is that given a fea-
ture, we attempt to make categorical statements about world properties within a model
context, whereas observer theory strives to place probability measures on world properties
that are supported by observing a particular feature. Given a feature s, the conclusion of
the observer is provided by a probability measure 7(s, e), with e in the distinguished space
E (corresponding to P). This measure 7(s,-) is called the interpretation kernel. In our
framework this distribution is the a posteriori probability distribution p(m|F&P), condi-
tional on both the feature F and the property P. For example, given the skewed-stick
observer, the interpretation kernel would provide the a posteriori probability for the 3D
position and orientation of the two sticks. In contrast, our approach provides only the
categorical response that the two sticks are indeed skewed in 3D. The computation of such
a interpretation kernel clearly involves detailed a priori probability distributions, which
we have attempted to avoid. However we note that, in situations where the priors can
be computed, the incorporation of analogs to the interpretation kernal could play a role
in extending our “categorical” good feature formulation. For our purposes in this paper,
we only point out that the most plausible approaches for the computation of these priors
involve the manipulation of assumed regularities in the world, which again ties in with our
notion of a model class.

5.0 Examples

Our treatment of Key Features within a feature space has been limited to configurations
built from points, lines, edges, and facets. Although we have tried to stress that these
elemental object types are not the only primitives that one might use, it is easy to regard
our treatment as applying only to a “blocks world”. The essential point, however, is that it
really doesn’t matter what sensory attributes or dimensions we consider, nor the particular
object types chosen as “observable” primitives in that space of features. For example, we
could explore non-transverse configurations in time rather than space, or frequency-time as
in an acoustic feature space (Bregman, 1990). Here, however, we will present three further
examples taken from vision.
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Figure 12 A Key Feature for the translation direction for ego motion has the same type
of non-transversal configuration as that for finding the spectral quality of the illuminant!

addition, the power of the key feature might be further augmented if we also have extrinsic
frame vectors that act like the gravity vector in Figure 12, such as those derived from
vestibular inputs. This space housing the key feature for Ego Motion is thus much like that
shown earlier in Figure 11 (right) where events in the feature space lie on loci that radiated
from a single vertex. Here, then, we have a specific instance where noise and resolution
will affect the robustness of the key feature.
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D1 (diffuse)

S (specular)

02 (diffuse)

Figure 13 Top: Representation in the (R, G, B) space of responses L; and L3 to
two surface patches, lit by the same source S, that have different diffuse components of
reflectance (D; and D2). The two planes described by L; and L intersect along the axis
S, which describes the chromaticity of the illuminant, because the specular component
of reflectance is common to both objects. The responses from two or more objects that
define distinct planes can thus be used to find the axis S that describes the chromaticity
of the illuminant. Bottom: Projection of L1 and Lz onto the chromaticity plane rg — yb.
The lines described by the responses intersect at the point S marking the chromaticity of
the illuminant. If the perceiver’s model incorporates the knowledge that most daylight
illuminants lie on a segment of the yb axis, as indicated, then two patches suffice to define
a “crow’s foot” key feature configuration. (Adapted from D’Zmura & Lennie, 1986.)
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spaces and their projections are quite consistent with our proposal, and would appear to be
physiologically plausible. However, note that in such mappings that mirror particular “real
world” properties, the co-dimension of a key feature becomes ambiguous and, as mentioned
earlier, it is the inferred property that is assigned the codimension associated with the
particular key feature configuration observed internally.

6.0 Summary

Previously, others such as Binford (1981), Lowe (1985), and Witkin and Tennenbaum
(1983), have noted that good features should reflect “non-accidental” configurations that
are specially informative yet typical of the world (such as two parallel lines). However, we
note that the intuitively robust character of an inference based on a non-accidental feature is
not simply due to the fact that they have a large likelihood ratio (i.e. the feature is expected
when the world property is present, but very rare in the absence of the property). In the
discussion of our Bayesian Proposal we have shown that a large likelihood ratio is clearly
not sufficient to ensure robust inferences (see also Knill & Kersten, 1991). Rather, the
likelihood ratio simply serves as a lever for raising the a priori probability of the particular
world property. Given too low an a priori probability this lever is insufficient to provide
a high a posteriori probability and hence a robust inference. This notion of a reasonably
large prior probability is implicit in the discussion of a non-accidental feature, and explicit
in the presentation of the intuition behind Observer Theory, yet the full impact it has on
the definition of a good feature was not made explicit.

The analysis of the two block example in Figure 4 shows that the definition of a good
feature must include a specification of the cognitive context in which it is being used.
The collinearity feature, a classic non-accidental feature, is reliable in some contexts but
nonsense in others. The difference hinges on what the perceiver is willing to assume are
regularities in the world. Thus good features are necessarily bound to the current con-
text of analysis, to conceptual models, and to the regularities that a perceiver expects to
be operative (MacKay, 1978, 1985). The fact that a feature can be good in one context,
but nonsense in a more specialized context, reflects a common phenomena in inductive
inference known as non-monotinicity (Salmon, 1967). Whether your bias is for perceivers
who maintain a detailed probabilistic model of their world, or for those which use a log-
ical framework, this non-monotonic behaviour must be dealt with by the explicit use of
contextual information (McDermott & Doyle, 1980; Reiter, 1980).

Given that the specification of “good features” requires the specification of the current
context, we suggest a model class as an appropriate form for representing contextual infor-
mation. Basically a model class is an abstract space of models about the world, which has
been carved up into various categories. Some of the categories are transversal, representing
open subsets of the space. Other categories exist on subsets (submanifolds) of the param-
eter space and have a smaller dimension than that of the embedding space. These latter
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categories are non-transversal, and their degree of specialization can be roughly measured
by their codimension, that is, the difference in dimension between the embedding space and
the particular category. In addition, the model space can be projected to the image, where
a similar categorization in terms of transversal and non-transversal image features can be
made. Our canonical example is of a non-accidental property or feature such as collinear
lines, which is non-transversal in both the world and image spaces. Indeed we pursue our
proposal in some detail for such geometric features, but we also show it has applications to
other domains such as motion or colour interpretation.

So far this conceptualization is independent of whether or not certain categories sup-
port robust inferences in that it does not specify whether any non-transversal category
reflects a regularity in our world. There is no notion of probabilities in this categoriza-
tion. To fully specify a model class we need to select particular categories as corresponding
to regularities that are considered possible within the current context, thus entertaining
Bayesian-like propositions (Pearl, 1990). However, we prefer to keep the categorical concep-
tualization itself independent of the notion of regularities, or of probabilities in the world,
to allow for the same set of categories to be used in a host of different contexts. Given
the regularities, a Key Feature supports the inference of a particular non-transversal but
generic world category (i.e. one expected or selected by the pereiver). Hence such a feature
carries within itself its appropriate interpretation, in that the regularity has already been
specified in the world, and this step of the inference process becomes rather trivial. Finally,
given the appropriate qualifications provided by the Bayesian Proposal, such a key feature
can be expected to provide a reliable inference for that particular regularity in the world.

For a structured, non-arbitrary world and for a defined set of (internal) concepts
about primitive object types and their possible relations, the set of Key Features can be
enumerated. All such features are not equally powerful with respect to their inference
strength. As a measure of this power, we suggest the codimension of the Key Feature
configuration, with respect to the class of models computable in the feature space. Our
proposal requires a slightly different view of “feature detectors” than that customarily
taken. Rather than simply providing a “measurement” as an oriented bar mask might
do, our “feature detector” recognizes a non-transverse configuration in an event space
constructed from such measurements. The class of configurations recognizable are only
those non-transverse arrangements that can be computed for the types of object primitives
and relations specified. The principal task, then, is to discover the object types used to
construct the event spaces, for these will generate the model classes. We suspect that
the relations computed within the different event spaces will be similar, and relatively
trivial. Their reliability, of course, will depend upon how well the conceptual relations
and primitives match the actual building blocks and constraints imposed by Nature on
constructions in the real world.
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