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Abstract

In the �rst part of this paper paper we show that a new technique exploiting 1D correlation of 2D or even

1D patches between successive frames may be su�cient to compute a satisfactory estimation of the optical


ow �eld. The algorithm is well-suited to VLSI implementations. The sparse measurements provided by

the technique can be used to compute qualitative properties of the 
ow for a number of di�erent visual

tasks. In particular, the second part of the paper shows how to combine our 1D correlation technique with

a scheme for detecting expansion or rotation ([5]) in a simple algorithm which also suggests interesting

biological implications. The algorithm provides a rough estimate of time-to-crash. It was tested on real

image sequences. We show its performance and compare the results to previous approaches.
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1 Introduction

The problem of how to compute e�ciently estimates of

the optical 
ow at sparse locations is of critical impor-

tance for practical implementations in a number of di�er-

ent tasks. A speci�c example is the detection of expan-

sion of the visual �eld with a rough estimate of time-to-

crash (TTC). The question has also interesting relations

with biology, as we will discuss later. In this paper we

propose an e�cient algorithm for computing the opti-

cal 
ow which performs well in a number of experiments

with sequences of real images and is well suited to a VLSI

implementation.

Optical 
ow algorithms based on patchwise correla-

tion of �ltered images perform in a satisfactory way [3]

and better in practice than most other approaches (see

[1]). Their main drawback is computational complexity

that forbid at present useful VLSI implementations. In

this paper we show that 1D patchwise correlation may

provide a su�ciently accurate estimate of the optical


ow1. We will then show with experiments on real im-

age sequences how to apply this technique to measure

time-to-crash, by exploiting a recently proposed scheme

[5]. The latter scheme, which is robust and invariant

to the position of the focus of expansion or the center

of rotation, relies on sparse measurements of either the

normal or the tangential component of the optical 
ow

(relative to a closed contour). We will also discuss some

broad implications of this work for the practical compu-

tation of the optical 
ow and for biology, in particular

its relation to Reichardt's-type models.

There are two main and quite separate contributions

in this paper:

1. an e�cient 1D correlation scheme to estimate the

optical 
ow along a desired direction

2. the experimental demonstration that a previously

proposed algorithm for estimating time-to-crash

performs satisfactorily in a series of experiments

with real images in which the elementary measure-

ments of the 
ow are obtained by the new 1D cor-

relation scheme.

2 Computing the Optical Flow along a

Direction

How can the component of the optical 
ow be measured

e�ciently along a certain desired direction? As argued

by Verri and Poggio [12] a qualitative estimate is often

su�cient for many visual tasks. For the task of detect-

ing a potential crash, for instance, it has been suggested

([5]) that a precise measurement of the normal compo-

nent of the 
ow may not be necessary, since the precise

1In this paper we use mainly the L2 distance rather than
the correlation itself. Since the two measures are equivalent
for the purposes of this paper, we will often use the terms
\correlation" and \distance" in an interchangeable way.

de�nition of the optical 
ow is itself somewhat arbitrary:

it is su�cient that the estimate be qualitatively consis-

tent with the values of the perspective 2D projection

of the \true" 3D velocity �eld for the particular stim-

ulus. In other words, even estimates that don't really

measure image-plane velocity (like Reichardt's correla-

tion model or equivalent energy models), since they also

depend on spatial structure of the image, may be ac-

ceptable for several visual tasks, if their estimates are

consistent over the visual �eld. Certain uses of a crash

detector are good examples. It turns out that even a

rough estimate of time-to-crash (TTC) is possible using

approximate estimates of the optical 
ow �eld. Flies and

other insects rely for landing on what appears to be a

qualitative estimate of the time-to-crash!

2.1 1D correlation of 2D patches

A possible approach for an approximative estimate of

the optical 
ow is to use a 1D correlation scheme be-

tween two successive frames, instead of 2D correlation,

as in [3]. The basic idea underlying the full 2D correla-

tion technique that we label 2D-2D in this paper2 is to

measure, for each desired location, the (x; y) shift that

maximizes the correlation between 2D patches centered

around the desired location in successive frames. The

patchwise correlation between the image at time t and

at time t+ �t is de�ned as

�(�x; �y; t) � I
w

I =

Z
I
w(�; �; t)I(�x+�; �y+�; t+�t)d�d�

(1)

where Iw(�; �; t) is the image at time t windowed to the

patch of interest and set to 0 outside it. The L2 distance

has very similar properties to the correlation measure 3.

In the context of this paper, minimizing the L2 distance

is exactly equivalent to maximizing the correlation (the

observation is due to F. Girosi). As noticed before [3],

the previous idea can be regarded as an approximation

of a regularization solution to the problem of computing

the optical 
ow4. Usually, one does not use grey values

directly but rather some �ltered version of the image,

for instance through a Laplacian-of-a-Gaussian �lter (see

[3]), possibly at di�erent resolutions.

Let us call D(�x; �y) the L2 distance between 2

patches in 2 frames at location (x; y) as a function of the

shift vector (�x; �y). The \winner-take-all" scheme �nds

s� = (��
x
; �

�

y
) that minimizes D (or maximize the corre-

lation function �(�x; �y)) and assumes that the optical

2It is also called winner-take-all method.
3The L2 distance is in this case the square root of the

sum of the squares of the di�erences between values of cor-
responding pixels. Other \robust" distance metric may be
used, such as the sum of absolute values.

4And in turn several de�nitions of the optical 
ow such
as Horn and Schunk's, can be shown to be approximations of
the correlation technique [6].
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Figure 1: The search space for the 1D�2D scheme used

for the computation of the x and y components of the

optical 
ow.


ow estimate is u� = s�=�t, where �t is the interframe

interval.

It is natural to consider whether the component of

u� along a given direction, for instance x, may be es-

timated in a satisfactory way simply by computing the

�x that minimizes D(�x; 0), that is the patchwise cor-

relation as a function of x shifts only. We have found

in our experiments that 1D correlation of a 2D patch

provides estimates of �x� that are very close to the es-

timates obtained from the 2D-2D technique. We label

this technique 1D-2D, since it involves one-dimensional

correlations on 2D patches.

If we combine horizontal and vertical motion detectors

of our 1D, winner-take-all type (see �g.1), we obtain an

appealing scheme to estimate the optical 
ow �eld at

one point. The optical 
ow in one point is the vector

sum of the x and y components computed by using such

motion detectors. The key aspect of this approach is its

reduction of the complexity of the problem, while main-

taining a good estimation of the 
ow �eld: a complete

two-dimensional search required in the winner-take-all

scheme [3] is reduced to two one-dimensional searches.

Let us call vmax the maximum velocity expected on the

image plane. In [3] the search space size to scan is

(2vmax + 1)2 for each point; in our approach, its size

is limited to 2(2vmax + 1).

2.2 1D correlation of 1D patches

So far we have discussed that 1D correlation of 2D

patches gives a satisfactory estimate of the optical 
ow

between two successive frames, reducing the search space

of corresponding points. This is equivalent to saying that

the

min�x�(�x; 0)

and

min�y�(0; �y)

give a satisfactory estimate of

min�x;�y�(�x; �y):

This suggests a further simpli�cation: instead of �(�x; 0)

consider a projection on x of �(�x; �y) obtained by some

form of averaging operation on y, that is

� � h2

,

where h2 is a 2D �lter such as a Gaussian elongated in

the y direction and � stands for the convolution operator.

By well known properties of the Gaussian function, h2
can always be written as

h2 = h � h;

where h are Gaussian functions of appropriate variance.

Assuming that we can neglet the patch size in the de�-

nition of �, we can write:

� � h2 = (It � h)
 (It+�t � h) (2)

where It = I(x; y; t).

Thus, in the approximation of a large patch size, pro-

jecting the correlation function is equivalent to appropri-

ately �ltering the two images before correlation. Since

it is usually better to discount the average intensity as

well as small gradients through a high-pass �ltering op-

eration, in order to estimate the x-component of u, we

just perform a Gaussian smoothing in the y direction, as

shown in eq. 2, and then perform an additional convo-

lution with the �rst or second derivative of a Gaussian

function elongated in the x direction. Therefore the in-

tensity function that is used in practice in the correlation

operation is:

Ît = (G�y
(y) � It) �G

00

�x
(x) (3)

where �x and �y de�ne the receptive �eld of such an

elementary motion detector. After this �ltering step, it

is su�cient to evaluate the maximum of the correlation

function only on 1D patches to obtain an estimate of the

x component of the 
ow. The previous argument does

not strictly apply to the L2 distance measure that we

have used in our experiments. The very close similarity

between correlation and distance, however, suggests a

very similar behavior in both cases. We label this tech-

nique the 1D-1D scheme since it involves 1D correlations

of 1D patches.
2



Σ

Figure 2: A TTC detector consisting of elementary mo-

tion detectors (see �gure 1) at several locations along a

closed contour. Each of the elementary motion detec-

tors could be replaced by a single detector normal to the

circle.

3 A crash detector: the Green theorem

scheme

As described in [5] (see also [2]), the divergence of the

optical �eld ru(x; y) is a di�erential measure of the local

expansion (ru(x; y) =
@ux(x;y)

@x
+

@uy(x;y)

@y
). For a linear

�eld (i.e. u(x) = Ax), the divergence of u is the same

everywhere. In the case of linear �elds (and all �elds can

be approximated by linear �elds close to the singularity),

the integral of the divergence over an area is invariant

with respect to the position of the center of expansion.

Green's theorems show that the integral over a surface

patch S of the divergence of a �eld u is equal to the

integral along the patch boundary of the component of

the �eld which is normal to the boundary (u � n). In

formula

Z
S

ru(x; y)dxdy =

Z
C

u �ndl: (4)

Therefore, since for a linear �eld ru = 2=� where �

is the time to crash (TTC), a TTC detector that ex-

ploits the Green theorem just needs to sum over a closed

contour, say a circle, the normal component of the 
ow

measured at n points along the contour. We assume

that the task is to compute time to crash (TTC) for

pure translational motion. Possibly the simplest TTC

detector of this type, shown in �gure 3, is composed of

just 4 elementary motion detectors. In this case we have

to sum the x-component of u for the horizontal detectors

and the y-component of u for the vertical ones, with the

Σ

Figure 3: Time-to-crash detector that exploits Green

theorem.

correct sign.

Due to the invariance with respect to the position of

the focus of expansion (or contraction) we can in princi-

ple arrange a certain number of them (see �g.4) on the

image plane. Our simulations suggest that one detec-

tor with a large radius (�g. 3) is better than several,

\smaller" detectors (�g. 4) in situations in which the

whole visual �eld expands, probably because of better

numerical stability of the estimates. Of course, a \large"

detector has a poorer spatial resolution and this may be

a problem in some applications (but not ours).

We have discussed so far schemes for detecting expan-

sion. Similar arguments hold for rotation. The Green 's

theorem relevant to this case is usually called Stokes'

theorem and takes the form

Z
S

r^ u(x; y) � dS =

Z
C

u � dr (5)

which says that the total 
ux of the di�erential measure

of \rotationality" of the �eld r ^ u across the surface

patch S is equal to the integral along the boundary C

of the surface patch of the component of the �eld which

is tangential to the boundary. As described in [5], each

elementary detector evaluates the tangential 
ow com-

ponent at the contour of the receptive �eld (see �g.5).

In this case a detector has to compute the component of

u along the tangential direction at the contour.

4 Experimental results

4.1 The 1D-2D scheme

We have extensively tested our approach on real image

sequences. Each sequence was acquired from a camera
3



Figure 4: A possible arrangement of TTC detectors in

the image plane that is not as e�cient as a single TTC

detector with greater radius but has higher spatial reso-

lution.

Σ

Figure 5: Motion detector that exploits Stokes' theorem.

mounted on mobile platformmoving at constant velocity.

In all experiments the movement of the vehicle was a

forward translation along a straight trajectory. We have

veri�ed the results obtained from our 1D-2D approach

with the standard winner-take-all (2D-2D) scheme [3]

[1].

Figure 9 shows the �rst and last image of a sequence

composed of 100 frames. Each image of the sequence is

�rst convolved with a Gaussian �lter having � = 0:5. In

both the algorithms we have used vmax = 9 and � = 20

pixels, where vmax is the maximum expected velocity of

the points on the image plane and � is the ray of the

patch used for the evaluation of �. In other words, the

correlation window used for the optical 
ow computation

is 41 � 41 pixels and the search space used is 19 � 19

by 2D-2D and 19 + 19 by 1D-2D. Figures 10 shows the

optical 
ows computed by the two methods using two

successive images of the sequence. The position of the

focus of expansion was computed by using the approach

described in [11].

We have used the method described in [11] and [5] to

verify the TTC estimation. To compute the TTC at a

point by using the method in [11], we used an area of

81 � 81 pixels around that point. The points were 10

pixels apart. To compute TTC by using the method de-

scribed in [5], we used a lattice of overlapping motion de-

tectors. The distance between two points on the lattice

was 10 pixels. Each detectors had a receptive �eld of ray

r = 40 pixels. In �g. 11, we compare the results obtained

by using the 2D-2D estimation of the optical 
ow with

the 1D-2D one, by using the two di�erent methods in the

�rst stage of the TTC. Performing a linear best �t on the

TTC measurements, we obtain a slope of m = �1:036

by using the optical 
ows computed by 2D-2D and the

method described in [11], and m = �1:139 by using the

optical 
ows computed by 1D-2D and the method de-

scribed in [5]. Comparing the true TTC (straight line

in �g. 11) with the TTC measures obtained by using

the second method, we estimate an absolute error in the

mean of 2:63, with a standard deviation of 3:35 frame

unit. In terms of relative units, the error in the mean is

5:7% with a standard deviation of 6:1%.

4.2 The 1D-1D scheme

In this section we compare the results obtained by us-

ing 2D-2D and 1D-1D. In both techniques, we have used

vmax = 9 and � = 20 pixels. In other words, the cor-

relation window used for the optical 
ow estimation is

41 � 41 pixels for 2D-2D and 41 pixels for 1D-1D. In

the �ltering step we have used �y = 6 and �x = 3 pix-

els for computing the x-component of the optical 
ow.

These values of � produce a receptive �eld of an elemen-

tary motion detector equals to that used by 2D-2D (1681

pixels). The �g. (6) shows a plot of the 2D correlation

function used in 2D-2D over a 2D search space and a

2D integration area. Figures (7) and (8) show a plot of
4
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Figure 6: 2D distance function. The arrows indicate the

position of the minimum.

1D correlation functions used by the 1D-1D technique

to estimate both components of the optical 
ow. In this

case we used two 1D search spaces (in x and y directions

respectively) and a 1D integration area. Notice that this

approach is capable of computing a reliable estimation

of the 
ow vectors, while reducing the complexity of the

problem.

Figures (13), (17), (21) show the �rst and the last im-

age of three sequences acquired from a camera mounted

on a mobile platform moving at constant velocity, along

a straight trajectory. Figures (14), (18), (22) show the

optical 
ows computed by the two methods, by using

two successive frames of the sequences. The mean (con-

tinuous line) and the standard deviation (dashed line)

of the error on the optical 
ow estimation is shown in

�gures (15), (19), (23). Figures (16), (20), (24) show

the TTC estimation by using the two di�erent methods.

In each experiments, we have used only one TTC detec-

tor, with receptive �eld of r = 80 pixel, composed by 32

elementary motion detectors (see �g. (2)).

5 Conclusions

5.1 Extensions of the optical 
ow algorithm

There are several directions in which we plan to improve

and extend our scheme:

� it may be possible to reduce further the number of

sample points for Dp (i.e. the number of shifts) by

using techniques for learning from examples such

as the RBF technique ([4]) to approximate Dp(�x)

as Dp(�x) =
P

cnG(x � tn), and then �nd the

minimum of Dp in terms of the dynamical sys-

tem dx=dt = ��
P

cnG
0(x � tn). An alternative

strategy is to try to learn directly the function

0
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Figure 7: 1D distance function computed on the x di-

rection by using 1D-1D.
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Figure 8: 1D distance function computed on the y direc-

tion by using 1D-1D.
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minDp(x) from the samples of Dp, using a few ex-

amples of Dp \typical" for the speci�c situation.

The conjecture is that the RBF technique may be

able to learn the mappingminDp(x) from examples

of functions of the same class (compare Poggio and

Vetter, 1992). A similar idea is to try to learn how

to sample the correlation function as a function of

past sampled values. Again, the training examples

would be functions of the same class. This would

provide at each t an estimate of the most appropri-

ate correlation shifts to try.

� instead of simply measuring Di;i�1, that is the

distance between frame i and frame i � 1, we

could measure in addition alsoDi;i�2,Di;i�3, ...and

combine them in an estimate of the optical 
ow

component by taking the average of Di;i�1=�t,

Di;i�2=2�t, Di;i�3=3�t, etc. This technique may

be improved further by using a Kalman �lter.

� the same basic scheme of �gure 1 may be used to

compute horizontal and vertical disparities among

the two frames of a stereo pair.

� con�dence measures will be developed to further

improve the performance of the technique.

5.2 Biological implications of our 1D technique

Poggio et al. ([5]) conjectured that "the speci�c type of

elementary motion detectors that are used to provide the

estimate of the normal component of the 
ow is probably

not critical. Radially oriented (for expansion and con-

traction), two input elementary motion detectors such

as the correlation model [8, 9, 7, 10] { or approximations

of it are likely to be adequate. The critical property is

that they should measure motion with the correct sign."

Our results con�rming their conjecture (since they sug-

gest that 1D correlation (or L2 distance estimation) are

su�cient for an adequate estimate of qualitative proper-

ties of the optical 
ow) have interesting implications for

biology. Consider a 2D array of Reichardt's detectors

(for motion in the x direction) with spacing �x and also

detectors with spacings 2�x etc. Take the sum of all

detectors with the same spacing over a 2D patch. Per-

form a winner-take-all operation on these sums. Select

the set with optimal spacing as the one corresponding

to the present estimate of optical 
ow. This scheme is

analog in time but otherwise equivalent to the one we

have implemented. In formulae

X
(Ii(t) � Ii+k(t��t))2

where �t is the interframe interval in our implementa-

tion and is the delay in Reichardt's model5, k represents

5We have written here the quadratic version of Reichardt's
model; the same argument carries over to the standard model
with multiplication: for the basic equivalence of the the
quadratic and multiplication version see [7])

the shift in our computation ofD and represents the sep-

aration between the inputs to Reichardt's modules, Ii(t)

is the image value (in general spatially and temporally

�ltered) at location i and time t and the sum
P

is taken

over the 2D patch of detectors of the same type.

Thus an array of Reichardt's models with di�erent

spacings of the 2 inputs (in x) could be used in a plau-

sible way to estimate the optical 
ow component along

the direction of the two-inputs detectors. Notice that

a plausible implementation in terms of Reichardt's de-

tectors of the 2D correlation based algorithm would be

much harder, since it would e�ectively require detectors

with all possible 2D spacings. This seems implausible

and contrary to experimental evidence in the 
y, where

only a small number of separations and directions (as

small as 3) seem present.

The above description is equivalent to our 1D-2D

scheme and involves the summation over x and y

\patches" of elementary 1D motion detectors. In the


y this is plausible, given the known summation proper-

ties of speci�c wide �eld lobula plate cells6. Our 1D-1D

scheme on the other hand would require a summation

over the x dimension only (in our example) but an ori-

ented �ltering of the image with receptive �elds elon-

gated in y before the elementary motion detectors. It

is possible that this second scheme may be used in the


y by di�erent summation cells with smaller receptive

�elds. It is also possible that the wide �eld lobula plate

cells e�ectively implement a scheme between the 1D-2D

and the 1D-1D by using some oriented �ltering before

motion detection and limited y integration of the output

of the elementary motion detectors. Similar considera-

tions may apply to some of the motion selective cortical

cells.

5.3 The Time-to-Crash detector

The TTC detector we have simulated is not the only

possible scheme. Others are possible (see for instance

[2]) that take into account more complex motions than

just frontal approach to a horizontal surface.

It is also conceivable that the scheme we suggest may

be simpli�ed even further in certain situations. For in-

stance, it may be su�cient in the summation stage to use

the value of the correlation for a �xed (and reasonable)

shift { instead of an estimate of the optical 
ow, that is

the shift that maximize correlation. This is equivalent

to use directly the output of Reichardt's correlation nets

instead of using the result of a winner-take-all operation

on a set of Reichardt's nets with di�erent spacings (or

delays).

Another related idea is to continuously adjust the cor-

relation shifts in order to track as closely as possible the

maximumof the correlation (or the minimum of the dis-

tance): in this way it may be possible to reduce the com-

6The patch would be very large and would correspond to
the receptive �eld of the cell, that is its integration domain

6



putation of the correlation to just a few shifts, especially

if time-�ltering techniques are also used.
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a b

Figure 9: (a) First and (b) last image of the sequence.
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a b

c

Figure 10: An example of optical 
ows computed by using (a) 2D-2D, (b) 1D-2D and (c) 1D-1D. In most frame

pairs in a sequence the three 
ows are much more similar to each other.

9



TTC measurements comparison
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Figure 11: TTC measurements comparison by using 2D-2D and 1D-2D. In this and the following �gures the abscissa

gives the time in terms of elapsed frames; the ordinate gives the estimate of the time to crash in frame units.
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Figure 12: TTC measurements by using 1D-1D and a TTC detector with 4 elementary motion detectors.

a b

Figure 13: (a) First and (b) last image of the sequence.
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a b

Figure 14: An example of a 
ow �eld computed at one point in time in the above sequence , obtained by using (a)

2D-2D and (b) 1D-1D.
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Figure 15: Mean (dotted line) and standard deviation (dashed line) of the error of the optical 
ow estimation.
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Figure 16: TTC estimation by using one TTC detector, with receptive �eld of r = 80 and 32 elementary motion

detectors. The slope of the true TTC, computed by using the optical 
ows obtained by 2D-2D, is m = �0:672. The

slope of the straight line, computed by using the TTC measures obtained by 1D-1D, is m = �0:64. A comparison

of the TTC measures obtained by 1D-1D with the true TTC yields a mean absolute error of 9:02, with a standard

deviation of 9:54. The relative error in the mean is 10:79% with a standard deviation of 9:49%. In order to evaluate

the error in the time to crash estimation, the following steps have been performed. The true time to crash was

estimated from a linear best �t of the TTC measures obtained by using the 2D-2D scheme for the optical 
ow

estimation. The �gures show the straight line that represents the theoretical behavior of the TTC. A linear best

�t of the TTC measures obtained by using the 1D-1D scheme for the optical 
ow estimation was then performed

in order to evaluate the slopes of the two straight lines. The absolute and relative error between the \true" TTC

and the one measured by the 1D-1D scheme was then estimated. Let us call �� the true TTC. The absolute error is

Ea = j�� � � j and the the relative error is Er = j�� � � j=j� j.

a b

Figure 17: (a) First and (b) last image of the sequence.
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a b

Figure 18: An example of a 
ow �eld obtained by using (a) 2D-2D and (b) 1D-1D.
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Figure 19: Mean (dotted line) and standard deviation (dashed line) of the error relative to optical 
ow estimation.
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Figure 20: TTC estimation by using one TTC detector, with receptive �eld of r = 80 and 32 elementary motion

detectors. The slope of the true TTC, computed by using the optical 
ows obtained by 2D-2D, is m = �0:77. The

slope of the straight line, computed by using the TTC measures obtained by 1D-1D, is m = �0:83. Comparing

the TTC measures obtained by 1D-1D with the true TTC, we had a mean absolute error of 8:02, with a standard

deviation of 8:97. With respect to the relative error we had a mean of 10:9% and a standard deviation of 9:72%.

a b

Figure 21: (a) First and (b) last image of the sequence.
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a b

Figure 22: Flow �eld obtained by using (a) 2D-2D and (b) 1D-1D.
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Figure 23: Mean (dotted line) and standard deviation (dashed line) of the error relative to optical 
ow estimation.
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Figure 24: TTC estimation by using one TTC detector, with receptive �eld of r = 80 and 32 elementary motion

detectors. The slope of the true TTC, computed by using the optical 
ows obtained by wta-2D, is m = �1:24. The

slope of the straight line, computed by using the TTC measures obtained by 1D-1D, is m = �1:14. Comparing

the TTC measures obtained by 1D-1D with the true TTC, we had a mean absolute error of 7:6, with a standard

deviation of 7:9. With respect to the relative error we had a mean of 11:4% and a standard deviation of 10:3%.
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