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Abstract

We have used a novel computer with a novel integra-
tion technique to study the evolution of the entire planetary
system for nearly 100 million years. This calculation confirms
that the evolution of the Solar System as a whole is chaotic,
with a remarkably short timescale of exponential divergence
of about 4 million years. Additional numerical experiments
indicate that the dynamical evolution of the Jovian planets
is chaotic apart from the rest of the system, as is the motion
of Pluto.

Advances in computer technology have made it possible to begin to di-
rectly address the age-old question of the nature of the long-term evolution of
the Solar System, with startling results. Sussman and Wisdom [1] presented
numerical evidence that the motion of Pluto is chaotic, with a timescale for
exponential divergence of nearby trajectories of only about 20 million years.
Subsequently, Laskar [2] found numerical evidence of the chaotic evolution
of the whole Solar System excluding Pluto, with a timescale for exponential
divergence of only about 5 million years. Laskar’s calculation was feasible be-
cause he analytically averaged the equations of motion to remove the rapid
variations with timescales of order the orbital period. The averaged equations
are perturbative and necessarily truncated after a particular order in eccentric-
ity, inclination and mass ratio. A new integration of the whole Solar System
without these approximations was clearly required.

Direct integrations of the whole planetary system are computationally ex-
pensive. Notable long-term integrations of the outer Solar System include:
the classic 1 million year integration of Cohen, Hubbard, and Oesterwinter [3],
the 5 million year integration of Kinoshita and Nakai [4], the 210 million
year integration performed on the Digital Orrery [5], the 100 million year
integration of the LONGSTOP project [6], and the 845 million year Digi-
tal Orrery integration of Sussman and Wisdom [1]. Studies of the long-term
evolution of the whole Solar System have been more limited because the com-
putational resources required are significantly larger, by about two orders of
magnitude. Integrations of the whole Solar System include: the 3 million year
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Digital Orrery integration (excluding Mercury) [5], the 2 million year integra-
tion of Richardson and Walker [7], and the recent +3 million year integration
of Quinn, Tremaine, and Duncan [8, 9] (hereafter QTD).

We have developed new computational techniques and new computer hard-
ware to make possible a direct integration of the whole Solar System spanning
a significantly longer interval than previously achieved. Our new direct inte-
gration of the equations of motion spans 36,000,000,000 days, or about 98.6
million years. Qur earlier result concerning the chaotic motion of Pluto, as well
as the result of Laskar that the Solar System is chaotic are both confirmed. In
order to localize the sources of the chaotic behavior we have carried out nu-
merous additional long-term integrations. We have found that the evolution
of the Jovian planets is independently chaotic, as is the motion of Pluto.

Method of Integration

We use the symplectic n-body mapping method of Wisdom and Holman [10]
to integrate the planetary system. This new mapping method is a generaliza-
tion of the mapping method of Wisdom [11, 12]. The basic idea is as follows.

The Hamiltonian for the planetary n-body problem can be written

H= Hchler + HInteraction, (1)

where the first term represents the Keplerian motion of each of the planets with
respect to the sun, and the second term describes the planetary perturbations.
The simplest form of the map is obtained by adding short period terms so that
the Hamiltonian becomes

HMap = HKepler + HInteractionz"r&?’l'(Qt)’ (2)

where §,,(t) is a periodic sequence of Dirac delta functions with period 2,
and (1 is the mapping frequency. The averaging principle [13] suggests that the
additional short period terms do not significantly affect the long-period evolu-
tion. This Hamiltonian is locally integrable: between the delta functions the
motion is purely Keplerian and integration across the delta functions is easily
carried out in Cartesian coordinates. The resulting map of the phase space
onto itself is a composition of canonical transformations and is thus canonical
(i.e., the Jacobian is a symplectic matrix). In general, to make a mapping of
this sort each part of the Hamiltonian, considered by itself, must be not only
integrable but also efficiently solvable. The Keplerian phase of the evolution
can be efficiently carried out directly in Cartesian coordinates with the aid of
Gauss’s f and g functions. The uniform use of the Cartesian coordinates also
eliminates any need for costly intermediate coordinate transformations.

The mapping method can be made accurate to arbitrarily high-order in the
mapping step-size. This and other refinements are discussed in Wisdom and
Holman [10]. In the applications presented here the second order version of the
n-body mapping is used. Second order is achieved by evolving the system with
the Kepler Hamiltonian for a half mapping step, followed by an alternating
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succession of full interaction kicks and whole Keplerian steps, but ending with
a half Kepler step.

This ridiculously simple scheme is actually a remarkably good and efficient
integrator. Wisdom and Holman [10] used this new map to compute the
evolution of the outer planets for a billion years and compared the results to
the results of the 845 million year integrations performed on the Digital Orrery
by Sussman and Wisdom [1] using conventional integration techniques. All of
the results of that study were confirmed, including details of the very long-
period variations (> 500 million years) in the inclination of Pluto, and the
20 million year exponential divergence of trajectories, which indicated chaotic
behavior in the motion of Pluto. The new map is about an order of magnitude
faster than traditional methods of integration.

Our 100 Million Year Integration

Our 100 million year integration of the planetary system was performed us-
ing the Supercomputer Toolkit [14]. The Supercomputer Toolkit is the succes-
sor to the Digital Orrery [15]. It is a small multiprocessor computer optimized
for the numerical solution of systems of ordinary differential equations. The
Toolkit was built as a collaboration between MIT and Hewlett-Packard. It is a
family of standard software and hardware modules that can be interconnected
in a variety of configurations as appropriate for particular applications. Each
processor of the Toolkit is three times faster than the entire Digital Orrery,
as measured by running the same computation. We used the eight-processor
configuration of the Toolkit at MIT, with the new symplectic n-body map, to
carry out eight 100 million year integrations of the planetary system. Each
processor was used to run a separate integration with slightly different initial
conditions so that we could look for exponential divergence.

The most complete of the long-term integrations of the whole Solar Sys-
tem is that of QTD. Particular care was taken by QTD to make their physical
model accurate. They included general relativistic corrections, and a carefully
crafted quadrupole approximation to account for the long-term effects due to
the finite size of the Earth-Moon system. They used initial conditions and
masses derived from JPL ephemeris DE102. Our physical model is the same
as that of QTD except in our treatment of the effects of general relativity.
General relativistic corrections can be written in Hamiltonian form, but we
have not been able to integrate them analytically. Instead we used the po-
tential approximation of Nobili and Roxburgh [16], which is easily integrated,
but only approximates the relativistic corrections to the secular evolution of
the shape and orientation of the orbit.

Multistep methods typically require more than a hundred steps per orbit for
stability; the mapping method is stable with as few as 10 steps per orbit. The
step-size for our integration was rather arbitrarily chosen to be 7.2 days; with
7.2-day steps output points are easily compared to the ephemeris of QTD. We
integrated backward in time. A 22 million year integration using 3.6-day steps
was carried out to check that the 7.2-day integration was sufficiently accurate.



All of the position calculations were done in pseudo-quadruple precision, in
an effort to reduce the effect of roundoff error. We believe now that the use
of quadruple precision was an unnecessary precaution, and needlessly doubled
the computation time of our experiment. Even on this demanding task each
processor evolved the Solar System at the rate of about 30 years per second.
Thus our eight 100 million year integrations took a total of about 1000 hours
of Toolkit time. v

We have compared our integration to the reversed-time segment of the
0.5-day step-size integration of QTD, and the agreement is quite good. The
maximum difference in the argument of perihelion of Mercury over the 3 mil-
lion year interval is of order 0.0001 radians; for comparison, the precession of
the argument of perihelion due to general relativity is about 27 radians over
3 million years. Evidently, our more approximate treatment of relativity is of
little consequence. As another comparison, Table 1 lists the maximum differ-
ences between the eccentricities of the planets compared to QTD. Also listed
are the differences between the integration of QTD and that of Laskar [9]. The

|Laskar — QTD| |Toolkit — QTD|

Mercury 0.0041 0.000018
Venus 0.0020 0.000065
Earth 0.0024 0.000059
Mars 0.0041 0.000132
Jupiter 0.0038 0.000047
Saturn 0.0081 0.000162
Uranus 0.0051 0.000008
Neptune 0.0026 0.000002
Pluto - 0.000001

Table 1: The maximum differences in the eccentricities of the planets in the
integrations of Laskar, QTD, and the Toolkit show excellent agreement among
the integrations. Laskar did not include Pluto in his calculation.

table illustrates that the evolution computed with the mapping agrees quite
well with the more conventional direct integration of QTD. The Toolkit inte-
gration and QTD are mutually more consistent than either is to the integration
of Laskar, though it is not clear whether this discrepancy is due primarily to
model differences or to the approximations used by Laskar. The model dif-
ferences are actually to our benefit because they help address the important
question of the sensitivity of our results to model parameters.

The Evolution of the Solar System is Chaotic

Exponential divergence of nearby trajectories is indicative of chaotic behav-
ior. The divergence of trajectories may have both quasiperiodic and exponen-
tial components. Of course, if present, the exponential component eventually
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dominates. In order to estimate the Lyapunov exponent, we extracted the ex-
ponential part of the divergence from the quasiperiodic part by the following
procedure. We first converted the positions and momenta into Keplerian ele-
ments, then formed the standard shape and orientation variables A = esin w,
k= ecosw, p=sini/2sin §, and ¢ = sini/2 cos {2, where e is the eccentricity,
w is the longitude of perihelion, i is the inclination, and € is the longitude
of the ascending node. The full set of these variables for all of the planets
constitutes the “full secular phase space.” Distance in this space is the or-
dinary Euclidean distance. The quasiperiodic component is not as strong in
the secular phase space as it is in the full phase space, allowing us to study
the exponential part of the divergence more easily. If exponential divergence is
observed in the secular phase space exponential divergence will also be present
in the full phase space.

The divergence in the secular phase space between two of the 100 million
year calculations is shown in Figure 1. The initial conditions for the two calcu-
lations differed by about 1 millimeter in the z coordinate of Pluto. The secular
divergence has two distinct segments. In the latter segment the divergence is
dominated by an exponential with a timescale of about 4 million years. The
initial segment is apparently dominated by a smaller exponent with a timescale
of about 12 million years.

If the system is chaotic then the divergence of individual planets will also
be exponential with the same exponent as the whole system if the trajectories
are followed for sufficiently long time. Over shorter intervals the divergence
of individual planets can be different, and examination of the individual di-
vergences can give insight into the mechanisms responsible for the chaotic
behavior in the system.

In the inner Solar System the individual planet divergences in the secu-
lar phase space are similar to that of the full secular phase space, with two
distinct segments. In the outer Solar System, over most of the 100 million
years spanned by our integrations the divergences appear to be dominated
by a 12 million year exponential component, with evidence of the 4 million
year component appearing in only the last 5 million years. A change in the
timescale of exponential divergence could occur if the system went from one
region of the phase space characterized by one exponent into another region
characterized by the other exponent. This possibility can be ruled out because
the 4 million year component appears much later in the outer planets than in
the inner planets. A viable interpretation is that there are two distinct mech-
anisms generating exponential divergence that are simultaneously operating.
Apparently the inner planets are more sensitive indicators of the 4 million year
process than are the outer planets.

The evolution of Pluto over the full 100 million years has characteristics
quite similar to those found in long term integrations of the outer planets.
For example, we observe the 34 million year amplitude modulation of the 3.8
million year oscillation of the argument of perihelion of Pluto [5].

Figure 2 shows the exponential divergence of the difference of positions of
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Figure 1: Exponential divergence of nearby trajectories is indicated by the
average linear growth of the logarithm of the full secular phase space distance
between two different runs with very slight differences in initial conditions. The
segment following the initial transient has an exponential timescale of about
12 million years. The divergence is subsequently dominated by an exponential
with a timescale near 4 million years.
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Figure 2: The divergence of the distance between the positions of Pluto in two
different runs with very slight differences in initial conditions is characterized
by a timescale near 12 million years.



Pluto in two of our 100 million year runs. These runs differed by 1 part in 10'°
in one coordinate of the initial position of Mars. The plot is consistent with
an exponential divergence of about 12 million years. This rate of exponential
divergence is similar to that observed in the outer planets, and to the slower
component observed in the full secular phase space. One interpretation is
that Pluto is passively driven by chaotic behavior of the rest of the Solar
System. Another interpretation is that Pluto is independently chaotic with a
rate of exponential divergence which is only coincidentally similar to that of
the rest of the system. We present evidence for the latter interpretation below.
Considering the typical slow convergence of Lyapunov estimates, a 12 million
year timescale of exponential divergence is in satisfactory agreement with the
inverse Lyapunov exponent of 15 to 20 million years for Pluto reported by
Sussman and Wisdom [1].

Secular Resonances

Laskar [17, 18] has found three resonance angles which alternately librate
and circulate. This may be an important corroboration of the chaos as indi-
cated by the exponential divergence. The Laskar angles are

o1 = (w} — @) — (95 - 93), ®)
02 = 2w} — @) — (95 - 03), 0
o5 = (w§ —w3) — (25 — 03). )

The quantities @w? and ¢ are the angles of the proper modes as defined by
Laskar [17]. On the basis of the alternate libration of the angles o, and o3,
which cannot simultaneously librate, Laskar concluded that the mechanism
responsible for the chaotic behavior of the Solar System was resonance overlap
of the corresponding secular resonances.

In our calculation, oy and o3 also alternately circulate and librate, but o3
just circulates, as shown in Figure 3. Our angles track Laskar’s angles for the
initial segment of the computations, but they soon diverge enough so that the
changes between libration and circulation occur at very different times. Such
differences are consistent with the chaotic character of the evolution. The
higher-order angle

o4 = (@ — w3) — 2(0 — 0 (6)

is also incompatible with o, and o3. In our calculation o4 has intervals of
libration. The data presented by Laskar suggest that this is also the case in
his calculation, though the angle is not explicitly mentioned. Since 1/1 <
3/2 < 2/1 it is possible that we and Laskar are seeing different portions of
a chaotic zone that spans the phase space from the 1/1 resonance to the 2/1
resonance. In addition to these angles we also find that the angle

o5 = (@) — wg) + (4 — {5) (7)

alternates between circulation and libration.
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Figure 3: In our calculation two of the angles of Laskar, oy and o3, alternately
circulate and librate. Laskar’s third angle, o3, circulates. The higher order
angle o4, which is incompatible with both o, and 03, has intervals of libration.
The angle o5 also alternately circulates and librates.



Though our calculations are completely consistent with those of Laskar, we
are not fully convinced that his proposed mechanism accounts for the observed
chaotic behavior of the Solar System. First, it is not clear that the alternate
libration and circulation of o is indicative of a dynamically significant chaotic
separatrix. In Figure 4 we show a polar plot of the amplitude and phase of
the combination of proper modes corresponding to o, and o2. Our polar plot
of oy is similar to that shown in Laskar [17]. However, our polar plot of o
differs from that shown in Laskar [17] and Laskar, Quinn, and Tremaine [9].
For the polar amplitude they use just the amplitude of eccentricity mode 4,
which is never close to zero. The amplitude corresponding to o2 has additional
factors, some of which approach zero. Using just the amplitude of eccentricity
mode 4 gives an artificial impression of a transition from libration to circula-
tion. Our plot, which includes all the factors in the amplitude, does not give
a clear indication of a chaotic separatrix. Rather, it gives the impression of
a complex high-dimensional trajectory projected onto a plane (see Figure 4).
The alternation of libration and circulation of the polar angle may just be
an artifact of the origin being in the midst of this complex projected trajec-
tory. A simple integrable model for motion near the 2/1 commensurability in
the planar-elliptic restricted three-body problem [19, 20] illustrates how the
alternate circulation and libration of an angle can be misleading. There the
resonance angle corresponding to the largest term in the disturbing function
can show alternate circulation and libration, even though there is no chaotic
behavior. The phenomenon can be eliminated by an appropriate change of
variables. The polar plot corresponding to o is more like that expected of
an angle associated with a chaotic mechanism. It not only alternately circu-
lates and librates, but as it circulates it loiters around an apparent unstable
equilibrium. There is also an excluded region near the center of the plot.

Furthermore, there are too many unrelated angles which alternately cir-
culate and librate. It might be expected that only one incompatible set of
angles would show alternate circulation and libration. However, we see the
phenomenon in angles involving unrelated modes. Eccentricity and inclina-
tion modes 3 and 4 are involved in o3, 03, and o4; eccentricity modes 1, 5, and
8, and inclination modes 1, 2, and 8 are involved in ¢, and o5. The two sets
of modes are disjoint, and yet there are correlations in the behavior of angles
associated with unrelated sets of modes. Most striking is the transition in be-
havior in four of the angles near an integration time of 50 million years. This
suggests that a single mechanism is driving all of the angles. If the mechanism
is associated with one of the angles presented, we feel the most convincing is
o1. It is also possible that the mechanism generating the chaos is unrelated
to all of these angles, and that they are all just sensitive indicators of chaotic
irregularity of the underlying system trajectory.

We have not identified any other angles whose motion is suggestive of a
dynamical mechanism. The LONGSTOP team speculated [21] that the angle
2w? — 2w$ + Q9 — (g might alternately circulate and librate, and thereby
provide evidence of chaotic behavior of the outer planets. We find that this
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Figure 4: The variables are z; = A; cos o; and y; = A, sin 0;, where A; are the
amplitudes of the combination of the Laskar proper modes corresponding to
the angles ;. The plot corresponding to o gives the impression of a complex
high-dimensional trajectory projected onto a plane. The plot corresponding
to o, shows some indication of a dynamically significant chaotic separatrix.
There is a suggestion of an unstable equilibrium and associated asymptotic
trajectories, and there is a region near the center that is avoided.
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angle rotates uniformly with a period somewhat greater than 50 million years.
This angle is one of 30 angles presented by the LONGSTOP team in their
“numerology table.” We find all 30 angles rotate uniformly; there is no hint
of chaotic irregularity in the behavior of any of the angles.

That particular secular resonances are responsible for the chaotic behavior
of the Solar System could be established by an analytical demonstration that
the resonances involved are sufficiently strong and close to give resonance
overlap. At the moment, however, we feel no dynamical mechanism for the
observed chaotic behavior of the Solar System has been clearly demonstrated.

Chaotic Evolution of the Jovian Planets

Despite the growing number of long-term integrations of the outer plan-
ets, to date no integration has directly tested whether the massive planets
themselves evolve chaotically. In our 845 million year integration of the outer
planets [1], the orbital elements of Neptune appeared to have discrete line spec-
tra, in marked contrast to the clearly broad-band-character of the spectrum
of Pluto. On the basis of this spectral evidence we dismissed the possibility
of chaotic behavior in the Jovian planets. To be thorough, we have now car-
ried out a new billion year evolution of the outer planets, using the mapping
method, with a slightly perturbed initial position of Neptune. We found, to our
surprise, that the subsequent evolution of the Jovian planets diverged expo-
nentially from the first calculation, with a timescale of exponential divergence
of only 5 million years!

Our initial reaction was that there must be something wrong with our
method of integration. To check this we carried out two new integrations
of the outer planets spanning 100 million years using the traditional linear
multistep Stormer predictor, the same integrator used in the Digital Orrery
integrations. The initial conditions and masses were the same as in the Dig-
ital Orrery integrations. The integrations were carried out in ordinary IEEE
double precision (64 bits) with a step-size of 32.7 days, the same step-size
used in the 845 million year Digital Orrery integrations. We found that the
trajectories of the Jovian planets diverged exponentially with a timescale of
about 19 million years. Apparently, we were misled by the spectral evidence.

To further check that this result did not depend on either the step-size
or the precision of the calculation we carried out four more integrations of
the outer planets using the Stormer predictor. Each spanned more than 400
million years. In these integrations the accumulation of position was carried
out in pseudo-quadruple precision, as in the Digital Orrery integrations. One
pair used a step-size of 32.7 days, the special Digital Orrery step-size; the other
pair used an arbitrarily chosen step-size of 28 days. The initial conditions were
the same as in our earlier outer planet integrations. In one run of each pair
the initial position of Neptune was perturbed by 7.5mm. The energy errors
again grew linearly with time, with slopes between that of our 210 million year
Digital Orrery integration and that of our 845 million year integration. Both
pairs of runs gave remarkably consistent results. The secular divergence of the
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Jupiters in the 28-day runs is shown in Figure 5. The Jovian planets diverged
exponentially with a timescale somewhat longer than 20 million years.

The map and Stormer calculations both indicate that the motion of the
Jovian planets is chaotic. However, they are discrepant in the estimate of
the exponential timescale. We believe this is a result of the fact that the
trajectory computed by the mapping method is not exactly the same as the
trajectory determined by the initial conditions. The mapping differs from the
actual n-body dynamics by the addition of extra high-frequency terms. The
averaging principle suggests that these high-frequency terms do not contribute
to the long-term evolution, and the close agreement of our results with those of
Laskar once again confirms the validity of the use of averaging. However, the
initial conditions used in an averaged system should properly take into account
the presence of the extra high-frequency components in the unaveraged system.
The use of the same initial conditions in the averaged and unaveraged systems
corresponds to slightly different initial conditions for the long-term evolutions.
With the mapping we do not yet know how to properly adjust the initial
conditions to account for the extra high-frequency terms. In our outer-planet
integrations these slight uncontrolled adjustments of effective initial conditions
appear to yield different estimates of the Lyapunov exponent.

To investigate this further we carried out 8 integrations of the outer plan-
ets using the map with different step-sizes, ranging from 0.3 years to 1 year.
Changing the step-size changes the high-frequency components, and slightly
changes the effective initial condition for the long-term evolution. Each inte-
gration spanned about 300 million years. We found that the measured diver-
gence timescale varied from about 3 million years to about 30 million years.
The dispersion in the estimates of the Lyapunov exponent are much larger
than the dispersion observed in the Stormer runs. The Lyapunov exponent
was not obviously correlated with step-size, in particular the estimate of the
Lyapunov exponent was not monotonic with step-size. In one of these runs,
with step-size near 0.617979 years, the motion of the outer planets was clearly
quasiperiodic; the secular phase space divergence did not grow exponentially.
The results suggest that the Lyapunov exponent for the Jovian planets is not
a simple function of the initial conditions. Most nearby initial conditions lead
to exponential divergence (most with a shorter timescale for exponential di-
vergence than that obtained with the Stormer integrations), but there are also
nearby initial conditions that do not give chaotic behavior.

With each outer planet integration we ran a pair of massless Plutos, with
initial positions differing by about lcm. A remarkable result is that the expo-
nential divergence of Plutos always has a timescale between 10 and 20 million
years, independent of how chaotically the Jovian planets behave. This is true
even in the most extreme runs, where the Jovian planets were quasiperiodic,
and where the Jovian planets diverged with a timescale of 3 million years. This
clearly demonstrates that the mechanism generating the chaotic behavior in
the motion of Pluto is extremely robust, and independent of whether the rest
of the system is chaotic.
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Figure 5: The secular phase space divergence of the trajectories of Jupiter in
the 28 day Stormer integrations show a timescale for exponential divergence
that is somewhat longer than 20 million years. The divergence saturates after
about 250 million years at a rather small value, perhaps indicating a hidden
constraint on the trajectories.
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Numerical Chaos?

The fact that almost all long-term integrations of the Solar System give
exponential divergence of trajectories with a timescale in the range of 3-30
million years in physically quite different models is very striking and unsettling.
Another unsettling feature of the chaotic behavior we observe in long-term
planetary integrations is that nothing dramatic happens. This is compounded
by the fact that in no case have we unambiguously identified the mechanism
responsible for the chaotic behavior. This lack of mechanism and lack of
obvious irregular behavior is in marked contrast to the clearly understood
mechanisms and irregular character observed in other examples of chaotic
behavior in the solar system, for example, asteroids on chaotic trajectories
near commensurabilities [11, 12, 22], the chaotic tumbling of Hyperion [23]
and other irregularly shaped satellites [24], and the chaotic motion of the
Uranian satellites near commensurabilities [25, 26, 27].

Perhaps the exponential divergence is a numerical artifact? The detailed
agreement of the billion year evolution of Pluto using different integrators is
impressive evidence against this perverse possibility. Furthermore, the detailed
agreement between our 100 million year Solar System integration and that of
Laskar is particularly convincing, because of the radically different methods
used.

To further convince ourselves that not all long-term integrations are subject
to some universal numerical instability, which yields a spurious exponential di-
vergence, we have carried out a control integration. We have integrated the
outer planets without Uranus for about 250 million years, with the mapping
method. Over that period we see no sign of exponential divergence of the re-
maining Jovian planets. This integration, together with the isolated quasiperi-
odic integration mentioned above, shows that numerical models of planetary
systems can, in fact, show quasiperiodic behavior on a several hundred million
year time-scale. Long-term integrations do not always give positive Lyapunov
exponents.

Altogether, the evidence for the chaotic behavior in these long-term plan-
etary integrations is very convincing, but there remains the logical possibility
that the exponential divergence is a subtle numerical artifact. To positively
conclude that the chaos observed in these long-term planetary integrations
is not a result of numerical artifacts requires an unambiguous identification
of a physical mechanism and an analytic evaluation to determine that the
mechanism actually accounts for the observed chaos.

Conclusions and Speculations

Our 100 million year integration of the entire Solar System indicates that
the Solar System is chaotic with a timescale for exponential divergence of
about 4 million years. The fact that we find similar behavior in all respects
to the calculation of Laskar strongly supports the conclusion that the Solar
System is chaotic. That we and Laskar have carried out different kinds of
numerical experiments, with slightly different masses, slightly different initial
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conditions, and slightly different physics, shows that the chaotic character of
the Solar System is not sensitively dependent on the precise model or numerical
methods.

Our experiments indicate that the Jovian planets by themselves behave
chaotically for most initial conditions near our reference system, though our
estimates of the Lyapunov exponent have rather large dispersion.

All of our estimates of the Lyapunov exponent of Pluto give approximately
the same divergence timescale of 10-20 million years, with different methods
of integration, different planetary masses, different initial conditions, and even
independently of whether the rest of the system is behaving chaotically. Our
earlier result that the evolution of Pluto is chaotic is thus multiply confirmed.

We will not fully understand the consequences of the observed chaotic evo-
lution of the Solar System until we clearly understand the dynamical mecha-
nisms responsible for it. Though in our calculation the behavior of the secular
resonance angles is consistent with those in Laskar’s calculation, the identifi-
cation of resonance overlap of particular secular resonances as the mechanism
generating the chaotic behavior of the Solar System is not unambiguously
demonstrated. Our numerical experiments suggest that there are at least two
independent mechanisms generating chaotic behavior. One mechanism gen-
erates chaos in the Jovian subsystem, and Pluto is independently chaotic in
the field of the Jovian planets. Yet another mechanism is suggested by the
simultaneous presence of two different exponential timescales in our full So-
lar System integrations. Secular resonances among the inner planets may be
driving the faster timescale, as Laskar suggested. However, the most convinc-
ing of the secular resonances involve Mercury. Both Mercury and Pluto have
high eccentricity and inclination, which strongly couples the eccentricity and
inclination secular subsystems. Perhaps one of the mechanisms generating the
chaos originates with Mercury, and is similar to the mechanism generating the
chaos in the motion of Pluto?
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