MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Memo. 137 July 1967,

FLANKER
A Language for Froving Theoiems

Garl Hewitt

SCHEMATISE

The fFollowing s a description of SCHEMATISE, a
proposal for a program that proves very elementary theorems
through the use of planning. The method is most easily

explained through an example due to Black.

Given
tl: (el 1 £2)
t3: {pb 3 cb)
t2: {pt c2 e3)
th: (forall (x y) (implies (pb x v} (p5 x w})})
t5: {(forall (x v z) (Implies (and (p5 ¥ 2z) (ph x w))
(ps = z)))
Prove
th: (p5 el cb)

The ahove problem has an interpretation that makes It a much

gasier one for humans.

Given

£1: (in penci]l desk)

t2: (in desk home)

t3: (in home county)

tlhs (fForall (x v} (implies (in x w) {at x wl))

£ (forall (x v z) (implies (and (in x ¥} A{at v zl)
(at x z)))
Prove

th: (at pencil county)

As far as the theorem prover 1s concerned 1t s no
easier to solve the problem given one representation rather
than the other without additlional Information. A human
would much rather work with the second representation since
he has a well defined model for it, In order to make this
NARer M e readahle we shall work with the second
representation. However, the reader should be careful to
remember that in the sequel the computer program has a very
differant perspective from his own.

First the program connects all the theorems together
into & net which we shall the theorem pet. It s understood
that the theorem net also reflects the structure of the
rules of inference (operators) of the underlying logical
system. In the system which we shall study the sole rule of
inference will be modus ponens together with the
simultanenus instantifatiaon aof any free wariahles with
constants. The theorem net for our example Is diagrammed Tn

Figure s0,

Each box (such as the one contalning theorem t2) stores the
information for hinding wariables 1In that particular
theorem, Without some Inslght Into the problem structure
there is not much that the theorem prover can do except to
initiate a straight backwards search for the proof of the

theorem, BRBut suppose that the theorem prover Is more

fortunate, It might expect that (in pencil desk) Is
relevant to the proof of (at pencil county) slnce the
constant pencil appears no where else In the problem. Or

perhaps that the theorem prover s not allowed to use
theorem tl and asked to prove theorem t6' Instead of theorem

th whers

te': (implies {(in penci] desk) (at pencil county))

How the theorem prover has enough Iinformation to try to
form a plan, Followlng Minsky whe shall call the statements
{such as (in pencil desk)) that the theorem prover thinks
are relevant to the proof lslands. We define the difference
hetween two statements A and B to be the subgraph of the
thearem net that can possibly carry A into B. In our case
the difference between (in pencil desk) and {at pencil
county) Is the whole theorem net, We might proceed to
reduce the difference between our antecedent and consequent
by chaining forward from our Island to try to match the
consequent, The $ stand for constants that are presently

unknown to us.

T (in percil des JE»)
S f}P

{ﬁa'sﬂfﬂj Eorward From

*irrf;?ur“ﬁ’

b

o fw)

v/
M/

(f:{'lr' }DF‘R"CI {'ﬂﬂ'ﬂ.ll J Iﬂfﬂ l/{]f' lé{ff) 'ﬂ’ﬁ]f"ﬂﬁ
69{'1& W'T}"C{éj

%Uurcﬂ'

Pa"bjji;’!

The Céﬂmm\f

U?j—'i d Then {T‘I/Ijﬂ})?fﬁ(-f)qgﬂflwaﬂdgq fere

%a'j vre <3

SCﬁFMa'f“?-Eﬁc’? Goal T reo

'{f:\:?u.a’"f-"’ SI‘#

10.

Pushing (in pencll desk) through t4 leads us to a dead

end. But pushing through t5 leads us to two

expressions that match (at pencil county). See fligure sl,
We want to reverse the process and chain back from the
consequent to our island., A good heuristic is to plek the
expression that best matehes the conseguent as the first one
to chaln bhack from, |If we violate the heuristic and chain
hack from (at % $) we obtain flgure s2. As the reader can
see chalning hack from (at § $) does not take wus all the
way back to our Island (in pencil desk), Therefore we must
ahandon the ahove plan. Chalning hack from (at pencil §),
we obtain figure 53. The theorem prover realizes that In
order to complete the proof of (at pencll county) 1t must
prove the lemma (at desk county).

We would like to consider the example from a slightly
different viewpoint, Suppose that we transpose chalning
forward from our island and the chalning hackward from the
goal. Chalning hackward from {(at pencil county) we ohtain a
schematised goal tree (flgure sbk)., Every proof of (at
pencil county) has a graphical homomorphic Image In the
schematized goal tree. The theorem prover ecan obtaln all
proofs by grinding away Inside the schematized goal tree.
suppose that oaur island is (in haome countvy), We note that
{(in home county) matches both (in $ $§) and (in § county).
Unfortunately the plan (figure s55) generated by plugging (In
home county) into (in $ $) cannot he fulfilled slnce (at

county county) Is unproveahle. Even if the theorem prover

Jufug?ﬁrf"ij' { hpn Prt u-uﬁ:’?) Trte (o E’/?J

{i}‘fﬁn" s 5

13.

Pfujjmlj n”a:{ﬂw c,a—u.r-?} oty (ot 74 r:aﬂ»%)

_}".
1 -:"II g:uUF‘/ o
gt e /)w 4
) P!ﬂ J o HJW 5*:;5!5 R
f“-"lbf“? .'.-*17 r;{hf_q

ure
g

15,

had a model Tt would he misled if the model attached the
interpretation true to (at county county), Plugging ({in
home county) into (in $ county) leads to a plan (fipure sA)
that can ba fulfilled, Note that two applications of
therorem t5 are needed to prove the theorem., 0Of eourse |Ff
we are glven two islands which are hoth relevant to the same
proof we can often form a much hetter plan with both than
with either one alone.

Each time the theorem prover plugs an Island Inte 3
schematized goal tree, it should check to see If the
resulting plan is clrecular. Thus (in pencil desk) cannot he
plugged into (in $ $) in figure s7 since it forces (at %
county) to become (at pencil county) which makes the plan
clrcular. Therefare (in pencil desk) can eonly he plugged
inte (in pencil %), The resulting graph Is flgure s&,

In each case we have In faet constructed a whole schema
ef plans. WHithin any one schema we can have many degrees of

freadom.

1. There can he more than one route from the

island{s) to the consequent,

2. The constants represented by the % must be

found.

3. Some loops in the plan cam be unwound.

Flexiblility in planning is a mixed hlessing., A& good deal

of Figlidity is necessary In ardar to proceead

straightforwardly from the plan to a rigorous proof, 0On the
other hand our plans must be somewhat adaptable so that we
are not stymied by the first diffliculty, The planning
mechanism of G.P.5, IMlustratas the usefullness of
controlled flexibility in planning.

We would now like to turn to the guestion of where to
ohtaln islands for planning, One source Is pure syAtactlie
analysis. The theorem prover should carefully examine the
consequUencas of the expression to he proved, The
consequences of the consequent heuristie 18 try to find
Islands among the consegquences of the econsequent of the
theorem to be proved. For example In the problem te prove

{at pencil county) suppose we had the additlonal theorem

t7: (implies (not (in pencil desk)) (not (at pencl]

countyll)

Using the consequencies of the consequent heuristic the
theaorem prover should find the island (in pencil desk). How
can one transform the stick flgure below Into one with four

squares hy moving at most three sticks?
e

e

17,

In this case our consequence is that we have four squares.
But if we are to make four squares from only twelve sticks
then at least four sticks must each have two squares n

common, Thus our [sland is the fligure below

e S—

|'
|'

Another syntactic trick Is to try to trace the constants
back to thelr source In the data base of the problem,
Recall that in our example that the constant penclil could
only have come from the expression (in pencl] desk),
Hypotheses usually make excellent candidates as Islands. OfF
course, there are axceptions to the rule. For example, |F
the theorem prover were asked to prove (Implies (In home
Texas) (at pencl] county)) It would try te use (in home
Texas) as an Island only to find that (in home Texas) |is
actually irrelevant.

Models, special krnowledge, and analogles are often
sources of Islands. Suppose the theaorem prover knew how to

inscribe a clircle in a glven triangle, It ecould wse an

1&,

analogous method to Inscribe a sphere In a gliven
tetrahedron, Models often contaln links that are useful in
the construction of islands., The 1inks make some relevant
expressions In the data base of the problem more accessible
to the theorem prover.

Suppose the thearem prover had the following

information about cubes a, b ¢, and d,

wl: {directlyabove d a)

v2: (restingon d c)

vi: (restingon ¢ b)

wh: (forall (x) (equivalent (supporting x ¥y}

(restingon v x)))

wh (forall (x y) C(equivalent (diersctiyvahove x v)
(directivhalow v x)))

wh: {forall (x v 2z) (implies (and (directlvhelow v z)
(directiybelow x y)) (directly below x z)))

wi: {(forall (x w) (Implles (supporting = v)

{(directivhelow x v)))

A model for the situation might look like figure 59,

19.

h.x?.&rm._w_\nuﬁxﬂ___ﬁu.m.

AR

9 At .v..hunw._..n_.__‘.q_.urm«

xﬁﬁﬂh}.hhmw_ﬂ (

Ao oniiS3Y

/k\

gy (7102410
FAVL

20.

Clearly the constant b Is more accessihle from the constant
a In the model than from the theorems. Thus models are
important in planning not only for pruning those expressions
that are false in the interpretation of the model bhut also
for the connections they provide which suggest new plans, A
model keeps the state of the system In a continually updated
canonical farm, All other Information about the system is
derived from the canonleal form.,

Theoram provers should do more thinking about their
problems hefore hlindly beginning a huge tree search, An
Intelligent problem solver would try teo find kevy nodes (such
as {at & county) In figure sb) in the schematlzed goal tree,
0f course most of our analysis for statements as Islands
gpoes dually for theorems, Also the theorem prover should do
a series=parallel loop analysls to get a hetter idea of the
size of the problem that It faces and to learn more about
its structure. | have been trying to develop a theory of
the decomposition of planning nets amalogous to the existing
series=-paraliel decomposition theory for sequential
machines. There are clues In the difference hetween the
island(s) and the conseguent that can save the theorem
prover a great deal of work, For example MATCHLESS can
quite easily be made to find all the loop structures of the
form of (figure s511) in the schematized gonal tree. After a
proving a statement that satifies A, one would often llke to
g back through theorem tl to see if anvtine else can ploked

up almost for free.

21,

ﬂﬁ' vre S/

22,

The distinguishing characteristic of SCHEMATIZE is that
the relatlionship bhetween the Islands and the statement to be
proved is shown. To have some Islands with no Indication as
to how they should be used simply limits the size of the
tree to he searched; the theorem prover must still do
heuristie tree searching. In a stronger system such as
SCHEMATIZE the executive of the theorem prover does not
sparch the poal tree hut rather follows along a plan using
the Indicated relations between Islands, 0f course
SCHEMATISE works only for problems with a simple logical
structure., It can he generalized slighlty to more powerful
deductive procedures uslng natural deductlion but the
analvsis hecome exremely complicated. Sometimes one can
usefully analyze part of a more complicated problem using

SCHEMATISE.

23,

MATCHLESS

MATCHLESS is a pattern matching program witten In LISP,
It is most succlinctly described as a cross between SHOBOL
and CONVERT., The most Important respect im which MATCHLESS
differs form CONVERT 1Is that MATCHLESS doesn't have a
dictionary, Bindings for MATCHLESS wvariabhles are kept on
the LISP push down 1ist. Consequently MATCHLESS ecan wvery
conveniently be used within LISP progs, | think that it 1is
an important principle in language design that the user
should be allowed to write In the level that he thinks 1Is
mast suitahle for his task. The wvarious levels of code
should all be compatible with one another so that It |Is
possible to use them all in a single hbody of code. Far
example 1t would be useful to be able to write LAP code In
the middle of LISP progs. Furthermore Tow level code should
not have to run slower simply In order to preserve the
ability for users to write at a higher level,

A variable v In MATCHLESS can match three types of

obhjects:

(1) atoms {(the first character of the name of v must be

a %5).

(2) S=expressions (the first character of the name of v

must he a =)

24,

{3) fragments of lists (the first character of the name

of v must he an =)

Any type of variable may he In any one of four modes: VAR
(for variahle), COMST (for constant), GREMNERIC, ar COMP {for
computed), The ldea for the VAR and CONST modes comes form
SHNOBOL; the GEMERIC mode from CONVERT and AXLE. The COMP
mode allows one to introduce new modes and types Into
MATCHLESS., A1l of MATCHLESS could he written In the COMP
made, The following atoms are glven speclal Interpretations

by MATCHLESS.

(1) % will match anvy atom.,

(2} = will mateh any S=-expression.

(3) * will match any fragment of a 1ist Including the

null fFragment,

Furthermore MATCHLESS has the standard Bonlean operators on
patterns. For example if pat i1s a pattern then (=NOT= pat)
will mateh any S-expresslion that doesn't match pat,.
similarly =and= may bhe used to require that an S-expression
match a number of patterns and =or= may be used te require
that an S=-expression match any one of a number of patterns,
The ldea for PRoolean operations on patterns comes from
CONVERT and AMRIT.

There Is a MATCHLESS pattern assoclated with each
MATCHLESS varlabhle, The ildea of assocclated patterns for

pattern variables comes from CONVERT and AXLE, Executing

25,

{var v w) or (generic v w) will put v In the VAR or GENERIC
maode respectively with the associate pattern w. A wvariable
in the wvar or generle mode has no value; It matches
according to Its assoclated pattern. When a variable in the
VAR mode matches It takes the value of the expresslon that
It mateches and its mode changes to 0ONST, A AFMNERIC
variable differs form a VAR wvariahle In that it 1Is not
modified when Tt matches, A wvariabhle In the CONST mode
matches according to Its value, Executing (msetq v r) will
put v in the CONST mode with value r. The default made Is
VAR with an innocuous assoclated pattern,

Suppose SR, =A, and *0 are all in the VAR mode. I
MATCHLESS attempts to match the pattern (+» B A =A SR =0}
against (K H5 G A (K) HHA (LY MH I A (M) I B) then the
variables mode will be changed to CONST and they will have

the following values.

5B: |
i (M)
«f: =R 0=

The dashes In the value of *C are meant to Indlicate that the

value of 0 is a fragment of a 1lst,

26,

PLANNER

SCHEMATISE ean be conceived to he searching through a
planning space. Indeed any LISP program can he concelved
as a tree searching program since the computation Ttself is
a tree, Thus it would he useful to have a powerful tree
sparching language In which we could write SCHEMATISE and
other tree searching theorem proving procedures, PLANNER
Is a theorem prover which hopefully represents sti111 another
step toward such a general tree searching language. PLANNER
gets its pname from the fact that It was originally created
as a language in which a robot could formulate plans about
its possihle actions, The theorems of PLANKER are
executable data structures, An example of such a theorem Is
TRANSITIVE (below) which expresses a necessary condition faor

a transitive relation.

(TRANSITIVE (THPROG (SPREDICATE $X 3Y $I)
(CONSEQUENT (%X SPREDICATE $Z))
(PROVED (TRANSITIVE $PRED))
(PROVEABLE (35X SPREDICATE §Y))
(PROVEARLE (5Y SPREDICATE 8ZI))
(FINISHED)

1)

" A1l theorems for PLANNER are Imperatives, Imperative
theorems hawve certain advantages and disadvantages compared
to declarative theorems. The chief advantage of Imperative
theorems Is that they can bhe extremely powerful. Arblitrary
LISP computations are permitted In (Imperative theorems,
Thus each theorem can contain the heuristics for Its own
use, For example a theorem might recommend certaln thearems
for some subproblem that [t creates, I would be wvery
grateful to any reader of this paper who sends me examples
of tvpes of heuristics that ecannot naturally be incorporated
Inte theorems for PLANMER.

The central function of PLANNER is thprog which 1s 1ike
prog except that it treats PLANNER functions In a special
way, When a failure occurs thprog bhacks up to the last
executed PLAMMER functien and tries again an a different
bhranch of the tree that it 1Is searching. Some of the

functions of PLAMMNER are

(proveable a switch listoftheaorems): |If the pattern a
is proveahle without erasing anvthing then execute the next
statement; otherwise fail, |If switch is FIRST ({(ONLY) then
listoftheorems are the first (only) theorems that will be

used to try to chalin back from a.

{goal a switeh listafthecrems): Goal 1s like proveahle

excent that erasures are permitted,.

(consequent al: a is declared to he the conseguent of

the theorem., Whenever a goal s created which matches the

28,

pattern a, the theorem will be wused to try to chaln

hackwards from the goal,

(antecedent al: a Is declared to he the antecedent of
the theorem, Whenever a statement is asserted which matches
the pattern a, the theorem will ke wused to try chain

forwards from the statement.

(assert a h switch listoftheorems): Record a as proved
with reason b. AF switech 1s FIRST (OMLY) then
listoftheorems are the first {only) theorems that will he

used to trv to chaln forward from a.

(finlshed): Indicataes the end of the theorem.

(threturn a): Returns a as the value of the thprog In

which it apperars. Threturn has not yet heen Implemented,

{eraseahle a): Record that a Is eraseahle,

{uneraseahle al: Record that a Is uneraseable,

(erase a switch listoftheorems): If a Is weraseable
then erase it and the statements that depend on 1t}
otherwise fall, If switeh Is FIRST (OMLY) then use
listaftheaorems as the first (only) theorems to try to chaln

forward from the fact that the pattern a Is heing erased.

(faill: Causes a fallure.

fthfaill: Gauses the theorem to fall.

29,

{hypothesize a): Assert a with the reason that It I1s a

hypothesis.

(dischargel: Discharge the last made hypotheslis,

(thset a bh): Thset s 1lke set except that the old
value of a s remembered so that 1t can be restaored in case

of failure.

{thrplaca a b) and (thrplacd a bl): These functions are
like rplaca and rplacd respectively except that the old
value of a Is remembered so that It can be restored In ecase
of fallure. The functions thset, thrplaca, and thrplacd are

vary useful for manipulating models,

(thgo al: Thego is 1ike go except that In case of
fallure control Is returned to the place from where the
transfer was made,

The mrase feature of PLANNER enables it to qulte
egasily manipulate models, The following two theorems enable

PLANNER to build a tower three cubes high.

(TOWER (THPROG ($BLOCK1 $RLOCKZ $RLOCE3)
(CONSEQUENT (CAN TOWERAT HERE))
(GOAL ($BLOCK1 AT HERE LEVEL 0}}
(UNERASEARLE ($BLOCK1 AT HERE LEVEL 0))
(GOAL ($RLOCK2 AT LPLACE LEVEL 1))
(UNERASEABLE ($RLOCK2 AT HERE LEVEL 1))
(GNAL (SRLOCKI AT HERE LEVEL 2))

3a.

(ERASEARLE ($RLOCK2 AT HERE LEVEL 0))
(ERASEARBLE ($RBLOCK1 AT HERE LEVEL 1)))
(FINISHED))]

(MOVE (THPROG
($RLOCK S$OTHERBLOCK $NEWLEVEL SNEWPLACE S$OLDLEVEL

$OLDPLACE)

(CONSEQUENT (SBLOCK AT SHEWPLACE LEVEL $NEWLEWEL))

(PROVED (BLOCK $BLOCK))

(ERASE (SBLOCK AT SOLDPLACE LEVEL $0OLDLEVEL}))

(UNPROVED ($OTHERBLOCK AT $OLDPLACE LEVEL (=EVAL= (PLUS
SOLDLEVEL 1)))

(STATEFINSHED))]

(BLOCKE RLOCKL)
(ELOCK RLOCK2)
(RLOCKE RLOCKS)
(BLOCK1 AT P1 LEVEL 0)
(RLOCKZ AT P1 LEVEL 1)
(ELOCK3 AT P2 LEVEL D)

The theorem MOVE has a condltlon that it will naot move any
cube that has another cubhe setting on top of It. Professer
Papert pointed out that one could write the theorem MOVE
differently. Instead of prohibhiting the removal of the
cuhe, 1t ecould hring the cubas abave the removed one

crashing down! Thus we could have wrlitten

il1.

(MOVE (THPROG
{$GLOCK $NTHERBLOCK SHEWLEVEL $NEWPLACE $0LDLEVEL

SOLDPLACE)

(CONSEQUENT (&BLOCK AT SHEWPLAGE LEVEL S$MEVWLEVEL))

(PROVED (RLOCK SBLOCK))

(ERASE ($RLOCK AT $OLDPLACE LEVEL S$OLDLEVEL))

(THCOND ((PROVED ($0THERRLOCK AT SOLDPLACE LEVEL
(=EVAL= (PLUS SOLDLEVEL 1))

(ASSERT (FALLING $0THERBLOCE))}
}
(STATEFINISHED)))

(FALLING (THPROG ($RLOCK, $OTHERBLOCK, $LEVEL, $PLACE)

(ANTECEDENT (FALLING $BLOCK))

(ERASE (FALLING $ELOCK))

(ERASE (S$RLOCK AT $PLACE LEVEL $LEVEL))

(ASSERT (SRLOCK AT SPLACE LEVEL (=EVAL= (MINUS S$LEVEL
133))

(THCOND ¢ (PROVED (SOTHERBLOCK AT $PLACE LEVEL (=EVAL=
(PLUS SLEVEL 131))

(ASSERT (FALLING $0THERBLOCE)))
)
(FINISHED)))

To form a plan as to how to huild & tower does not
complete the joh, The tower must still he constructed! One
way in which that might bhe accomplished 1s as follows,

After the planning phase 15 completed the system should

3.

write out PLAMHNFR progprams that actually carry out the Jjob,
For example the theorem TOWER above might create something

like the fallowing theorem.

(MAKETOWER (THPROG ()
(GRASPBLOCK (AT P1 LEVEL 13)
{MOVETO (HERE LEVEL 0))
(RELEASERLOCK)
{(CHECE (CUBE AT HERE LEVEL 0))
{GRASPBLOCE (AT Pl LEVEL 0J))
(MOVETO (HERE LEVEL 1))
(RELEASEBLOCK)
(CHECK (CUBE AT MERE LEVEL 1))
(GRASPBELOCK (AT P2 LEVEL 0))
(MOVETO (HERE LEVEL 2))
(RELEASEBLOCK)
(CHECK (CURE AT HERE LEVEL 2))
(FINISHEDY)]

0f course If we wanted to huild a tower ten bhlocks tall
instead of only three, then both MAKETOWER and tower would
have loops In them,

One important problem In actually having the robot
carry out an operation Is that of unexpected Input from the
sense organs, For example a cube might slip out of Its
hand, At that point the robot must do some fast calculation
to determine what has happened and what It should do next.

It would he interesting to know whether the controlled bhack

3.

up feature of PLANMER would help or hinder solutlons to this

problem,

FPLAMMER can do simple proofs In

of the quantificational ecalculus.

enahle it to prove the transitivity

decidable subtheory

following theorems

aof st theoratie

inclusion.
(MEC (THPROG (SA $B)
(THIMPLIES (THPROG (5X)
(THIMPLIES (ELEMENT %X $A)
(ELEMENT %X &R)
)
)
(SUBSET SA 3$R)
) o)]
(SUFF (THPROR (%A SR)
(THIMPLIES (SUBRSET $A $B)
(THPROG (3X)
(THIMPLIES (ELEMENT %X $A)
[(ELEMENT 8X £R)
)
)
(SURSET $A $B)
1))|
Note that THPROG serves as the universal quantifier., In our
notation transitivity of set theoretic Inclusion s

rzpressed by

34,

(TRANSET (THPROG (%A $B 3$0)
(THIMPLIES (THAND (SUBSET $A 3B)
(SURBSET $B 3C)
]
(SUBSET SA %C)

Within the quantificational calculus there are essentially
two ways to prove a theorem of the form (R x) where x 15 in
the VAR mode. The first method is to assume (thprog (x)
(thnot (R x})) and then attempt to derive a contradictlion.
The other method 1is to derive as many ConsequUences as
possibhle from (R x)=-=-say (R1 x), (R2 %), ... , {(An x)=and
then attempt to cons up an ohject that will satisfy the
consequences, For example we might write the following

theorems to construct the midpoint of a 1lne sepment:

(CONSTRUCT (THPROG (3Pl 5P2 5P3)

(CONSEQUENT (EQUAL (DISTANCE %P1 %P3} (DISTANCE %P3
SP2)))

{PROVED (POINT $P1 1))

(PROVED (POINT §P2))

(THCOMD ((CONSTP $P3) (THFAIL)))

(MSET (QUOTE $P3) (QUOTE (MIDPOINT $P1 $P23))

(ASSERT (POINT §P3))

{FINISHED)

i5.

))
(POINT A)
{POINT R}

COMSTP is a predicate which tests to see if [ts argument 1is
In the CONST mode. I1f asked to prove (EQUAL (DISTAMCE A 8Y)
(DISTANCE %Y B)) where 8Y is In the VAR mode, PLANMNER would
give 8Y the wvalue (MIDPOINT A B}, Thearams such as
CONSTRUCT can cause PLAMNER to go Into a looap 1f they are
not used with care. PLANNER can do simple proafs by
contradietlion i it Is told the statement to be
contradicted. For example if we wanted to prove (not a) hy
contradiction on ¢ we could say (hypothelise a) (proveable ¢)
(proveahle (not c)) (discharge)l., In this way we could prove
{not a) from the theorem (implies a (not a)), Of course In
arder to do general proofs in the quantificational calculus
We would have to write considerably more complicated
theorems. My present goal In thls area is to make PLANNER
prove that the limit of the sum of two sequences is the sum
of the 1imits of the sequences.

| would 1ike to thank Professor Minsky for suggesting
that | Investigate the problem aof getting PLAMMNER to swap
the contents of two machine addresses on am IEM 7094,
Suppose that a Is in addressl, b is In addressl, and
randomness is In address3. The following theorems will swap

the contents of addressl and address2.

(SWAP (THPROG

36,

($AND1 $ADDZ SA $B 3$ADDA $ADDRA)

(CONSEQUENT (SWAP
(PROVED (CONTAINS
(PROVED (CONTAINS
(PROVED (CONTAINS
(GOAL (MOVE $ADD1
(PROVED (CONTAINS
(GOAL (MOVE $ADDR
(PROVED (CONTAINS
(GOAL (MOVE $ADDA
(FINISHED)
1))

{CONTAINS ADDRESSL a)
(CONTAINS ANDRESS?2 h)
(CONTAINS ADDRESSS 03

(MOVE (THPROG

$ADDL $ADD2))
$ADDL 3A))
SADDZ $B))
$OTHERADD =})
SOTHERADD))
tADDR $RB))
$ADDLY)

$ANDA 3A))
SADDZ2))

($AND1 $ADDZ SCONTENTS)

(CONSEQUENT (MOVE
(PROVED (CONTAINS

$ADDL1 $ADD2))
$ADDL $CONTENTS))

(ERASE (CONTAINS SADD2 =))

(ASSERT (CONTAINS
(FINISHED)))

$ADD2 $CONTENTS))

If we waere to examine the protocol produced hy PLAMNMER as It

solves the problem, we

would find that 1t goes up a couple

of hlind alleys hefare it finally finds the correct

37,

solution. We would 1Tke to try to wrlite theorems for
PLANMER that would enable It to analyze simple protocols
and try to make changes 1n the theorems that produced the
protocols in order to make the solutions more
straightforward, Thus the fourth statement of the theorem
SWAP might be changed from (PROVED (CONTAINS $OTHERADD =})
TO (PROVED (CONTAINS (=AND= $OTHERARD (=NOT= (=0R= $ADD1
$AND2))) =)), Similarly we could try to get PLANNER to
generalize the theorem TOWER (above) by replacing HERE
throughout hy $PLACE. Then PLANNER would be ahle to huild a
towar anywhere Instead of only at the place HERE. Inserting
and deleting statements from theorems are other simple
manipulations which are feaaslible for PLANNER, PLANNER will
have to do a glgantic Inefficlent search In order teo learn
to do some simple class of tasks. Subsegquently, It should
be able to procemrd stralghtforwardly for the class of
problems, If It should hit a snag, PLANNER should attempt
to modify the procedure that has worked in the past In order
to get around the difficulty. Protocol analysis provides
important clues to show where and how theorems should hbe
modified., Attempting to make changes 1in theorems without
the help of protocols from those theorems appears to he an
untractahle prohlem. It has bheen suggested that the
protocol analyzing theorems be used to try to improve
themselwves, Unfortunately it will he quite a long time
before bootstrapping In this way will be frultful, At the

present time It Is necessary to wrlite wvery compllicated

38.

theorems te analvze even the most trivial protocols.
Furthermore any Increase In the power of the protocol
analvsis theaorems would seem to call for aven more complex
theorems,

The foellowing two theorems [1lustrate how PLAMMER ecan
he made to solve geometric analogy problems such as those

solved by Evans's program,

(ANALOGOUSBA (THPROG ($B SA STYPER)
(CONSEQUENT (AHALOGOUSEA %R $A))
(PFROVED (TYPE SB $TYPER))
(PROVED (TYPE SA $TYPER))

(FINISHED))]

(ANALDOGOUSAC (THPROG ($A ST SPREDICATE «ARGSAL =ARGSAZ
«ARGSC1 *ARRSCZ)

(CONSEQUENT (ANALOGOUSAC $A §C))

(THCOND (PROVED (TESTAMALOGOUSAC $A &0C))
(FINISHED)) 1}

(PROVED (ORJECT $A))

(PROVED (OBJECT $0))

(THEOND ¢ (PROVED (TESTAMALOGOUSAC $A (=NOT= $C 1))
(EAIL))Y)

(ASSERT (TESTANALOGOUSAR $A SC))

{PROVED (RELATION $PREDICATE))

(PROVED (SPREDICATE #ARGSAL $A *ARGSAZ)))

(PROVED (SPREDICATE +ARGSCL 8C =ARGSC2))

19,

(PROVEARLE (CORAMALOGOUSAL (+ARGSAL) (+ARGSN1)))
{PROVEARLE (CORAMALDGOUSADT (+ARGSAZ) (+*ARGSCZIN)
(FIMISHERY))

(CORANALOGOUSAC (THPROG (SA «A SC =0
(CONSEQUENT (CORAMALOGOUSAC (3A =A) (80 =C)))
(THCOND ¢ (PROVED (TESTANALOGOUSAC $A $C)) (THGO REST))

(PROVEARLE (ANALOGOUSAC $A $C))

REST (PROVEARLE (CORANALOGOUSAC (=AY (+C)))
(FINISHED)

)

(TYPE TRIANGLE)
(TYPE RECTANGLE)
(TYPE CIRCLE)
(RELATION INSIDE)
(RELATION LEFTOF)
(COBJECT C1)

(TYPE C1 RECTANGLE}
(CORJECT £2)

{TYPE C2 ELLIPSE)
(ADRJECT Al)

(TYPE Al TRIAMNGLE)
(ADBJECT A2)

(TYPE A2 CIRCLE)
(RORJECT RL1)

(TYPE Bl TRIANGLE)
(ROBJECT B2)

(TYPE B2 CIRCLE)
(CORANALOGOUSAT () ()]
(INSIDE Al AZ)

(INSIDE €1 £2)

(LEFTOF R1 E2)

If vou ask PLANNER to prove (ANALOGOUSAC Al %X) where $X s
in the VAR mode, then it will give %X the value C1, Using
the ahove theorems as models the reader should be ahle to
write the other theorems necessary to solve the analogy

bl o

42,

Analopgy and generalization play a very Important role
In theaorem proving. Far example the proofs of the
uniqueness of the identity element, the zero element, and
inverses In seml=groups are closely related. The
definlitions are

{equivalent (ldentity e) (forall (a) (implies (equal (times
ae) (times e a) al)))

{equivalent (zero z) (forall (a) (implies (equal (times a
z) (times z a) all)))

{implies (identity &) (mgquivalent (inverse bl b) (equal
{times Bl h)} (times b bl) e))) If we suppose that e', z',
and b1l' are respectively identity, zero, and Inverse
elements then the solutlions are

{equal & (times &' &) a')
(equal z (times z' z) z')

(equal al (times al' a al) al')

Thus the general form of the solution is (equal w string
w') where string algebraicely simplifies to w and w', It
wauld be a straightforward to write theorems for PLAHNER
that would enable the program to recognize the very
particular above kind of analogy. BRut this Is not the way
in which we would ultimately like to approach the problems
of analogy and generalizatioen in theorem proving. What we
need is a way to search analogy space and generalization
space In a manner simllar te the way In which SCHEMATIZE
searches Island space for plans, A reasonable approach

toward accomplishing this would be to construct a helrarchy

413.

of theorems around the the various pradicates for tvpes of
analogy such as those Introduced ahove,

The ability of PLANMER to write theorems which [t can
later execute potentially glves it wvery great powers of
generalization and ahstraction. We do not vet know how to
effectively utilvze this power. At present the princlipal
use of this ability has been to ald in the Implementation of
a decidabhle subtheory of the quantificational ecalculus,
Perhaps 1t will prove fruitful for planning programs to
create PLANNER theorems such as MAKETOWER above In order for
the robot to carry out the plan, Also the ahility to create
pPrograms enahles the computer to put several small
procedures together in order to accomplish a larger task,
Usually some fudging Is necessary between the smaller
procedures in order to make them work together,

PLAMNER was flirst developed as a simple planning
machanism and model manTpulator for a robot. Its structure
permits the use of macro steps In constructing plans of
action for the rohot. There might he some confusion as the
purpose of PLANNER as a general theorem prover, PLANNER s
not intended to show that a computer theorem prover does not
need knowledge and expertise in the domaln 1n which Tt
works., To the contrary PLANNER should be used as a
meta=thearem praver with as much knowledge as possible built
Into its theorems. In the last decade many programmers have
constructed heuristic tree searching problem solvers. Many

aof the the problem solvers have detailed knowledpe of thelir

44,

intended domains built into their structue. | would 1ike to
investigate how much of the knowledge of the programs can be

naturally incorporated into theorems for PLANNER.

43,

A great deal remalns to he done to remove some of the
limitations assoclated with general theorem provers, Much
of our trouble stems from the fact that we do not vyet even
have the heginnings of a mathematically rigorous theory of
tree searching. Har do we have much theoretical
understanding of the PrOCESS of proving theorems.
Independent of more general theoretical conslderations,
general theorem provers have inportant limitations relative
to more special purpose problem solvers, In any given
problem area, PLANHNER will certainly prove to be less
efficient than a speclal purpose problem solver [In the
probhlem area for which the latter was designed. Howewver,
part of this inefficlency can bhe avoided by writing very
special theorems for PLANNER. Also, PLANNER will hecome
much more efficlent when | have completed a compliler for it.
PLAMMER s sufficiently powerful that | ecan write the
compiler In PLANMER and then bootstrap 1t. The argument of
loss of efficiency in general theorem provers will lose much
of Its force once we have the hardware to search the
hranches of the goal tree in parallel,

The praobhlem of representation for theorem proving
systems has attracted increasing attention from researchers

in recent vears., The prablem has the following aspects:

46,

1. Input representation of problem

2, Internal representaloen of problem

3. Ahility of the theorem prover to change
representation
|nadequate ablility to represent concepts necessary for the
solutlon of problems can severely affect the performance of
a problem solver. For example the flxed Inflexible input
format of GPS-2-6 greatly 1imits the generallity of the
prablems that it can solve, Im PLAMNER there Is5 no
distinction hatwesan input representation and Internal
representation. Furthermore theorems for PLANNER make no
distinction between a problem to change the representalon of
a problem and any other kind of problem. For example it Is
stralghtforward to write theorems for PLANMNER which will
enahle it to recognize that the games tle=-tac=toe, number
scrahble, and jam are isomorphic. The chief difficulty with
the theorems to recognize the isomarphlism s that they are
applicable only to this very specific problem, What we need
to do Is to write a system of theorems that can recognize
Isomorphism within a very wide class of games,

Almost all the problems that have been solved by
general theorem provers thus far have heen rather trivial,
The chief reason for this has been that heretofore enough
core storage to attempt more ambhitlous problems has mat heen
available, Thus the following question has arisen: Can the
tachniaques which have bheen developed to handle tov problems

he extended and reneralized? | think that we will see the

aquestion answered in the affirmative in the next few vears
as more core memory bhecomes availahle to users., I am
presently workineg on twe prohlems to show how thearems for
PLANNER can solve harder problems. The first praoblem Is to
write SCHEMATISE in PLANMER, The secand s to write
theorems which solve the problem of how to put Soma Cubes
together to make falrly arhitrary block Fflgures, Both
problems require a large numbher of theorems arranged In
interlocking hierarchies, Hopefully, this work will

eventually bhecome part of a thesis,

48,

RIRLIOGRAPHY

Rlack, F,, 1964, A Deducgive Ouestlon Answering System,

doctdral dissertation, Harvard University, Cambrides, Mass.

Christensen, 0,, 1964, AMBIT: A Programming Lanruage

for Algebriaic Symbol Manipulation, AFCRL-G4-009,
Cohen, K., and Wepstein J., 1965. ANLE: An Axiomatic
Languapge for String Transformatlons, Compunlcations of the

Association for Computineg Hachinerv, Movemher, 19065,
Felpenhbaum, E. A., and Feldman, J, (nds,), 1963,
Computers apd Thought, MNew York , M. Y.: MefGraw=-HIl1,

Fanichel, R, R., and Mases, J,, 1966, A HNew Version of
LT55 LISE, Artificial Intelligence Memo 93, Massachusetts

Institute of Technology (Projeet MAR), Camhridze, Mass,
Guzman, A, and Melntosh, H, V., Convert, Communications

of the Assoclaton for Computing Hachinery, August, 1966,
Kalenich, W, A, (ed,), 1965. Information Processling

1965, International Federation for Information Processing,
Hew York Clty, Washingtan D,D,: Spartan,
Mefarthw, J. 1859, Proagrams with common sense,

Proceedings of the Symposium on Mechanlsatiop of Thourht
Processas, Mational Physical Laboratary, Taddington,

Fagland, London: H, M, Stationery Office, pp. 75-854,

Mefarthy, J., et al., 1962, LISP 1.% Prorrommer's
Manual,fambridege, Mass,

a%.

MHinsky, M, L., 1961, Steps toward artifleial
intellipence, In Computers and Thought, pp. BOG=450,
Mawrll, A., and FErnst, (,, 1946, The sasarch for

generality, in Informatlon Processipe 1965, pp. 17-24,

Hewell, A., Shaw, J. 0., and Simon, M, A,, 10579, Repart

on a general problem=selving propram, Proceedines of the

International Conference on Information Processing, Parls:
UNESCO House, pp. 256-206L4,

Slagle, J., 19RS. Exparinents with a deductive

question-answering progran, Communlecations of the Assoclaton
for Conputing Machinery, Necemher, 8:792-79R.

50, Sept. 1967

The Philosophy of the Svstem

SCHEMATISE was designed and MATCHLESES was prograrmed in
the fall term of 1966=1967, SCHEMATISE 1s lntended to
provide globhal methads for the ecomputer to use to prove
theorems in logic systems of a very sinple type, One ldea
Is to use invarfants of the theorem net In order to more
quiekly find proofs. For example one Invariant of a theorem
net Is fts place holder goal tree. Let (n pred) be the nth
place holder of the predicate pred. The place bholder goal
tree for the predicate at In the theorem net In the First
chapter s shown in the figpure below. Thke advantage of
using Invariants of the theorem net for this purpose is that
although they ecan be used in many problems they only Lave to
computed once for each theorem net.

Another global methed In SCHEMATISE is the use of
schenatlzed goal trees. The philosophy bhohind the fldea of
schematized poal trees 1s very slmple, We interpret
subpraphs of the theorem net aAs subtheories. Ountient
praphs are syntactic planning theories. The space used by
G.P.5. In which connectives are left out of propositional
formulas Is an example of a syntactle planning theory,
Homamorphisms from one space into another are Interpreted as
analogies between theories. Thus there Is always an analogy

Between a theory and one of fts syntactic planning theories,

~ Pfgrp H:’.)JF!’” Gﬂa} TFF‘L‘? ﬁ?“F
P.ffﬁclfc:ﬂﬂ r:’—?-fr#

32.

A trivial kind of homomorphism Is exemplified by the
symmetry of wvarfables recopnized by Gelenter's geometry
theorem prover, These hononorphisms are trivial because
they map predicates [dentlecally ente themselwves, Alse the
use of these homomorphlisms is eovered hy a constructive
metatheorem. A metatheaorem [s interpreted as a theorem
about certain classes of theorem nets, Constructive
netatheorems represent the hest of all possible worlds for
the theorem prover. Metatheorems save the theorem prover
the work of doing basically the same kind of proof over each
time it comes to a problem for which 1t has a relevant
metatheorem., MVorking in a theory over the theorem nets
(that s metatheoretically), the theorem prover can obtaln
insiphts and results that would otherwise be Inpossible, 2
more interesting example of a homomerphism 5 given by the
analogous procfs by diagonalization of the incompleteness
theorem and of the exlstence of nonrecursive predicates,
Suppose there is a homomorphism hl from theorem net Tl finto
theorem net T2 and a homomorphism h2 from theorem net T2
into theorem net T3, One can sometimes obtain a proof of a
proposition 0 in T3 by first obtaining a schematized proof
Pl in T1l, extending hl{Fl}) to a proof P2 in T2, and then
finally extending h2{p2) to bhe a proof of 00, Thus we have
an elenentary theory of multi-pass theorem provers, It 1is
also useful to look at the homomorphic Images fo the gplven
thearem net slnce they Tnduce ouotients back on the given

SRaGT.

53.

PLAHNER 1z deslgned to he an extendable flaxikla
system for manipulating an Internal model of a cdynamle
world., In its world arbitrary objects ean be created and
destroyed at will. The world of PLANMER contrasts strongly
with the static world of the quantificatlonal ecalculus. In
order to ogbtain greater flexiblility and generality, PLANNER
does not maintaln a rigld barrfar hetween the inperatives
{thearems) that take somne action In fts world and
complicated declaratives {(therorems) that state come fact
ahout fts world., PLAMNER often uses the same S=expression
as an Imperative and as a declarative depending on the
context, There Is an analogous sltuation In mathmematlcs
where the quantificational calculus {a theory of
declaratives) Is strong enough to represent the recursive
functions (the imperatives). Furthermore one can regard a
wff In the guantificational ecaleculus with free variahles as
a predicate. Assume that for eaaech procedure P we have a
declarative D (eallad the [ntention of P) that sayse how P is
intended to be used. Mow D does not determine P, [If there
is one way to reallze a glven Intention then there are
Infinitely many ways to realize 1t. Also 1t may happen than
an Intention cannot be realized at all, For example the
followling Intention is realized by no procedure P: P solves
the halting problen, Usling Intentions the theorem prover
ean proceed to debug a proecedure P as follows: glven an
argument a suech that P{a) vielates its Intentlon check the

subprocedures of P to see if any of them viclated their

34,

Intention while Pla) was helng computed. |If so then proceed
te find the bug In the sub=procedurs of P, If not then
there Is a bug Iin P, Check the Intentions of the statements
of P to find the statement of P whose Intention was
violated., For example In the problem to exchange the
contents of two locatlons the Intentlion that S$OTHERADD be
different from both 3ADDI and $P0D2 was vwviolated, hs
illustrated by the example of building a8 tower, the standard
way in whieh PLAHMER trys to find a proeedure whiehk
satisfies a given Intentfon 15 to flrst flgure out an
algorlithm which satisfies the intention and then write a
procedure which uses the alporithm. Cliven the knowledre of
how to cause an Imperative to act, PLANHER can somnetimes
find out what the Imperative means. For example In Fosser's
axiom system for the propositional ecaleulus the meaning of
the general procedure by which you ean obtaln a proof of
(implies a bh) from the proof of b starting from a |[s the
Deduction Thecrem for Resser's axlomatization. Conversely
we can try to analyze how a theorem can he applled,
Classical theorem provers keep thelr declarative knowledge
rigidily separated from their imperative knowledge.

From the point of view of program graphs, there are
essentially two kinds of heuristics [m FLANMER theorems.

The first kind (called selectors) choose which branch of the

praoblem tree to search next. The second kind {(ealled
rolectaors) determine when to stop working on a hranch of the

prablem tres, &t a high lewvel selectors should wuse

55,

planning, analegies, and 1inks In models to kelp nake
plausibhle cholees. Re]jectors can try to prove the negatleon
of a proposed goal or try to find a counterexample to It.
Due to overriding consideratlions of efficlency, a practical
theorem prover must be as elose to a deelslon procedure as
possible, Rejectors and selectors supplement each other,
For exanple In elementary plane geometry, counterexamples
from diagrams make such a good rejection heurlstic that very
good selectors are not needed., On the other hand slince
Samuels's checker player can choose the correct move at sach
ply over half the time, It Is less dependent on [ts static
evaluator as a rejector. One can view rejectors as special
cases of selectors in which the null choice is made.

PLAHMNER has many of the features that are desireahle

for a language in which to write a domaln Independentg

planner for proving theorems, A domaln independent planner
Is a program that operates by accepting as input Enowledre
of a domain D (including both declaratives and Imperatives)
and a theorem T In the domain D and outputting a plan for
the proof of T. The jJustification for a domaln Independent
planner is the thesis that there Is a Jlarze body of
technliques and strategies common to mathematical domalins
such as legle, algebra, set theory, and analysis. The
ultimate pgoal Is for a domain Independent planner to be able
to read a hook written In a formal languare on some
mathematical domain D and then he able to constuct plans for

the proof of theorems In D, Admittediy it is not an easy

56.

task to construct a domain Independent plannar for even a
trivial elass of domains, Up teo the present time the
pattern of researeh In artificlal Intelllzence has been to
construct programs that stralghtforwardly search gpoal trees

at the level of the glven axloms and rules of Inferenge of

some speclallized domaln. Although the previous work has

made wvaluable contributions, 1t does npot auvtomatically
produce a domain Independent planner. There are many
difficult problerms in the construction of a domaln
independent planner that have not arisen in the work on
specialized domains, Thus work on domain Independent
planner has its own Independent right to existence as a
problem in artificial intellizence,

In a limited sense PLAMNNER 1s "aware" of what it is
doling when It Is tryling to prove some result sinee each
theoremn has conplete access to the subgonls and procedures
that are being used to try to ohtain the result., For 1t to

" of what It Is doing in a deeper sense, PLANNER

he "aware
mus t he akle to easlly trapzslate Ffrom Intentions to
procedures which realize Ehose intentions and from
procedures to the meaning of those procedures, In

particular it must be able to do so for the Intentions and

procedures that constitute the theorem prover,

ddded 6 4. 7. /137 (ut,

el Wonl 1968

PLANNER Is a language for proving theorems and
manipulating models, It can prove theorems in a typed
second order quantificational calculus with erasing. The
declarative-imperative duality of its theory Is bhaslec to
understanding how the language works. The Jlanpuame 1tself
is domaln Independent. We may think of the languapge as

divided Into two parts: hookeeping and default conditions.

The defaul t condltions constitute the domaln
independent knowledge of the theorem prover. suppose the
goal of the theorem prover 13 to prove (Implies a b)Y, In a

default condition PLAHNNER will usually assume a and try to
prove b, If that doesn't work, then it will usually assume
(not b) and try to prove (not ajl,. The default conditions
allow PLANHNER to do a reasonable amount of search, Thus
the default conditions would not assume (not (irplies a b))
and attempt to derive a contradiction. Of course this does
not mean that we connot do resolution In PLAMNER. It simply
wWlll not be done by default. Another exanple of a default
condition is that (not (not c}) simplifiles to c. The last
example 1s Interesting hecause It polnts out an Intaresting
parallel between theorem proving and algebraic manipulation,
The two flields face similar problems on the issues of
simplification, eguivalence of esxpressions, intermediate

expression bulpe, and man=machine Interaction. OF course In

/56 j

5%

any partlicular case, the theorems need not allow PLAKNER teo
lapse Into its default cunthlnns;

A1l domain dependent knowldege Is contalned In the
theorems {imperative and declarative)., The theorems can do
arbltrary amounts of computation. Thay have the full
recursive power of PLAMNER availabhle to help them with their
problems. For example an assertion can recommend theorems
to be used to attempt to draw conclusions from what Is
asserted. Messages can be sent to lower level theorems to
try to get them to produce better answers to soma questlon
that a higher Jlevel theorem 1s asking. Consider the

following functions,

{defprop among

(thlambda (1) (thprog ()

start (theond ({null 1) (fail)))
{setq 1 (cdr 1))
(fallp (fallto start))

(threturn (car 1)))) expr)
{defprop foo (thlambda (b a) (thcond

({greaterp a b) a)
{t (failld)))

expr)

Thus the value of (foo 5 (among (quote (2 4 6)))) is 6. 3
the predicate fallp detects a fallure then 1t executes |[ts

argument., The function fallto causes fallure to the tag

which 1s Tts argument. The functlon among successively
takes on the alements of Tts argument 1; l.e. 2 then & then
G. Clearly the computation would be faster If foo were to
assert that "among" should produce a value pgreater than 5
and "among" were to take thils advice. It will sometimes
happen that the heuristics for a problem are very good and
that the proof proceeds smoothly until almost the very end,
At that polnt the program gets stuck and lapses Into default
conditions to try to push through the proof. On the other
hand the program might grope for a while trying to get
started and than latch onto a theorem that knows how to
polish off the problem In a lengthly but fool proof
computation. PLAHNER Is designed for use where one has a
great number of procedures (theorems) that might he of use
in solving some problem along with a general plan for the
solution of the problem., The language helps to select
procedures to refine the plan and to sequence through these
procedures in a flexible way In case everything doesn't go
axactly according to the plan, The present default
conditions can and will be extended but | doen't think that
by themselves they will ever be able to prove deep
mathematical theorems. Nor do | belleve that computers can
solve difficult problems where thelr domain dependent
knowledge is limited to a finlte-state difference table of
connections between goals and methods.

A straight forward compilation of programs written In

PLAMNER preduces very ineffiecient code. For the language to

.0

practical, the compller must be able to cut corpers while at
the same time producing correct code. Thus the compller
should be able to prove that in each case [t has [ndeed
compliled a program correctly, MeCarthy and hls students
have used the alternative approach of trving to prove the
compiler correct once and for all, The PLAHMER compiler
should be extendable In that it should accept new heuristlics
at any time and that programs to be complled should be albe
to make recommendations as to how they should be compiled,.
Thus we are led to consider the equivalence problem for
programming 1anguagé5. In the following the s=-expresslons
anclosed in <> are first order Intentions, Intentions are
defined to be predlicates that should bhe true when control
passes through them, Varlables that begin with a single "¢"
are first order Intention varlables,., Intentions are allowed
to reference but mot to modify program varlables, For

example the following programs are all eaquivalent.

(defprop factl

{lanbda (n}) {(cond ((lessp n 1)} 1)

(t {<{t (lambda (<{b>) (equal <h> (factorial
ndlys
(times n (factl (subl n))))})

expr)

{(lap factla subr)

(<block> ({<n> (addr 1}})

(push p 1)

2\

{movel 2 (quote 1))
(call 2 (functlion *less))
(jumpe 1 a)
(movel 1 (quote 1))
(Jrst 0 b)
a
{move 1 0 p)
{call 1 (function subl})
{call 1 (functlon factlal)
(<{egual (addr 1) (factorial (subl <n>})}:)}
(move 2 0 pl
{(call 2 (function =times))
b
(sub p (3 001 1))

)

{pop] p}

€3

In factla {(addr 1) Is the address of accumulator 1 and
{hloek? deeclares the Intention varlable <n» to he equal to

{addr 1).

{(defprop factl
(lambda (n) (<block? ({(<b» n)) {(prog {(a}

(< (advice (prooftype of (equal a (factorlal <h:)) Is
numer iecal=Induction on n from 0 to infinityl):)

{setg a 1)

(e

agaln (cond ({lessp n 1)
({(equal a (factorial »))> (return a))))
{setqg a (times n a))
{setg n (subl nJ)

(po againd) })) expr)

{lap fact2a subr)
(<{block> ({<n> (addr 1 (<p> (addr p)))
(push p (% 0 0 (quote 1))}

(push p 1)
a
(movel 2 (gquote 1))
(move 1 0 p)
(call 2 (function =less))
(jumpe 1 b)
(move 1 =1 p)
(<{(equal (addr 1) (factorlal <n>})>)
(jrst 0 c)
b
{(move 2 =1 p)
(move 1 0 p)
(call Z (function *timas))
(movem 1 -1 p)
(move 1 0 p)
(call 1 (function subl)})
(movem 1 0 p)

(jrst 0 a)

G2

L
(sub p (2 00 2 2))
{<{eq <p> (addr pl>)
({{no-side-effects)>)
(<{no-free-varilables}>)
)
(pop] p)
()

The functlion <block™ declares that the Intentlon wvarlahle
{b% should have the wvalue of n and returns Its second
argument as value,
(definition (1ff (equal (fact3 n) a)
{or (and (lessp n 1) (equal a 1))
{and (not (lessp n 1)) (equal a (times n (fact3
(subl n}))3))d}))
{defprop facth
{lambda (n) (prog (a b)
{setg a 1)
{cond {{lessp n 1) (return a)})
(setq b 1)
again {cond {{equal b n)
(return a))
]
(setq b (addl b))

{setg a (times h a))

le*t

{go agaln)

1) expr)

Factl and fact? are schematically equlwvalent to each
other, I.e. they are equivalent solely on the hasis of the
meaning of the LISP logical primitives., Proving that facth
is equivalent to the others 1s s1ightly nontrivial since 1t
involveas the associativity anr commutativicy 0f
multiplication. The gquantity Tneluded In the <<* 1Is the
intention for that piece of code. The first s-expression In
the €* 1s the intention before the function Is entered; the
second, If present, is the intention for the walue, Hote
that in this eonnection that 1t is convenient to treat the
quantificational ealculus as a programming language.,

The Intentions of a program are useful for a varlety of
purposes. Included in the protoeols of a funation, they
provide valuable Infermation on how to combine the protocols
in functional abstraction, They are wvery wusaful in
attempting to prove that a function satisfies Its overall
intention ar to prove that twoe functions are equivalent, |IT
PLANMER constructs a function which supposedly bullds
towers, it needs to be able to prove that the towers that
the functlen can construct are all stahle, UWithout sut any
ultimate loss In efflicliency, a function can be run In A
debugging mode in which the processor checks the intentions
of the functien as 1t executes the function to make sure
that they are satisfled. At the present time computers are

much worse than mathematicians at proving that two programs

6L~

are equivalent., Even If computers were to greatly improveo,
there are grave difficulties In using them as a practical
solution to the debugging problem, It is difflecult to find
reasonable Intentions that adequately characterize the
output in terms of the Tnput for many functions (for example
Sys tein prograns and wvery highly recursive programs).,
Hevertheless, work on this approach to debugging problem is
Independently valuable, It increases the povwer of the
computer to prove facts about functions, Only experience
can teach us how severe the practical difficulties are

toward this approach to the debugging problem.

