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Abstract

Similarity measurements between 3D objects and 2D images are useful for the tasks of

object recognition and classi�cation. We distinguish between two types of similarity metrics:

metrics computed in image-space (image metrics) and metrics computed in transformation-

space (transformation metrics). Existing methods typically use image metrics; namely, metrics

that measure the di�erence in the image between the observed image and the nearest view

of the object. Example for such a measure is the Euclidean distance between feature points

in the image and their corresponding points in the nearest view. (Computing this measure is

equivalent to solving the exterior orientation calibration problem.) In this paper we introduce a

di�erent type of metrics: transformation metrics. These metrics penalize for the deformations

applied to the object to produce the observed image.

We present a transformation metric that optimally penalizes for \a�ne deformations" under

weak-perspective. A closed-form solution, together with the nearest view according to this

metric, are derived. The metric is shown to be equivalent to the Euclidean image metric, in

the sense that they bound each other from both above and below. For the Euclidean image

metric we o�er a sub-optimal closed-form solution and an iterative scheme to compute the exact

solution.
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1 Introduction

Object recognition is a process of selecting the object model that best matches the observed

image. A common approach to recognition uses features (such as points or edges) to rep-

resent objects. An object is recognized in this approach if there exists a viewpoint from

which the model features coincide with the corresponding image features, e.g. [Roberts, 1965,

Fischler and Bolles, 1981, Lowe, 1985, Huttenlocher and Ullman, 1987, Basri and Ullman, 1988,

Thompson and Mundy, 1987, Ullman and Basri, 1991]. Since images often are noisy and mod-

els occasionally are imperfect, it is rarely the case that a model aligns perfectly with the image.

Systems therefore look for a model that \reasonably" aligns with the image. Consequently,

measures that assess the quality of a match become necessary.

Similarity measures between 3D objects and 2D images are needed for a range of applica-

tions:

� The recognition of speci�c objects in noisy images, as described above.

� The initial classi�cation of novel objects. In this application a new object is associated to

similar objects in the database. This way an image of, e.g., a Victorian chair is associated

with models of (di�erent) familiar chairs.

� The recognition of non-rigid objects whose geometry is not fully speci�ed. An example

is the recognition of 3D hand gestures. In this task only the generic shape of the gesture

is known, and the particular instances di�er according to the speci�c physiology of the

hand.

Existing recognition methods are usually tailored to solve the �rst of these application, namely,

the recognition of speci�c objects from noisy images. Many of these methods are sub-optimal

(see Section 2 for a review), which may result in large number of either mis-recognition or

false-positives. When these methods are extended to handle problems such as classi�cation and

recognition of non-rigid objects their performance may even be less predictable. The general

problem of recognition therefore requires measures that provide a robust assessment of the

similarity between objects and images. In this paper we describe two such measures, and

develop a rigorous solution to the minimization problem that each measure entails.

A common measure for comparing 3D objects to 2D images is the Euclidean distance be-

tween feature points in the actual image and their corresponding points in the nearest view of

the object. The assumption underlying this measure is that images are signi�cantly less reliable

than models, and so perturbations should be measured in the image plane. This assumption

often suits recognition tasks. Other measures may better suit di�erent assumptions. For exam-

ple, when classifying objects, there is an inherent uncertainty in the structure of the classi�ed

object. One may therefore attempt to minimize the amount of deformations applied to the

object to account for this uncertainty. Such a distance is measured in transformation space

rather than in image space. A de�nition of these two types of measures is given in Section 3.
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Measures to compare 3D models and 2D images generally are desired to have metrical

properties; that is, they should monotonically increase with the di�erence between the measured

entities. (A more exact de�nition is given in Appendix A.) The Euclidean distance between

the image and the nearest view de�nes a metric. (We refer to this measure as the image

metric.) The di�culty with employing this measure is that a closed-form solution to the

problem has not yet been found, and therefore currently numerical methods must be employed

to compute the measure. A common method to achieve a closed-form metric is to extend the

set of transformations that objects are allowed to undergo from the rigid to the a�ne one. The

problem with this measure is that it bounds the rigid measure from below, but not from above.

Other methods either achieve only sub-optimal distances, or they do not de�ne a metric. The

existing approaches are reviewed in Section 2.

This paper presents a closed-form distance metric to compare 3D models and 2D images.

The metric penalizes for the non-rigidities induced by the optimal a�ne transformation that

aligns the model to the image under weak-perspective projection. The metric is shown to bound

the least-square distance between the model and the image both from above and below. We

foresee three ways to use the metric developed in this paper:

1. Obtain a direct assessment of the similarity between 3D models and 2D images.

2. Obtain lower and upper bounds on the image metric. In many cases such bounds may

su�ce to unequivocally determine the identity of the observed object.

3. Provide an initial guess to be then used by a numerical procedure to solve the image

distance.

The rest of this paper is organized as follows: In Section 2 we review related work. In

Section 3 we de�ne the concepts used in this paper. In Section 4 we summarize the main

results of this paper. These results are discussed in detail and proved in section 5 for the

transformation metric, and section 6 for the image metric. Sections 5 and 6 can be omitted

in �rst reading. Finally, in Section 7 we compare the distances between 3D objects and 2D

images, obtained by alignment, to our results.

2 Previous approaches

Previous approaches to the problem of model and image comparison using point features are

divided into three major categories:

1. Least-square minimization in image space.

2. Sub-optimal methods using correspondence subsets.

3. Invariant functions.

2



The traditional photometric approach to the problem of model and image comparison in-

volves retrieving a view of the object that minimizes the least-square distance to the image.

This problem is referred to as the exterior orientation calibration problem (or the recovery of the

hand-eye transform) and is de�ned as follows. Given a set of n 3D points (model points) and a

corresponding set of n 2D points (image points), �nd the rigid transformation that minimizes

the distance in the image plane between the transformed model points and the image points.

An analytic solution to this problem has not yet been found. (Analytic solutions to the absolute

orientation problem, the least-square distance between pairs of 3D objects, have been found,

see [Horn, 1987, Horn, 1991]. An analytic solution to the least-square distance between pairs

of 2D images has not yet been found.) Consequently, numerical methods are employed (see

reviews in [Tsai, 1987, Yuan, 1989]). Such solutions often su�er from stability problems, they

are computationally intensive and require a good initial guess.

To avoid using numerical methods, frequently the object is allowed to undergo a�ne trans-

formations instead of just rigid ones. A�ne transformations are composed of general linear

transformations (rather than rotations) and translations, and they include in addition to the

rigid transformations also re
ection, stretch, and shear. The solution in the a�ne case is sim-

pler than that of the rigid case because the quadratic constraints imposed in the rigid case are

not taken into account, enabling the construction of a closed-form solution. At least six points

are required to �nd an a�ne solution under perspective projection [Fischler and Bolles, 1981],

and four are required under orthographic projection [Ullman and Basri, 1991].

The a�ne measure bounds the rigid measure from below. The rigid measure, however, is

not bounded from above, as is demonstrated by the following example. Consider the case of

matching four model points to four image points under weak-perspective. Since in this case

there always exists a unique a�ne solution, the a�ne distance between the model and the image

is zero. On the other hand, since three points uniquely determine the rigid transformation that

aligns the model to the image, by perturbating one point we can increase the rigid distance

unboundedly.

A second approach to comparing models to images involves the selection of a small sub-

set of correspondences (alignment key), solving for the transformation using this subset, and

then transforming the other points and measuring their distance from the corresponding im-

age points. Three [Fischler and Bolles, 1981, Rives et al., 1981, Haralick et al., 1991] or four

[Horaud et al., 1989] points are required under perspective projection, and three points un-

der weak perspective [Ullman, 1989, Huttenlocher and Ullman, 1987] . The obtained distance

critically depends on the choice of alignment key. Di�erent choices produce di�erent distance

measures between the model and the image. The results almost always are sub-optimal, since

it is generally better to match all points with small errors than to exactly match a subset of

points and project all the errors onto the others.

A third approach involves the application of invariant functions. Such functions return a con-

stant value when applied to any image of a particular model. Invariant functions were success-

fully used only with special kinds of models, such as planar objects (e.g., [Lamdan et al., 1987,

Forsyth et al., 1991]). More general objects can be recognized using model-based invariant
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functions [Weinshall, 1993]. For noise-free data, model-based invariant functions return zero if

the image is an exact instance of the object. To account for noise, the output of these functions

usually is required to be below some �xed threshold. In general, very little research has been

conducted to characterize the behavior of these functions when the model and the image do

not perfectly align. The result of thresholding therefore becomes arbitrary.

3 De�nitions and notation

In the following discussion, we assume weak-perspective projection. Namely, the object under-

goes a 3D transformation that includes rotation, translation, and scale, and is then orthograph-

ically projected onto the image. Perspective distortions are not accounted for and treated as

noise.

In order to de�ne a similarity measure for comparing 3D objects to 2D images, as discussed

in section 1, we �rst de�ne the best-view of a 3D object given a 2D image:

De�nition 1: [best-view] Let @ denote a di�erence measure between two 2D images of n
features. Given a 2D image of an object composed of n features, the best-view of a 3D object
(model) composed of n corresponding features, is the view for which the smallest value of @ is
obtained. The minimization is performed over all the possible views of the model; the views
are obtained by applying a transformation T , taken from the set of permitted transformations
�, and followed by a projection, �.

We compute @, the di�erence between two 2D images of n features in two ways:

image metric: we measure position di�erences in the image, namely, it is the Euclidean dis-
tance between corresponding points in the two images, summed over all points.

transformation metric: the images are considered to be instances of a single 3D object.
The metric measures the di�erence between the two transformations that align the object
with the two images. This di�erence can be measured, for instance, by computing the
Euclidean distance between the matrices that represent the two transformations (when
the two transformations are linear).

As mentioned above, the measure @ is applied to the given image and to the views of the
given model. These views are generated by applying a transformation from a set � of permitted
transformations. The view that minimizes the distance @ to the image is considered as the best
view, and the distance between the best view and the actual image is considered as the distance
between the object and the image.

We consider in this paper two families of transformations: rigid transformations and a�ne
transformations, and we discuss the following metrics:
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Nim: a metric that measures the image distance between the given image and the best rigid
view of the object.

Naf : a metric that measures the image distance between the given image and the best a�ne
view of the object.

Ntr: a transformation metric. We assume that the image is an a�ne view of the object. (When
it is not, we substitute the image by the best a�ne view.) We look for the rigid view
of the object so as to minimize the di�erence between the two transformations: the
a�ne transformation (between the object and the image) and the rigid transformation
(between the object and its possible rigid views.) In other words, we look for a view so
as to minimize the amount of \a�ne deformations" applied to the object.

To illustrate the di�erence between image metrics and transformation metrics, Figure 1

shows an example of three 2D images, whose similarity relations reverse, depending on which

kind of metric is used. Consider the planar object in Figure 1(b) as a reference object, and

assume � contains the set of rigid transformations in 2D. The images in (a) and (c) are obtained

by stretching the object horizontally (by 9/7) and vertically (by 3/2) respectively. (The image

in (b) is obtained by applying a unit matrix to the object.)

a) b) c)

closer  in

space

closer  in
transformation−
space

image−

( ( (

Figure 1: The 2D image shown in (b) is closer to the image in (a) when the di�erence is computed in

transformation space, and closer to the image in (c) when the di�erence is the Euclidean di�erence between the
two images.

� The image metric between the images in (b) and (a) is 4, two pixel at each of the left

corners of the rectangle.

The image metric between the images in (b) and (c) is 2, one pixel at each of the upper

corners of the rectangle.

Therefore, according to the image metric, Figure (c) is closer to (b) than (a) is.
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� To compute the transformation metric consider the planar object illustrated in (b). We

compute the di�erence between the matrices that represent the a�ne transformation from

(b) to both (a) and (c) and the matrix that represent the best rigid transformation (in

this case it is the unit matrix): (a) is obtained from (b) by a horizontal stretch of 9=7.

The transformation metric between (a) and (b) is therefore 2=7 = 9=7� 1.

(c) is obtained from (b) by a vertical stretch of 3=2. The transformation metric in this

case is 1=2 = 3=2� 1.

Therefore, according to the transformation metric, Figure (a) is closer to (b) than (c) is.

It is interesting to note that in this example the solution obtained by minimizing the transfor-

mation metric seems to better correlate with human perception than the solution obtained by

minimizing the image metric.

3.1 Derivation of Nim and Naf

We now de�ne the rigid and the a�ne image metrics explicitly. Under weak-perspective pro-

jection, the position in the image, ~qi = (xi; yi), of a model point ~pi = (Xi; Yi; Zi) following a

rigid transformation is given by

qi = �(R~pi + ~t)

where R is a scaled, 3 � 3 rotation matrix, ~t is a translation vector, and � represents an

orthographic projection. More explicitly, denote by ~rT1 and ~rT2 the top two row vectors of R,

and denote ~t = (tx; ty ; tz); we have that

xi = ~rT1 � ~pi + tx

yi = ~rT2 � ~pi + ty (1)

where

~rT1 � ~r2 = 0

~rT1 � ~r1 = ~rT2 � ~r2 (2)

The rigid metric, Nim, minimizes the di�erence between the two sides of Eq. (1) subject to the

constraints (2).

When the object is allowed to undergo a�ne transformations, the rotation matrix R is

replaced by a general 3 � 3 linear matrix (denoted by A) and the constraints (2) are ignored.

That is

qi = �(A~pi + ~t)

Denote by ~aT1 and ~aT2 the top two row vectors of A, we obtain

xi = ~aT1 � ~pi + tx

yi = ~aT2 � ~pi + ty (3)
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The a�ne metric, Naf , minimizes the di�erence between the two sides of Eq. (3).

To de�ne the rigid and the a�ne metrics, we �rst note that the translation component of

both the best rigid and a�ne transformations can be ignored if the centroids of both model

and image points are moved to the origin. In other words, we begin by translating the model

and image points so that
nX
i=1

~pi =
nX
i=1

~qi = 0 (4)

We claim that now ~t = 0. The proof is given in Appendix C.

Denote

P =

0
B@
X1 Y1 Z1

...

Xn Yn Zn

1
CA

a matrix of model point coordinates, and denote

~x =

0
B@
x1
...

xn

1
CA ~y =

0
B@
y1
...

yn

1
CA (5)

the location vectors of the corresponding image points. A rigid metric that re
ects the desired

minimization is given by

Nim = min
~r1;~r22R3

k~x� P~r1k2 + k~y � P~r2k2 s:t: ~rT1 � ~r2 = 0; ~rT1 � ~r1 = ~rT2 � ~r2 (6)

The corresponding a�ne metric is given by

Naf = min
~a1;~a22R3

k~x� P~a1k2 + k~y � P~a2k2 (7)

In the a�ne case the solution is simple. We assume that the rank of P is 3 (the case for

general, not coplanar, 3D objects). Denote P+ = (PTP )�1PT , the pseudo-inverse of P ; we

obtain that

~a1 = P+~x

~a2 = P+~y (8)

And the a�ne distance is given by

Naf = k(I � PP+)~xk2 + k(I � PP+)~yk2 (9)

Since the solution in the rigid case is signi�cantly more di�cult than the solution in the

a�ne case, often the a�ne solution is considered, and the rigidity constraints are used only for

veri�cation (e.g. [Ullman and Basri, 1991, Weinshall, 1993, DeMenthon and Davis, 1992]).
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The constraints (2) (substituting ~ai for ~ri, and using Eq. (8)) can be rewritten as

~xT (P+)TP+~y = 0

~xT (P+)TP+~x = ~yT (P+)TP+~y

Denote

B = (P+)TP+ (10)

we obtain that

~xTB~y = 0

~xTB~x = ~yTB~y (11)

where B is an n � n symmetric, positive-semide�nite matrix of rank 3. (The rank would be

smaller if the object points are coplanar.)

We call B the characteristic matrix of the object. B is a natural extension to the 3� 3

model-based invariant matrix de�ned in [Weinshall, 1993]. A more general de�nition, and its

e�cient computation from images, is discussed in Appendix B.

3.2 Derivation of Ntr

We can now de�ne a transformation metric as follows. Consider the a�ne solution. The nearest

\a�ne view" of the object is obtained by applying the model matrix, P , to a pair of vectors, ~a1
and ~a2, de�ned in Eq. (8). In general, this solution is not rigid, and so the rigid constraints (2)

do not hold for these vectors. The metric described here is based on the following rule. We are

looking for another pair of vectors, ~r1 and ~r2, which satisfy the rigid constraints, and minimize

the Euclidean distance to the a�ne vectors ~a1, and ~a2. P~r1 and P~r2 de�ne the best rigid view

of the object under the de�ned metric. The metric, Ntr, is de�ned by

Ntr = min
~r1;~r22R

3

k~a1 � ~r1k2 + k~a2 � ~r2k2 s:t: ~rT1 � ~r2 = 0; ~rT1 � ~r1 = ~rT2 � ~r2 (12)

where ~a1 and ~a2 constitutes the optimal a�ne solution, therefore

Ntr = min
~r1;~r22R

3

kP+~x� ~r1k2 + kP+~y � ~r2k2 s:t: ~rT1 � ~r2 = 0; ~rT1 � ~r1 = ~rT2 � ~r2 (13)

In Section 5 we present a closed-form solution for this metric, and in Section 6 we show how

this metric can be used to bound the image metric from both above and below.

4 Summary of results

In the rest of the paper we prove the following results:
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4.1 Transformation space:

The transformation metric de�ned in Eq. (13) has the following solution

Ntr =
1

2

�
~xTB~x + ~yTB~y � 2

q
~xTB~x � ~yTB~y � (~xTB~y)2

�

where B is de�ned in Eq. (10), and ~x; ~y in Eq. (5). The best view according to this metric is

given by

~x� = PP+(�1~x+ �2~y)

~y� = PP+(
1~x + 
2~y)

where �1; �2; 
1; 
2 are de�ned in Appendix D.

4.2 Image space:

Using Ntr we can bound the image metric from both above and below. Denote

Naf = k(I � PP+)~xk2 + k(I � PP+)~yk2
we show that

Naf + �1Ntr � Nim � Naf + �3Ntr

where �1 � �2 � �3 are the eigenvalues of P
TP . A sub-optimal solution to Nim is given by

Naf +
2�1�2

�1 + �2
Ntr

where the computation of �1; �2 is described in Appendix E. A tighter upper bound is deduced

from this sub-optimal solution

Nim � Naf +H:M:f�2; �3gNtr � Naf + 2�2Ntr

where H:M:f�2; �3g = 2
1

�2
+

1

�3

is the Harmonic mean of �2, �3. The sub-optimal solution is

proposed as an initial guess for an iterative algorithm to compute Nim.

5 Closed-form solution in transformation space

We now present a metric to compare between 3D models and 2D images under weak perspective

projection. The metric is a closed-form solution to the transformation metric, Ntr de�ned in

Eq. (13). We use the notation developed in Section 3. B is the n � n characteristic matrix

of the object, ~x; ~y 2 Rn contain the x- and y-coordinates of the image features. The metric is

given by

Ntr =
1

2

�
~xTB~x + ~yTB~y � 2

q
~xTB~x � ~yTB~y � (~xTB~y)2

�
(14)

This metric penalizes for the nonrigidities of the optimal a�ne transformation. Note that

Ntr = 0 if the two rigid constraints in Eq. (11) are satis�ed. Otherwise, Ntr > 0 represents the

optimal penalty for a deviation from satisfying the two constraints.
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Derivation of the results:

In the rest of this section we prove that the expression for Ntr, given by Eq. (14), is indeed

the solution to the transformation metric de�ned in Eq. (13). The proof proceeds as follows:

Theorem 1 computes the minimal solution when ~r1 and ~r2 are restricted to the plane spanned

by ~a1 and ~a2; Theorem 2 extends this result to three-space.

a

a

r

r

1

2

1

2

Figure 2: The vectors ~a1, ~a2, ~r1, and ~r2 in the coordinate system speci�ed in Theorem 1. ~a1 and ~a2 represent

the solution for the a�ne case. ~r1 and ~r2 are constrained to be in the same plane with ~a1 and ~a2, to be orthogonal,

and to share the same norm.

Theorem 1: When ~r1 and ~r2 are limited to spanf~a1;~a2g, Ntr is given by Eq. (14).

Proof: We �rst de�ne a new coordinate system in which

~a1 = w1(1; 0)

~a2 = w2(cos �; sin �)

~r1 = s(cos�;� sin�)

~r2 = s(sin�; cos�)

(see Figure 2). � is the angle between ~a1 and ~a2, w1 and w2 are the lengths of ~a1 and ~a2
respectively. s is the common length of the two rotation vectors, ~r1 and ~r2, and �� is the angle

between ~a1 and ~r1. Without loss of generality it is assumed below that 0� � � � 180� and

�90� � � � 90�. Notice that w1, w2, and � are given and that s and � are unknown.
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Denote f the term to be minimized, that is

f(�; s) = k~a1 � ~r1k2 + k~a2 � ~r2k2

then

f(�; s) = (w1 � s cos�)2 + s2 sin2 �+ (s sin�� w2 cos �)
2 + (s cos� � w2 sin �)

2

= w2
1 + w2

2 + 2s2 � 2s([w1+ w2 sin �] cos� + w2 cos � sin�)

The partial derivatives of f are given by

f� = 2s([w1+ w2 sin �] sin�� w2 cos � cos�)

fs = 4s� 2([w1 + w2 sin �] cos� + w2 cos � sin�)

To �nd possible minima we equate these derivatives to zero

f� = 0

fs = 0

Solutions with s = 0 are not optimal. In this case f(�; 0) = w2
1 + w2

2, and later we show that

solutions with s > 0 always imply smaller values for f .

When s 6= 0, f� = 0 implies

tan�min =
w2 cos �

w1 + w2 sin �

therefore

cos�min =
1q

1 + (tan�min)2
=

w1 + w2 sin �q
w2
1 + w2

2 + 2w1w2 sin �

fs = 0 implies

smin =
1

2
([w1 + w2 sin �] cos�

min + w2 cos � sin �
min)

Notice the similarity of this expression to the expression for f . At the minimum point f can

be rewritten as

fmin = w2
1 + w2

2 � 2(smin)2 (15)

(From which it is apparent that any solution for f with s 6= 0 would be smaller than the solution

with s = 0.) Substituting for �min we obtain

smin =
1

2
([w1 + w2 sin �] cos�

min + w2 cos � sin�
min)

=
1

2
cos�min(w1 + w2 sin � + w2 cos � tan�

min)

=
w1 + w2 sin �

2
q
w2
1
+ w2

2
+ 2w1w2 sin �

(w1 + w2 sin � +
w2
2 cos

2 �

w1 + w2 sin �
)

=
1

2

q
w2
1 + w2

2 + 2w1w2 sin �
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and therefore

fmin = w2
1 + w2

2 � 2(smin)2 = w2
1 + w2

2 �
1

2

�
w2
1 + w2

2 + 2w1w2 sin �
�

or,

fmin =
1

2
(w2

1 + w2
2 � 2w1w2 sin �)

Recall that w1 and w2 are the lengths of ~a1 and ~a2, that is

w2
1 = ~aT1 � ~a1 = ~xTB~x

w2
2 = ~aT2 � ~a2 = ~yTB~y

and � is the angle between the two vectors, namely

w1w2 sin � =
q
w2
1
w2
2
(1� cos2 �) =

q
~xTB~x � ~yTB~y � (~xTB~y)2

We obtain that

fmin =
1

2

�
~xTB~x + ~yTB~y � 2

q
~xTB~x � ~yTB~y � (~xTB~y)2

�

2

In Theorem 1 we proved that if ~r1 and ~r2 are restricted to the plane spanned by ~a1 and ~a2,

the metric Ntr is given by Eq. (14). In Theorem 2 below we prove that any other solution for

~r1 and ~r2 results in a larger value for f , and therefore the minimum for f is obtained inside the

plane, implying that Ntr indeed is given by Eq. (14).

Theorem 2: The optimal ~r1 and ~r2 lie in the plane spanned by ~a1 and ~a2.

Proof: Assume, by way of contradiction, that ~r1; ~r2 62 spanf~a1;~a2g; we show that the

corresponding value for f is not minimal.

Consider �rst the plane spanned by ~r2 and ~a1, and assume, by way of contradiction, that

~r1 62 spanf~r2;~a1g; we show that there exists a vector ~r01 such that

k~r01k = k~r2k
~r01 ? ~r2

and

k~r01 � ~a1k < k~r1 � ~a1k
contradicting the optimality of f .

12



Assume k~r2k = s, and denote by ~r01 a vector with length s in the direction (~r2 � ~a1)� ~r2.

This vector lies in spanf~r2;~a1g and satis�es

k~r01k = k~r2k
~r01 ? ~r2

(There exist two such vectors, opposing in their direction. We consider the one nearest to ~a1.)

We now show that

k~r01 � ~a1k < k~r1 � ~a1k
Denote the angle between ~a1 and ~r01 by �, and denote the angle between ~r01 and ~r1 by �. Also,

denote w1 = k~a1k and s = k~r1k = k~r2k = k~r01k. We can rotate the coordinate system so as to

obtain

~r01 = s(1; 0; 0)

~r2 = s(0; 1; 0)

~a1 = w1(cos�; sin�; 0)

~r1 = s(cos�; 0; sin�)

Now,

k~r01 � ~a1k2 = (s� w1 cos�)
2 + w2

1 sin
2 � = w2

1 + s2 � 2sw1 cos�

k~r1 � ~a1k2 = (s cos� � w1 cos�)
2 + w2

1 sin
2 �+ s2 sin2 � = w2

1 + s2 � 2sw cos� cos �

and therefore, when � 6= 0� and � 6= 0� (when � = 0�, ~r1 and ~r01 coincide.)

k~r01 � ~a1k < k~r1 � ~a1k

contradicting the minimality property. Therefore, ~r1 2 spanf~r2;~a1g. Similarly, it can be shown
that ~r2 2 spanf~r1;~a2g, therefore all four vectors ~a1, ~a2, ~r1, and ~r2 lie in a single plane.

2

Corollary 3: The transformation metric is given by

Ntr =
1

2

�
~xTB~x + ~yTB~y � 2

q
~xTB~x � ~yTB~y � (~xTB~y)2

�

and the best view for this metric is

~x� = PP+(�1~x+ �2~y)

~y� = PP+(
1~x + 
2~y)

13



where

�1 =
1

2

0
@1 + ~yTB~yq

~xTB~x � ~yTB~y � (~xTB~y)2

1
A

�2 = 
1 = � ~xTB~y

2
q
~xTB~x � ~yTB~y � (~xTB~y)2


2 =
1

2

0
@1 + ~xTB~xq

~xTB~x � ~yTB~y � (~xTB~y)2

1
A

Proof: The expression for the metric immediately follows from Theorem 1 and 2. The

expression for the best view is developed in the Appendix D.

2

6 Solution in image space

In order to compute the image metric as de�ned in section 3, we need to solve the constraint

minimization problem de�ned in Eq. (6)

Nim = min
~r1;~r22R3

k~x� P~r1k2 + k~y � P~r2k2 s:t: ~rT1 � ~r2 = 0; ~rT1 � ~r1 = ~rT2 � ~r2

Section 6.1 shows that Ntr, computed in the previous section, can be used to bound Nim

from both above and below. Section 6.2 describes a direct method to compute a sub-optimal

approximation to Nim and outlines an iterative algorithm to improve this estimate to obtain

the optimal Nim.

6.1 Bounding the image metric with the transformation metric

In this section we show that using the transformation metric de�ned in Section 5 Ntr, and the

a�ne metric Naf (given in Eq. (9)), we can bound the image metric Nim from both above and

below. We prove the following theorem:

Theorem 4: Let 0 � �1 � �2 � �3 denote the three eigenvalues of PTP , then

Naf + �1Ntr � Nim � Naf + �3Ntr (16)

Proof: Denote by ~r�1 and ~r�2 the vectors that minimize the term for the image metric given

in Eq. (6), namely

Nim = k~x� P~r�1k2 + k~y � P~r�2k2

14



and denote by ~r1 and ~r2 the vectors that minimize the transformation metric given in Eq. (13),

namely

Ntr = kP+~x� ~r1k2 + kP+~y � ~r2k2

We start by showing the upper bound. Since ~r�1 and ~r
�
2 minimize the term for Nim, we can

write

Nim = k~x� P~r�1k2 + k~y � P~r�2k2
� k~x� P~r1k2 + k~y � P~r2k2

We now break each term in this sum into two orthogonal components as follows

~x� P~r1 = (~x� PP+~x) + (PP+~x� P~r1)

for which it holds that

(~x� PP+~x)T � (PP+~x� P~r1) = 0

The orthogonality readily follows from the identity

(PP+)TP = (P+)TPTP = P (PTP )�1(PTP ) = P

Since the two components are orthogonal it holds that

k~x� P~r1k2 = k~x� PP+~xk2 + kPP+~x� P~r1k2

and, similarly,

k~y � P~r2k2 = k~y � PP+~yk2 + kPP+~y � P~r2k2
Therefore (recall that ~r1 and ~r2 minimize Ntr and that �3 is the largest eigenvalue of P

TP )

Nim � k~x� P~r1k2 + k~y � P~r2k2
= k~x� PP+~xk2 + kPP+~x� P~r1k2 + k~y � PP+~yk2 + kPP+~y � P~r2k2
= k(I � PP+)~xk2 + k(I � PP+)~yk2 + kP (P+~x� ~r1)k2 + kP (P+~y � ~r2)k2
= Naf + kP (P+~x� ~r1)k2 + kP (P+~y � ~r2)k2
� Naf + �3(k(P+~x� ~r1)k2 + k(P+~y � ~r2)k2)
= Naf + �3Ntr

Next, we prove the lower bound. The proof is similar to the proof in the upper bound case,

but this time we start by breaking up the terms into orthogonal components. Then we use the

facts that ~r1 and ~r2 minimize Ntr and that �1 is the smallest eigenvalue of P
TP .

Nim = k~x� P~r�1k2 + k~y � P~r�2k2
= k~x� PP+~xk2 + kPP+~x� P~r�1k2 + k~y � PP+~yk2 + kPP+~y � P~r�2k2
= k(I � PP+)~xk2 + k(I � PP+)~yk2 + kP (P+~x� ~r�1)k2 + kP (P+~y � ~r�2)k2
= Naf + kP (P+~x� ~r�1)k2 + kP (P+~y � ~r�2)k2
� Naf + �1(k(P+~x� ~r�1)k2 + k(P+~y � ~r�2)k2)
� Naf + �1Ntr

15



Consequently

Naf + �1Ntr � Nim � Naf + �3Ntr

2

6.2 Direct solution for the image metric

In this section we develop tighter bounds on the image metric by direct methods, following

the same steps we took in the derivation of the transformation metric in Section 5. Unlike for

the transformation metric, we cannot obtain a closed-form solution for the image metric, but

we can obtain a better estimator than we have previously described. This also enables us to

develop an iterative method to compute the distance exactly.

In section 6.2.1 we describe a change of coordinate system, arriving at a minimization

problem which is similar to the one we had to solve for the transformation metric. The di�erence

is that the sought vectors are constrained to lie on an ellipsoid rather than a sphere, and the

ellipsoid is de�ned by a 3� 3 positive-de�nite version of the characteristic matrix B.

In section 6.2.2 we restrict the solution vectors, ~u;~v, to lie in a plane with the data vectors,

~x; ~y and we derive the optimal solution under this constraint. The solution, however, is only

sub-optimal, since in contrast to the transformation metric, the optimal solution in this case

does not have to lie in the plane. Using this solution we derive a tighter upper bound on the

optimal solution.

In section 6.2.3 we describe the general problem that needs to be solved, and outline an

iterative method. We propose the solution obtained in the plane as an initial guess for this

method.

6.2.1 Reducing the dimensionality of the problem

In Section 6.1 we have shown that the image metric can be broken into two orthogonal terms,

implying that

Nim = Naf + kP (P+~x� ~r�1)k2 + kP (P+~y � ~r�2)k2 (17)

This property is useful for a direct computation of the image metric. The �rst term, Naf , does

not depend on ~r1; ~r2. To compute Nim, therefore, only the second term needs to be minimized

min
~r1;~r12R3

kPP+~x� P~r1k2 + kPP+~y � P~r2k2 s:t: ~rT1 � ~r2 = 0; ~rT1 � ~r1 = ~rT2 � ~r2 (18)

Note �rst that PP+~x and PP+~y, two vectors in Rn, both lie in a single linear subspace of

dimension 3. (This follows from the fact, shown in [Ullman and Basri, 1991], that every image

of a 3D object can be written as a linear combination of three independent views.) Moreover,

16



the three columns of P lie in the same subspace. It therefore follows that the vectors ~u = P~r1
and ~v = P~r2 must also lie in this subspace.

Denote ~X = PP+~x and ~Y = PP+~y, the projection of ~x and ~y to the column space of P ,

and denote ~u = P~r1 and ~v = P~r2. (Note that ~r1 = P+~u, ~r2 = P+~v, and B = (P+)TP+, the

characteristic matrix of the object.) We rewrite the problem as follows

min
~u;~v2Rn

k ~X � ~uk2 + k~Y � ~vk2 s:t: ~uTB~v = 0; ~uTB~u = ~vTB~v (19)

Since all the vectors, ~X , ~Y , ~u, and ~v, lie in a 3D subspace (the column space of P ) we can

perform the minimization in R3. To transform the system intoR3, we rotate the vectors and the

characteristic matrix B so as to get nontrivial (nonzero) values only in three of the coordinates.

Recall that distances and quadratic forms are invariant under rotation. The rotation matrix 


that should be applied to all terms is de�ned by the eigenvectors of B. Applying this matrix

to B (in the form 
TB
) results in a diagonal matrix with the three positive eigenvalues of B.

6.2.2 Closed-form solution in the plane

Theorem 5: When ~u and ~v are limited to spanf ~X; ~Y g, the solution of Eq. (19) is given by

~Nim =
�1�2

�1 + �2

�
~xTB~x+ ~yTB~y � 2

q
~xTB~x � ~yTB~y � (~xTB~y)2

�
(20)

where
p
�1 � p

�2 are the principal axes of the ellipse, de�ned by the intersection of the ellipsoid

B with the plane spanf ~X; ~Y g.

Note the similarity between this solution and Ntr in Eq. (14). In fact,

~Nim =
2�1�2

�1 + �2
Ntr (21)

The proof closely follows the proof for Ntr presented in Section 5 (Theorem 2). We therefore

skip some of the details.

Proof: We �rst de�ne a new coordinate system in which

~X = w1(
p
�1 cos �;

p
�2 sin �)

~Y = w2(
p
�1 cos �;

p
�2 sin �)

~u = s(
p
�1 cos�;

p
�2 sin�)

~v = s(�p�1 sin�;p�2 cos�)

B =

0
B@

1

�1
0 B13

0 1

�2
B23

B13 B23 B33

1
CA
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Without loss of generality it is assumed below that �90� � � � 90�, � � � � � + 180�, and

�90� � � � 90�. Notice that w1, w2, � and � are given and that s and � are unknown.

Notice that this setting of coordinate system is similar to the one used in Theorem 1 with

the exceptions that here ~u and ~v lie on an ellipse rather than on a circle, and that in general

none of the points can be brought to lie on a principal axis.

Denote by f the term to be minimized, that is

f(�; s) = k ~X � ~uk2 + k~Y � ~vk2

then

f(�; s) = �1(w1 cos � � s cos�)2 + �2(w1 sin � � s sin�)2 + �1(w2 cos � + s sin�)2 +

�2(w2 sin � � s cos�)2

= w2
1(�1 cos

2 � + �2 sin
2 �) + w2

2(�1 cos
2 � + �2 sin

2 �) + s2(�1 + �2)�
2s(w1�1 cos � cos�+ w1�2 sin � sin� � w2�1 cos � sin�+ w2�2 sin � cos�)

The partial derivatives of f are given by

f� = 2s[(w1�1 cos � + w2�2 sin �) sin�� (w1�2 sin � � w2�1 cos �) cos�)]

fs = 2s(�1 + �2)� 2(w1�1 cos � cos�+ w1�2 sin � sin�� w2�1 cos � sin �+ w2�2 sin � cos�)

To �nd possible minima we equate these derivatives to zero

f� = 0

fs = 0

Again, solutions with s = 0 can be ignored since they do not correspond to the global minimum

(for a similar reason as in the proof of Theorem 1).

When s 6= 0, f� = 0 implies

tan�min =
w1�2 sin � � w2�1 cos �

w1�1 cos � + w2�2 sin �

fs = 0 implies

smin =
w1�1 cos � + w2�2 sin �

cos�min(�1 + �2)

and, similarly to Eq. (15),

fmin = w2
1(�1 cos

2 � + �2 sin
2 �) + w2

2(�1 cos
2 � + �2 sin

2 �) � (�1 + �2)(s
min)2 (22)

We substitute smin and cos�min, using the identity cos� = 1p
1+tan2 �

, into Eq. (22). After

some manipulations, we obtain

~Nim = fmin =
�1�2

�1 + �2

�
w2
1 + w2

2 � 2w1w2 sin(� � �)
�

(23)
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Note that

(PP+)TB(PP+) = (P+)TPT (P+)TP+PP+ = (P+)T (P+P )T (P+P )P+ = (P+)TP+ = B

(24)

from which it follows that

w2
1 = ~XTB ~X = ~xTB~x

w2
2 = ~Y TB~Y = ~yTB~y (25)

w1w2 cos(� � �) = ~XTB~Y = ~xTB~y

We substitute the identities from Eq. (25) into Eq. (23), obtaining the expression for ~Nim

in Eq. (20).

2

The derivation for �1 and �2 is given in Appendix E.

The sub-optimal solution in the plane can be used to improve the bounds on the image

metric, which were previously discussed in Theorem 4.

Theorem 6: Let 0 � �1 � �2 � �3 be the three eigenvalues of PTP , then

Naf + �1Ntr � Nim � Naf + H:M:f�2; �3gNtr (26)

where H:M:f�2; �3g = 2
1

�2
+

1

�3

, the Harmonic Mean of �2, �3.

Proof: The eigenvalues of the characteristic matrix B are 1

�1
, 1

�2
, and 1

�3
. (This is shown

in Appendix E.) Since 1=�1 and 1=�2 represent the eigenvalues of a section of B it holds that

(see, e.g., [Strang, 1976] p. 270)

1

�1
� 1

�1
� 1

�2
� 1

�2
� 1

�3

Using Eq. 21 we obtain that

~Nim =
2�1�2

�1 + �2
Ntr =

2
1

�1
+ 1

�2

Ntr � 2
1

�2
+ 1

�3

Ntr = H:M:f�2; �3gNtr

And, using Eq. 17 we obtain the upper bound

Nim � Naf + ~Nim � Naf +H:M:f�2; �3gNtr

2

Corollary 7:

Naf + �1Ntr � Nim � Naf +
2�1�2

�1 + �2
Ntr (27)
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Note that, since H:M:fa; bg � 2minfa; bg for every a; b, we have the following corollary.

Corollary 8:

Naf + �1Ntr � Nim � Naf + 2�2Ntr

We cannot yet improve the lower bound in theorem 4; but we conjecture that

Conjecture 1: Let 0 � �1 � �2 � �3 be the three eigenvalues of PTP , then

Naf +H:M:f�1; �2gNtr � Nim � Naf +H:M:f�2; �3gNtr (28)

Motivation: We know that if the two data points ~X,~Y lie on the ellipse whose principal

axes are of length �1, �2 (the smallest cross-section of the ellipsoid B), then

Nim = Naf + H:M:f�1; �2gNtr

We can show that this solution is a local minimum, namely, it is not possible to improve the

solution by applying small perturbations to the solution vectors.

2

6.2.3 An iterative optimal solution

The solution we obtained in Theorem 5 is sub-optimal; it is not the lowest distance. We now

give the cost function, a function of four variables, which should be minimized to obtain the

precise value of the image metric.

We �rst de�ne a coordinate system such that

~X = w1(
p
�1 cos � cos �;

p
�2 cos � sin �;

p
�3 sin �)

~Y = w2(
p
�1 cos � cos �;

p
�2 cos � sin �;

p
�3 sin �)

~u = s(
p
�1 cos� cos �;

p
�2 cos� sin �;

p
�3 sin�)

~v = s(
p
�1(sin � cos 
 + sin � cos � sin 
);

p
�2(� cos� cos 
 + sin � sin � sin 
);

�
p
�3 cos� sin 
)

B =

0
B@

1

�1
0 0

0 1

�2
0

0 0 1

�3

1
CA

where w1, w2, �1, �2, �3, �, �, �, and � are known, and s, �, � and 
 are free.

Note that this setting of coordinate system is similar to the one used in Theorem 5, but

now ~u and ~v lie on an ellipsoid rather than on an ellipse.
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In this notation the free parameters are selected so as to satisfy the two rigid constraints,

~uTB~u = ~vTB~v and ~uTB~v = 0. To compute the image metric, the following function should be

minimized.

f(s; �; �; 
) = �1(s cos� cos� � w1 cos � cos �)
2 + �2(s cos� sin � � w1 cos � sin �)

2 +

�3(s sin�� w1 sin �)
2 +

�1(s sin � cos
 + s sin� cos� sin 
 � w2 cos � cos �)
2+ (29)

�2(�s cos� cos 
 + s sin� sin � sin 
 � w2 cos � sin �)
2 +

�3(�s cos� sin 
 � w2 sin �)
2

Nim is the global minimum of f(s; �; �; 
). Assuming that f(s; �; �; 
) is convex in the area

that contains both the global minimum Nim and the sub-optimal solution (Naf + ~Nim), we can

employ the following iterative method to compute Nim:

1. compute ~Nim;

2. improve the solution by any gradient-descent method until a local minimum is obtained.

If the convexity assumption is correct, this method returns the correct image metric, otherwise

it may return a sub-optimal solution.

7 Simulations

To test the presented metric we have compared it with the alignment method. As was mentioned

in Section 2 the alignment method involves the selection of a small subset of correspondences

(alignment key), solving for the transformation using this subset, and then transforming the

rest of the points and measuring their distance from the corresponding image points. The

obtained distance critically depends on the choice of alignment key. Di�erent choices produce

di�erent distance measures between the model and the image. The results are almost always

sub-optimal, since it is usually better to match all points with small errors than to exactly

match a subset of points and project the errors entirely onto the others.

In our simulations, models composed of four points were projected to the image using weak

perspective projection. Gaussian noise (with standard deviation 0:05 of the radius of the 3D

object) was added to the obtained images. Using the expression for Ntr given in (14), we

computed the upper and lower bounds on the image metric between the model to the noisy

images. In addition, we computed the corresponding alignment distances, each re
ecting the

distance between one model point and its predicted projection in the image after the alignment

of the remaining three image points to the model.

The �gures below summarize our results. Figure 3 shows the percentage of alignment

distances which actually lie within the bounds on the image metric computed by our metric
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Figure 3: The percent of alignment distances which lie within the bounds on the image metric computed from

our closed-form equations. The abscissa gives the condition number of the characteristic matrix, B, which

determines how far apart the lower and upper bounds on the image metric are. The larger the condition number

is, the further apart the bounds are. Solid graph: alignment distances relative to the wide bounds from Eq. (26).

Dashed lines: alignment distances relative to the tight upper bound from Eq. (27).

(given in Eq. (26)). It can be seen that when the bounds are relatively tight (when the condition

number on the characteristic matrix B is relatively low) most of the alignment solutions

exceed the upper bound. Only when the condition number gets larger do the alignment distances

lie within the bounds. When a tighter upper bound is used (Eq. (27)), a smaller portion of the

alignment distances actually lie within the bounds.

Figure 4 shows the maximal and minimal alignment distances obtained in di�erent runs

relative to the upper and lower bounds on the image metric, given in Eq. (26) and Eq. (27). It

can be seen that in many cases even the best alignment solution (the one that minimizes the

distance) still exceeds the upper bound.

8 Summary

We have proposed a transformation metric to measure the similarity between 3D models and

2D images. The transformation metric measures the amount of a�ne deformation applied to

the object to produce the given image. A simple, closed-form solution for this metric has been

presented. This solution is optimal in transformation space, and it is used to bound the image

metric from both above and below.
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Figure 4: The maximal and minimal alignment distances are plotted for a number of models and objects,

varying along the abscissa. The distances in these plots were normalized so as to obtain constant lower and
upper bounds (the lower bound is set to 1; the upper bound is set to be the average ratio of the upper bound to

the lower bound in each sequence of runs). Small (between 1:5 and 2:5) and large (between 4:5 and 5:5) condition

numbers are used, and the results are compared to both the wide (Eq. (26)) and the tight (Eq. (27)) bounds. (a)
Small condition number, wide bounds. (b) Small condition number, tight bounds. (c) Large condition number,

wide bounds. (d) Large condition number, tight bounds.
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The transformation metric presented in this paper can be used in several di�erent ways in

the recognition and classi�cation tasks:

1. It provides a direct assessment of the similarity between models and images. Measuring

the amount of deformation applied to the objects makes it suited for the task of object

classi�cation where the uncertainty in the structure of the observed objects is inherent.

2. The transformation metric can be used to bound the image metric, the distance between

the image and the closest view of the object, from both above and below. As shown

by our simulations, these bounds often provide better estimates than those provided by

using alignment. Consequently, we believe that in many cases the bounds su�ce to

unequivocally determine the identity of the observed object.

3. The transformation metric provides a sub-optimal closed-form estimate for the image

metric. A scheme which uses this measure will prefer \symmetric" objects, objects whose

convex-hull is close to a sphere, over other objects which are signi�cantly stretched or

contracted along one spatial dimension. This solution can also be used as an initial guess

in an iterative process that computes the optimal value of the image metric numerically.

Appendices

A Metric properties

The measures described in this paper compare entities of di�erent dimensionalities: 3D objects

and 2D images. We de�ne a metric for comparing such entities as follows. Let P be a set of n

model points, and let q be a set of n corresponding image points. A distance function, N(P; q),

de�ned using a di�erence function @(q; q0) between two views (see Section 3), is called a metric

if

1. N(P; q) � 0 for every model P and image q.

2. N(P; q) = 0 if, and only if, q is a rigid view of P .

3. 8q0; N(P; q) � N(P; q0) + @(q � q0)

For the image metric, Nim, @ is simply the Euclidean distance between corresponding points in

the compared images. It is straightforward to see that the conditions hold for this case. In the

rest of this appendix we prove that these conditions also hold for the transformation metric,

Ntr.
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Transformation metric

The transformation metric, Ntr, measures the amount of \a�ne deformation" applied to the

object in the image. The metric conditions for Ntr are de�ned as follows.

1. N(P; q) � 0 for every model P and image q.

2. N(P; q) = 0 if, and only if, there exists a rigid view which coincides with PP+q. (In

other words, the best a�ne view of the object is a rigid view and there is no \a�ne

deformation".)

3. 8q0; N(P; q) � N(P; q0) + kP+(q � q0)k

Theorem 9: Ntr is a metric.

Proof:

1. Ntr � 0. Ntr minimizes a non-negative distance function. It is therefore always non-

negative.

2. Ntr = 0 if, and only if, the best a�ne view is rigid. Denote ~x and ~y the x and y coordinates

of the points in q, according to Eq. (14)

Ntr = 0

() (~xTB~x + ~yTB~y)2 = 4(~xTB~x � ~yTB~y � (~xTB~y)2)

() (~xTB~x)2 + 2(~xTB~x � ~yTB~y) + (~yTB~y)2 = 4(~xTB~x � ~yTB~y)� 4(~xTB~y)2

() (~xTB~x � ~yTB~y)2 = �4(~xTB~y)2

This equation holds if, and only if, both sides are zero implying that

~xTB~x = ~yTB~y

~xTB~y = 0

The best a�ne view of the object is given by PP+x; PP+y. Following Eq. (11), the best

a�ne view also satis�es the rigidity constraints above, and therefore it forms a rigid view.

3. The metric Ntr is de�ned in Eq. (13) as:

Ntr(P; q) = min
~r1;~r22R3

kP+~x� ~r1k2 + kP+~y � ~r2k2 s:t: ~rT1 � ~r2 = 0; ~rT1 � ~r1 = ~rT2 � ~r2

Let ~w1 and ~w2 be the optimal vectors for q
0, that is

Ntr(P; q
0) = kP+~x0 � ~w1k2 + kP+~y0 � ~w2k2
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And we obtain

Ntr(P; q
0) + kP+(q � q0)k

= kP+~x0 � ~w1k2 + kP+~y0 � ~w2k2 + kP+~x� P+~x0k2 + kP+~y � P+~y0k2
� kP+~x� ~w1k2 + kP+~y � ~w2k2
� min

~r1;~r22R
3

kP+~x� ~r1k2 + kP+~y � ~r2k2 = Ntr(P; q)

B The computation of the characteristic matrix

In Eq (10) the characteristic matrix B was de�ned using the matrix of Euclidean model point

coordinates P . We now give a more general (though equivalent) de�nition of B using a matrix of

a�ne model point coordinates Q. Namely, the point coordinates in Q are given in a coordinate

system whose axes are not necessarily orthonormal. This de�nition makes it possible to compute

B directly from three or more images with a completely linear algorithm, which requires no

more than pseudo-inverse.

We select an a�ne coordinate system whose independent axes are de�ned by three of the

object points, to be called the basis points. Let Pbas denote the submatrix of P corresponding

to the coordinates of the basis points, and let Q denote the a�ne coordinates of all the object

points in this basis. It immediately follows that:

P = Q � Pbas
Let Bbas denote the characteristic matrix of the three basis points. From Eq (10) it follows that

Bbas = (P�1
bas)

TP�1
bas (30)

Finally, from the de�nition of pseudo-inverse it can be readily veri�ed that

P+ = (Q � Pbas)+ = P�1
basQ

+ (31)

We now describe B in terms of Q and Bbas. Substituting Eq (31) into the de�nition of B

in Eq (10), and using Eq (30), we obtain

B = (P+)TP+ = (Q+)T �Bbas �Q+

The linear and incremental computation of the matrices Q and Bbas from at least three

images of the object points is described in [Weinshall and Tomasi, 1992].
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C Eliminating translation

In this appendix we show that translation can be ignored if we set the centroids of both model

and image points to be the origin. To show this, we prove that the best rigid and a�ne

transformations maps the model centroid to the image centroid. We begin by showing that,

given two sets of n 2D points (images), the best translation that relates the two images maps

the centroid of the �rst image to that of the second.

Lemma 10: Let p1; :::; pn 2 R2 and q1; :::; qn 2 R2 be two sets of corresponding points.
Denote by �p = 1

n

Pn
i=1 pi and �q = 1

n

Pn
i=1 qi the centroids of p1; :::; pn and q1; :::; qn respectively.

The translation t� 2 R2 that minimizes the term

D� = min
t2R2

nX
i=1

kpi + t � qik2

is given by
t� = �q � �p

Proof: Assume, by way of contradiction, that the best translation is given by

t0 = t� + �

for some nonzero � 2 R2. Denote the new term by D0

D0 =
nX
i=1

kpi + t0 � qik2

=
nX
i=1

kpi + t� + � � qik2

=
nX
i=1

kpi + t� � qik2 + 2
nX
i=1

(pi + t� � qi) � � +
nX
i=1

k�k2

= D� + 2n(�p+ t� � �q) � � + nk�k2

Since t� = �q � �p, we obtain that

�p+ t� � �q = 0

and, therefore,

D0 = D� + nk�k2

which implies that

D� < D0

contradicting the initial assumption.

2

Using Lemma 10 we prove that the best rigid and a�ne transformations map the model

centroid to the image centroid.
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Theorem 11: Let P1; :::; Pn 2 R3 be a set of n model points, and let q1; :::; qn 2 R2 be the
corresponding n image points. The rigid transformation fs�; R�; t�g that minimizes the term

D� = min
fs;R;tg

nX
i=1

ks�RPi + t � qik2

where � denotes the orthographic projection, satis�es

�q = s��R� �P + t�

Proof: Denote by pi = s��R�Pi; according to Lemma 10

t� = �q � �p

Since

�p =
1

n

nX
i=1

pi =
1

n

nX
i=1

s��R�Pi = s��R� �P

we obtain that

�q = �p+ t� = s��R� �P + t�

The theorem holds also if we consider a�ne transformations rather then only the rigid ones.

The rotation matrix R is replaced in this case by a general linear transformation A.

2

Theorem 11 shows that the best rigid and a�ne transformations map the model centroid to

the image centroid. Consequently, if the two centroids are moved to the origin, the translation

component vanishes. This follows immediately from Theorem 11, since

�q = s��R� �P + t�

then
�P = �q = 0

implies

t� = 0

D Best View

In this appendix we develop an expression for the best view of the transformation metric, Ntr.

The derivations here follow the notations used in the proof of Theorem 1, from which we have

that

s =
1

2

q
w2
1
+ w2

2
+ 2w1w2 sin �

s cos� =
1

2
(w1 + w2 sin �)

s sin� =
1

2
w2 cos �
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According to Theorem 2, ~r1; ~r2 2 spanf~a1;~a2g. We can therefore express ~r1 and ~r2 by

~r1 = �1~a1 + �2~a2

~r2 = 
1~a1 + 
2~a2

where �1, �2, 
1, and 
2 are scalars. Substituting the de�nitions of the vectors ~r1, ~r2, ~a1, and

~a2 we obtain

s cos� = �1w1 + �2w2 cos �

�s sin� = �2w2 sin �

and

s sin� = 
1w1 + 
2w2 cos �

s cos� = 
2w2 sin �

Therefore

�1 =
s sin� cos � + s cos� sin �

w1 sin �

�2 = � s sin�

w2 sin �


1 =
s sin� sin � � s cos� cos �

w1 sin �


2 =
s cos�

w2 sin �

Substituting for s and � we obtain

�1 =
1

2
(1 +

w2

w1 sin �
)

�2 = 
1 = � cos �

2 sin �


2 =
1

2
(1 +

w1

w2 sin �
)

And substituting for w1, w2, and �

�1 =
1

2

0
@1 + ~yTB~yq

~xTB~x � ~yTB~y � (~xTB~y)2

1
A

�2 = 
1 = � ~xTB~y

2
q
~xTB~x � ~yTB~y � (~xTB~y)2


2 =
1

2

0
@1 + ~xTB~xq

~xTB~x � ~yTB~y � (~xTB~y)2

1
A
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Now, to obtain the best view we use the following identities

~x� = P~r1 ~r1 = �1~a1 + �2~a2 ~a1 = P+~x

~y� = P~r2 ~r2 = 
1~a1 + 
2~a2 ~a2 = P+~y

Therefore

~x� = PP+(�1~x+ �2~y)

~y� = PP+(
1~x + 
2~y)

E Computing the eigenvalues of an ellipse

In this appendix we compute the eigenvalues of the ellipsoid B and the eigenvalue of an elliptic

section of this ellipsoid.

We �rst show that the eigenvalues of the characteristic matrix, B, are 1

�1
, 1

�2
, and 1

�3
,

where �1, �2, and �3 are the three positive eigenvalues of P
TP . This is derived as follows.

B~a =
1

�
~a() P (PTP )�1(PTP )�1PT~a =

1

�
~a

Multiplying both sides by PT we obtain that

(PTP )�1PT~a =
1

�
PT~a

Denote ~b = PT~a

(PTP )�1~b =
1

�
~b

which implies that

(PTP )~b = �~b

Given ~X = PP+~x and ~Y = PP+~y in R3, and a positive de�nite 3 � 3 matrix B, let B0

denote the ellipse de�ned by the intersection of the ellipsoid B with the plane spanf ~X; ~Y g. We

need to �nd the eigenvalues of B0, 1

�1
and 1

�2
.

Without loss of generality we assume that ~X and ~Y lie on the ellipsoid de�ned by B (namely,

we normalize the vectors so that ~XTB ~X = ~xTB~x = 1 and ~Y TB~Y = ~yTB~y = 1). Let � denote

the angle between ~X and ~Y . We de�ne two orthonormal vectors ~x0 and ~y0, which span the

plane spanf ~X; ~Y g, as follows:

~x0 =
~X

j ~Xj

~y0 =

~Y � ~X�~Y
jXj2

~X

jY j sin �
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Every vector ~v 2 spanf ~X; ~Y g can be written as

~v = �~x0 + �~y0

and the intersection ellipse B0 is given by

~vB0~v = 1 () (� � )ATBA

�
�

�

�
= 1

for A the 3� 2 matrix whose columns are ~x0 and ~y0. We therefore have that

B0 = ATBA =

�
(~x0)TB~x0 (~x0)TB~y0

(~x0)TB~y0 (~y0)TB~y0

�

Substituting the expressions for ~x0 and ~y0, we get

(~x0)TB~x0 =
1

jX j2

(~y0)TB~y0 =
jX j2� 2jX jjY j cos�( ~XTB~Y ) + jY j2 cos2 �

jX j2jY j2 sin2 �

(~x0)TB~y0 =
( ~XTB~Y )jX j � jY j cos �

jX j2jY j sin �

To obtain the two eigenvalues of B0 1

�1
and 1

�2
, we solve the characteristic equation of B0,

whose roots are

jX j2+ jY j2 � 2jX jjY j cos� � ��
q
(jX j2+ jY j2 � 2jX jjY j cos� � �)2 � 4jX j2jY j2 sin2 �(1� �2)

2jX j2jY j2 sin2 �

for � = ~XTB~Y = ~xTB~y, jX j = jPP+~xj, jY j = jPP+~yj, and cos � =
~X�~Y

jXjjY j
.
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