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Abstract

Anethod for localization and positioningin anindoor environment is presented. Localizat
is the act of recognizing the environnent, and positioning is the act of conputing the e
coordi nates of a robot in the environment. The nethod is based on representing the sc
as a set of 2D views and predicting the appearance of novel views by linear conbinatior
the nodel views. The nethod accurately approxi nates the appearance of scenes under weak
perspective projection. Analysis of this projection as well as experinental results dem
that in many cases this approximtionis sufficient to accurately describe the scene.
orthographic approxinationis invalid, either alarger nunber of nodels can be acquired.
iterative solution to account for the perspective distortions can be enpl oyed.

The presented method has several advantages over existing methods. It uses relatively
representations, the representations are 2Drather than 3D, and localization can be done
asingle 2Dviewonly. The sane principal method is applied both for the localization as
as the positioning problens, and a sinple al gorithmfor repositioning, the task of return
a previously visited position defined by a single view, is derived fromthis nethod.
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1 Introduction

Basic tasks in autononous robot navigation arelocalization and positioning. Localizatior
act of recogni zi ng the envi ronment, that is, assigning consistent [ abels todifferent 1ocaf
positioningis the act of conputing the coordi nates of the robot i nthe envi ronnent. Positi
is atask conplenentary tolocalization, inthe sense that position (e.g., “l.5 neters nc
of table T7) is often specified in a place-specific coordinate system(“in room911”7). I
paper we suggest a nethod of bothlocalization and positioning using vision alone. Ava
of the positioning problem referred to as repositioning, i nvol ving the return to a pre
visited place is also discussed.

Previous studies have exani ned the problens of localization and positioning under a va
of conditions, defined by the ki nd of sensor(s) enployed, the nature of the environnment,
the representations used. W can distinguish betwen active and passive sensing, indoo
out door navigation tasks, and netric and topological representations. The metric app:
attenpts to utilize a detailed geonetric description of the environnment, while the topc
approach uses a nore qualitative description including agraph with nodes representing g
and arcs representing sequences of actions that wouldresult in nmovi ng the robot fromone -
to anot her.

Inthe paper we consi der arobot that uses a passive sensor, vision, inanindoor environ
The envi ronnent cannot be changed by the robot to inproveits performance; neither beacon
nor floor or wall marki ngs are enpl oyed. The paper addresses both the localization and -
positioning problens. Solutions to these problems are presented based on object recog:
techni ques. The nethod, based on the linear conbinations schene of [17], represents sce
by sets of their 2Dinnges. localization is achieved by conparing the observed inage
linear combinations of model views, and the position of the robot is conputed by analy:
the coeffcients of the linear conbination that aligns the nodel to the image. Also, a si
“qualitative” solution to the repositioning problemusing the linear conbinations sct
presented.

The rest of the paper is organized as follows. The next sectiondescribes thelocalizat
positioning problens and surveys previ ous sol utions. The nethod of localizationandposit
using linear conbi nations of nodel views is describedin Section 3. The nethod assumes w
perspective projection. Aniterative schenme to account for perspective distortions is p
in Section4. An anal ysis of the error resul ting fromthe projection assunptionis prese
Section 5. Constraints inposed on the notion of the robot as a result of special propert
indoor environnents can be used to reduce the conplexity of the nethod presented here. Tt
topicis covered on Section 6. Experinental results follow.



2 The Problem

localization and positioning fromvisual input are defined in the foll owi ng way: G ven ¢
mliar environnent, identify the observed environnent, and then find your position in
environment. lLocalization resembles the task of object recognition, with objects repl
scenes. Once localizationis acconplished, positioning can be perforned.

One problema systemfor localization and positioning should address is the variabil
images due to viewpoint changes. The inexactness of practical systens makes it diflcult f
robot to return to a specified position on subsequent visits. The visual data available
robot between visits varies inaccordance wi th the view ng positionof the robot. Alocal
systemshoul d be able to recognize scenes fromdi fferent positions and orientations.

Another problemis that of changes in the scene. At subsequent visits the sane place 1
l ook di fferent due to changes in the arrangenent of the objects, theintroducti on of newob]
and the renoval of others. In general, sone objects tend to be nore static than others. V
chairs and books are often noved, tables, closets, and pictures tend to change their po
mich less, and walls are al nost guaranteed to be static. Static cues naturally are nmore re
than mobile ones. Confining the systemto static cues, however, nay in some cases result
failure torecognize the scene due toinsuffci ent cues. The systemshoul d therefore atter
rel y on static cues, but shoul d not i gnore the dynani ¢ cues.

Sol utions to the problemof localizationfromvisual datarequire alarge nenory and he
conmput ation. kxisting systems often try to reduce this cost by using sparse represent:
and by expl oiting contextual infornation. Sparse representations are introduced in [1
Mtaric [10] represents scenes as sequences of landnarks (such as walls, doors, etc.) ex
by tracing the boundaries of the scene using a sonar and a conpass. Mtric informmtior
and between the |l andnarks is not stored. Sarachik [14] recognizes a roomby its dinensi
whi ch are neasured by identifying and locating the top corners of the roomusing stereo «
(obtained fromfour caneras). In both cases the representationis very sparse, and the sc
therefore of ten anbi guous.

Ri cher representati ons are used in [3, 5] where hi gher success rates are reported. Br.
[3] represents the scene by an occupancy table, a 2D bit array which contains a 1 at ey
location occupi ed by some object. The table is constructed by taking stereo pictures co
36(0° fromthe niddle of the roomand projecting the obtained 3D data onto the floor. The
method suffers froml oss of i nfornation due to the projection onto the floor.

Engel son et al. [5] represent the scene by a set of invariant “signatures”. Asignat
usuall y conposed of 1ow resol uti on gray-level or range data obtained by bl urring an i nng
set of signatures taken fromdiflerent vi ewpoints are stored. Ascene is recognizedif th
encounters a signature sinilar to one of the stored signatures.

Systems that use the full information provided by the inmage (e.g., [6, 12]) usuall
on contextual infornation to avoid scanning all the nodels in the nenory and to reduce t
conput ational cost of conparing a nodel to the inage. The systemfollows a predetermni ne



path, sothat the identity of eachvisitedlocationis knowninadvance, andlocalization't
a verificati on problem Path continuityin many cases is essential, and the so-called “dr
problemis not addressed. The enphasis in these systems is on positioning, whichis use
keep the robot on the path. It is typical for these systens (e.g., [1, 6, 12]) to use a
model of the environment.

Onoguchi et al. [12], anong others, represent the environment by aset of 1 andnarks sele
frompairs of stereoimages by a hunan operator. These | andnarks are transformed by an i nag
processing programwhich is designed so as to identify the specific landmark using spe
extractioninstructions (such as what features tolook for and at what locations). Local
is achieved by applying the extraction procedure specified for the next landmark. Onc
landmark is identified, the position of the robot relative to that landmark is determ n
conparing the di nensions of the observed!landnmark with those of the stored nodel .

The method presented in this paper represents the environnent using a set of edge map
Localization and positioning are achieved by conparing i mages of the environnent to li
conbi nations of the nodel views. The method uses rich visual infornation to represent
scene. The systemis flexible. In many cases it is capable of recognizing its locatio
one inage only (36Qoverage is not required). Wen one inage is not sufftient, additiona
images can be acquired to sol ve the localization problem Context can be used to deter
the order of conparison of the nodels to the observedinmage and to increase the confidence
a given natch, but context is not essential: the systemcan also, by perforni ng nore exte
comput ations, sol ve the “drop- off” problem

3 The Method

The problens of localization and object recognition are sinilar in many ways. Both probl
require the nmatching of visual inages to stored nodels, either of the environnment or o
observedobjects. Bothproblemns facesinilar diffculties, suchas varyingillum nation con
and changes in appearance due to viewpoint changes. Sinilar nethodol ogies therefore car
used for sol ving both problens.

A particul ar application of an object recognition schene, the Linear Conbinations (
scheme [17], tothe problens of localizationand positioningis discussedbel ow. The envir
isrepresentedinthis schene by a snnll set of views obtained fromdifferent viewpoints a1
the correspondence between the views. Amnovel viewis recognized by conparing it to lir
conbinations of the stored views. Positioning is achieved by recovering the position
canera relative toits positionin the nmodel views fromthe coeflcients of the aligning
conbi nation. Intherest of this sectionwe reviewthelinear conbinations approach and des
its application to bothlocalization and positioning. The section concludes with a sol
the problemof repositioning, that is, the problemof returning to a previously visited
by “locking” into an i nmage acquired in that position.



3.1 Localization

The probl emof localizationis definedas follows: given P, a 2Dinage of aplace, and M, a:
stored nodel s, find a model? 8 M such that P natches M Localizationis the recognition
of a place. It can therefore potentially benefit fromusing an object recognition methoc
A common approach to handling the problemof recognition fromdiflferent viewpoints is b
conparing the stored nodels to the observed envi ronment after the viewpoint is recovered
conpensated for. This approach, called alignment, is used in a nunber of studies of ol
recognition[2, 7, 8 9, 15, 16]. W apply the alignnent approach to the problemof locali:
The systemdescribed bel owuses the “Li near Conbi nations” (LC) schene, whi ch was suggeste
by Ulnan and Basri [17].

Whbeginwithabrief reviewof the LCschenme. LCis defined as follows. G ven aninage, w
construct two viewvectors fromthe feature points in the i mage, one contains the z-coordi
of the points, and the other contains the y-coordinates of the points. An object (in ou
the environnent ) is nodel ed by aset of such views, where the points inthese views are ord
in correspondence. The appearance of a novel viewof the object is predicted by appl;
linear conbinations to the stored views. The predicted appearance is then conpared with
actual inage, and the object is recognized if the two match. The advantage of this met]
is twofold. First, viewer-centered representations are used rather than object-center
nanel y, nodel s are conposed of 2Dvi ews of the observed scene; second, novel appearances :
predictedinasinple and accurate way (under weak perspective projection).

Formal 1y, gi ven P, a 2Dinage of a scene, and M, aset of stored nodels, the objective
find a nodel M € Msuch that P gle ajM;for sone constants @ R. It has been shown
that this schene accurately predicts the appearance of rigid objects under weak perspe
projection (orthographic projection and scale). The limnitations of this projection m
discussedlater inthis paper.

Mre concretely, let=gpz,,y;, 2), 1 <i¢< n, be aset of n object points. Under weak
perspective projection, the pogitioh p) of these points in the innge are given by
ah = sry@ 4 snoy tsrisz o,
Yi = sTox; +sTooyi +5T23% +ty (1)
where 7; are the conponents of a 3 x 3 rotationmatrix, and s is ascale factor. Rewriting
invector equati on formwe obtain
/

= ST1IX+ST12Y +87r132 +1 ;1
7

Yy = sTuX+sToy+srosztt,l (2)

where x y, z,’xy € R are the vectors of @, 3z, 4 and y coordinates respectively, and
1=(1,1, ..., 1). Consequently,

x', ye span{x, y, z, 1} (3)



or, inother wordd,axd y’ bel ong to a four-di mensional linear subspdce(MotRce that

z', the vector of depth coordinates of the projected points, also bel ongs to this subspac
fact is used in Section 4 below ) A four-dinensional space is spanned by any four lin
independent vectors of the space. Two views of the scene supply four such vectors [13,
Denote by x, 3 and xz, 3 the location vectors of the n points in the twoinages; then ther

exist coefftients @, @, @ and by, b, §, § such that

! a1X1 +a2y1 +a 3X2 +a 41

y' = bixy +bay1 +bsxa +b4l (4)

(Note that the vectos gl ready depends on the other four vectors.) Since Ris a rotatia
matrix, the coefltients satisfy the foll owi ng two quadratic constraints:

ai +as+aj—b7 — b— E=2(bibs — qaz)my +2(bbs — @az)n
a1by +a 20y +a 3bs +( a1bs +a 3by)m1 +(azbs +asby) 2 =0 (5)

To derive these constraints the transfornation between the two nodel views shoul d be recove
Thi s can be done under weak perspective using a third image. Alternatively, the constr:
can be i gnored, in which case the systemwoul d confuse rigid transformati ons with affhe or
Thi s usually does not prevent successful localization since generally scenes are fairl;
fromone another.

A LCscherme for the problemof localizationis as follows: The environnent is nodel
by a set of innges with correspondence between the innges. For exanple, a spot can b
model ed by two of its corresponding views. The correspondi ng quadrati c constraints nay :
be stored. Localizationis achieved by recovering the linear conbination that aligns the
to the observed i nage. The coeflcients are determ ned using four nodel points and the
correspondi ng i nage points by sol ving a linear set of equations. Three points are suffci
determ ne the coefftients if the quadratic constraints are also considered. Additional
my be used to reduce the effect of noise.

The LCschene uses viewer-centered nodels, that is, representations that are conpos
of images. It has a nunber of advantages over methods that build full three-dinensic
model s torepresent the scene. First, by using viewer-centered nodels that cover rel ati ve
transfornations we avoid the need to handle occlusions in the scene. If fromsone viewpc
the scene appears di flerent because of occlusions we utilize a newnodel for these vi ewpc
Second, viewer-centered nodels are easier to build and to naintain than object-centered
The nodel s contain onlyinnges and correspondences. By lim ting the transformati on betw
the nodel innges one can find the correspondence using notion nethods. If 1arge portions
the environnent are changed between visits a newnodel can be constructed by sinply repl aci
ol d inages with newones.

One problemw th using the LCschene for localizationis due to the weak perspective a
proxi mation. In contrast with the probl emof object recognition, where we can generally as



that objects are snanll relative to their distance fromthe canera, in localization the
ment surrounds the robot and perspective distortions cannot be neglected. The limnitat
of weak perspective nodeling are discussed both mathenatically and enpirically in the
two sections. It is shown that in many practical cases weak perspectiveis sufftient toe
accurate localization. The nnin reason is that the problemof localization does not r
accurate neasurenents in the entire inage; it only requires identifying a suffci ent nunb
spots to guarantee accurate naning. If these spots are relatively close to the center
inage, or if the depth differences they create are relatively smnll (as in the case of 1o
a wall when the line of sight is nearly perpendicular to the wall), the perspective dis
are rel atively snall, and the systemcan identify the scene with high accuracy. Also,
rel ated by a transl ation parallel to the i nage pl ane forma linear space even when perspe
distortions are large. This case and other sinplifications are discussed in Section 6.

By using weak perspective we avoidstability problens that frequently occur i n perspe
conput ati ons. W can therefore compute the alignment coeffcients by looking at a relativ
narrowfiel d of view. The entire scheme can be viewed as an accunul ati ve process. Rather th
acquiring inages of the entire scene and conparing themall to a full scene nodel (as ir
we recognize the scene i nage by i nage, spot by spot, until we accumul ate suffci ent convi nc
information that indicates the identity of the place.

Wen perspective distortions are relatively large and weak perspective is insufftie
model the environnent, two approaches can be used. One possibilityis to construct ala
nunber of nodels so as to keep the possible changes between the faniliar and the novel vi«
snmall. Alternatively, aniterative conmputation can be applied to conpensate for these «
tions. Such aniterative nethodis describedin Section 4.

3.2 Positioning

Positioning is the problemof recovering the exact position of the robot. This position
specifiedin a fixed coordinate systemassociated wi th the environnent (i.e., roomcoordi n:
or it can be associated with sone nodel, in whichcaselocationis expressed withrespect
position fromwhich the nodel views were acquired. In this section we discuss an appli c:
of the LCschene to the positioning problem

The ideais the following. W assune a model comnposed of two i mpgasd HB; their
rel ative position is given. (G ven a novel’j mmmefitBt align the nodel with the innge
(i.e., localization). By consideringthe coeffti ents of the linear conbinationthe robot’
rel ati ve to the nodel innages is recovered. To recover the absol ute position of the robot
roomthe absol ute positions of the nodel views should al so be provi ded.

Assuning Bis obtained frombyarotation R, translationg, #{f andscaling s, the
coordinates of a pointin(R §), can be written as linear conbinations of the correspondin
model points in the foll ow ng way:

7
r = a121 tayr tasxrs tay



Yy = bixy +baoyr +bswa by (6)

Substituting forwe obtain

' = a1m a2y tas( sy +sriayn +sT1321 +Hg) Fag

Yy = bixy +boyr +b3(sn1m1 +ST12y1 571321 i) +ba (7)

and rearrangi ng these equati ons we obtain

/

¢ = (a1 4assmi)a +(az +assna)y +(assns)za +(asty +a4)
y = (b1 4+bssry)ay +(ba+bssma)u +(bssns)z +(bsty +a4) (8)

Using t hese equati ons we can derive all the parameters of the transfornation between the m
and the i nage. Assune the i nage is obtained by arotation U, trapslandewdling.s
Using the orthonornmality constraint we can first derive the scale factor

5721 = (a1 +ass 7‘11)2 +(az +as3s 7‘12)2 +(ass 7‘13)2

= ai+tajtais® +2a3s(ary +aqgria) (9)

FromFEquations (8) and (9), by deriving the conponents of the translatign wectar, ¢
obtain the position of the robot inthe innge relative toits positionin the nodel views

Ax = asty,tay
Aﬁ/ = b3ty+b4 (10)

1 1

JAE — - =

-3

Note that A is derivedfromthe changeinscale of the object. The rotation matrix U betv
Py and P'is given by

a1 tassn a2 +a3sns3 a3s T3
Uy = — U2 = — Uz = —————
Sn Sn Sn (11)
bi +a3sm by +a 35 m2 b3s ma
Uy = — Uy = —————— Ugz =
Sn Sn Sn

As was al ready nentioned, the positionof the robot is conputed here relative tothe posit:
the camera when the first nodel i nmage, Fas acquired. Ax and A represent the notion of
the robot fromMAo P, and the rest of the paraneters represent its 3Drotation and el evati
To obtainthe rel ati ve positionthe transfornati on paraneters between t he mpdaldvi ews, P
P,, are required.

3.3 Repositioning

An interesting variant of the positioning problem referred to as repositioning, is def
follows. (G ven an inage, called the target i nage, position yourself in the location fro1



this i mage was observeldOne way to sol ve this problemis to extract the exact positionfror
whi ch the target i nage was obtained and direct the robot to that position. In this secti
are interestedin a nore qualitative approach. Under this approach positionis not conp
Instead, the robot observes the environnent and extracts only the direction to the t
location. Unlike the exact approach, the nethod presented here does not require the rece
of the transformation between the nodel views.

W assume we are given with a model of the environnent together with a target innge.
The robot is allowed to take newinnges as it is noving towards the target. W assune .
horizontally noving platform (Inother words, we assune three degrees of freedomrather
six; the robot is allowed to rotate around the vertical axis and translate horizontall
validity of this constraint is discussedin Section 6.) Belowwe give asinple conmputati
determi nes a path whi ch terninates inthe target location. At eachtine stepthe robot acq
anewimage and aligns it with the nodel. By conparing the alignment coeffeients with the
coeffci ents for the target i nmage the robot determnines its next step. The al gori thmis di
into two stages. In the first stage the robot fixates on one i dentifiabl e point and noves a
a circul ar path around the fixation point until the line of sight to this point coinci d
the 1ine of sight to the correspondi ng point in the target inmage. In the second stage the
advances forward or retreats backward until it reaches the target location.

(G ven a nodel conposed of tvwo inngesy ald P, Bis obtained from Py a rotation
about the Y-axis by an angle a, horizontal trang] atmdndale factor s. (G ven a target
image B, Ris obtained fromBy a simlar rotation by an angle 8, transdathdmsé¢al e
si. Wsing Eq. (4) the position of a target poyhtcém be expressed as

Ty = @121 +a 322 a4
ye = bay (12)

(The rest of the coefftients are zero since the platformnoves horizontally.) Infact, the
cients are given by

sgsin(a— 6)

a1 = -
sina
s;siné
az = : (13)
ssina
tp8:siné
g = bt — ————
ssina
bg = S8

(The derivationis givenin the Appendix.)

At every time step the robot acquires aninage and aligns it with the above nodel. Assur
that inage J’is obtained as aresult of a rotation by an angle ¢, transialtsoal#,s

!This problem can be considered as a variant of the homing problem A discussion of the general homing
probl emwith a “si gnature- based” sol ution can be found in[11].



The position of a poing,(y) is expressed by

Tp = €121 +C3%2 FCy
Yp = day (14)
where the coeflti ents are gi ven by

spsin(a— o)

a = :
sina
Sps8ing
3 = L —— (15)
ssina
B lpspsing
¢g = 1,— 2P
ssina
d2 = Sp

The step perforned by the robot is determ ned by
‘1 a1

g=2L-1 (16)

C3 as
That is,
_ssin(a— ¢)ssin(a— 0

0 = = :)5 sina(cot ¢ — cot 8) (17)

sing sind

The robot shoul d nownove so as to reduce the absolute value of §. The direction of noti
depends on the sign of a. The robot can deduce the direction by moving slightly to the s
and checking if this motion results in an increase or decrease of §. The notion is defin
follows. The robot noves to the right (or totheleft, depending on whichdirectionreduce
by a step Ae.

Anewimage P, is nowacquired, and the fixated point is located in this inmage. Denot
its newposition by aSince the notionis parallel to the i mage plane the depth val ues of t
point in the two views, alRd F,, are identical. W nowwant to rotate the canera so as to
return the fixated point toits original position. The angle of rotation, 3, can be deduce
the equation

Tp =% ,c08 f+sinf (18)
Thi s equation has two sol utions. W chose the one that counters the translation (nanel:
translationis to the right, the canera should rotate to the left), and that keeps the a
rotation snmll. In the next tine step the new pictapbafes Fand the procedure is
repeated until ¢ vanishes. The resul ting pathis circul ar around the point of focus.

Once the robot arrives at a position for which 6 =0 (nanely, its line of sight coin
with that of the target inage, and ¢ =60) it shoul d nowadvance forward or retreat backwa
to adjust its position along the line of sight. Several neasures can be used to determi
direction of nmotion; one exanple is theifermi ch satisfies

i (19)

a1 St

when the two lines of sight coincide. The objective at this stage is to bring this measur



4 Handling Rrspective Distortioms

The 1inear conbi nati on schene presented above accuratel y handl es changes in vi ewpoi nt ass
ing the i nages are obtai ned under weak perspective projection. Frror anal ysis and experin
results denonstrate that in nany practical cases this assunptionis valid. In cases wher
spectivedistortions are toolarge tobe handl ed by a weak perspecti ve approxi nation, mat.
bet ween the nodel and the i nage can be facilitated in two ways. One possibilityis to a
cases of large perspective distortion by augnenting the library of stored nodels with add
models. In arelatively dense library there usually exists a nodel that is related to tl
by a sufftiently small transformati on avoiding such distortions. The second al ternati ve
inmprove the natch bet ween the nodel and the i nage using aniterative process. Inthis sect
we consider the second option.

The suggested iterative process is based on a Tayl or expansion of the perspective co
nates. As described below, this expansion results in a polynonial consisting of term
of which can be approxinated by linear conbinations of views. The first termof this sei
represents the orthographic approxi nation. The process resenbles a nethod of matching
points with 2Dpoints described recently by DeMnthon and Davis [4]. In this case, howey
the methodis appliedto 2Dnodel s rather than 3Dones. Inour applicationthe 3Dcoordi naf
of the npdel points are not provided; instead they are approxi nated fromthe nodel views.

An image point (z, y) =(fX/Z, fY/Z)is the projection of sone object point, (X, Y,
the image, where f denotes the focal length. Consider the foll owi ng Tayl or expansi on of
around sone depth val uegZ

I OOf(k)(Z))
z Z AT 9"

o0 _ ok
= -I- Z _1k) ;ZZk+1Z) (20)

AL
= 1
[ +Z 1< Zo )]
The Tayl or series describing the positionof apoint zis therefore given by

XX [Hi fﬁlg - )] o)

Notice that the zero termcontains the orthographic approxination for z. (B idtee by A

X (=P z- 5\
Al = Zo (k - 1)< Zo ) (22)

Arecursive defini tion of the above series is given bel ow

kth termof the series:

10



Initialization

Iterative step:

Z— 4 _
NGl BN =Y

= 1t
2B = U LA

where 2® represents the kth order approximation for 2P awpresents the hi ghest order
termin &9,

According to the orthographic approxi nati onboth Xand Z can be expressed as linear con
bi nations of the nodel views (Eq. (4)). W therefore apply the above procedure, approxi na
Xand Z at every step using the linear conbi nati on that best aligns the nodel points with
i mage points. The general ideais therefore the following. First, (Weamst M®toya
sol ving the orthographic case. Then at each step of the iteration we i nprove the esti nat
seeking the linear conbination that best estinates the factor

Z— % _x—

- R~ 23
(k- 1)z Al (23)
Denote by xé Rthe vector of i nage point coordinates, and denote by
P:[le X, %, 1] (24)

an n X 4 matrix containing the position of the points in the two nodel inages. Denote
Pt =(PTP)™ PT the pseudo-inverse of P (we assune P is overdeternined). Also denote
by al® the coeffcients conputed for the kth step? tRpresents the linear coubination
conputed at that step to approximate the Xor the Z values. Since at everyfstapnd?

k are constant they can be merged into the linear conbination. Db b AP t he

vectors of conputed val ues of 2 and Aat the kthstep. Aniterative procedure to align a no
to the inage is described bel ow.

Initialization:
Sol ve t he orthographi ¢ approxi nation, nanely
alY = ptx
x(0 = A0 — pgy(0)

Iterative step

g® = (x— ) o AGD
alh = prglh

AW = (pa®) @ Al
B = ) LA
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where the vector operations ® and + are defined as

u® v = (wo, . . 04
. (ul un)
v Uy

5 HRojection Mdel — Error Amlysis

Inthis section we estinate the error obtained by using the linear conbination method.
method assunes a weak perspective projection nmodel. W conpare this assunption with the
more accurate perspective projection nodel .

Apoint (X, Y, Z)is projected under the perspective nodel to(z, y) =(fX/Z, fY/Z) i
image, where f denotes the focal length. Under our weak perspective nodel the sane poi
is approxinated by (&, ¥) =(sX, sY) where s is ascaling factor. The best estimate for
scaling factor, is givenby so=fllefe gis the average depth of the observed envi ronnent.
Denote the error by

E=|- ¥k (25)
The error is expressed by
1 1
E=\|fX(=—-= 26
P3G (26)
Changi ng to i nage coordi nates
1 1
EF=lZ(—- = 2
o2y =) (27)
or P
E= — = 28
ol |5 = | (28)

The error is snall when the neasured feature is close the optical axis, or when our esti
for the depth,9,Zis close to the real depth, Z. This supports the basic intuition tha
inages with lowdepth vari ance and for fixated regi ons (regions near the center of the inm
the obtained perspective distortions are relatively snnll, and the systemcan therefore
the scene wi th hi gh accuracy. Figures 1 and 2 showthe depth ratksocadfdicti on of z for

€ =10 and 20 pixels, and Table 5 shows a nunber of exanples for this function. The allowe
depth variance, %, Z s conputed as a function of 2 and the tolerated error, €. For exanpl
a 10 pixel error toleratedin a field of viewof up to £50 pixels is equivalent to allow ng
variations of 20%. Fromthis discussionit is apparent that when a nodel is alignedto the
the resul ts of this alignment shoul d be judged di fferently at di fferent points of the i nage
farther away a point is fromthe center the nore discrepancy should be tolerated between
predi ction and the actual i nage. Afive pi xel error at positionz =50is equivalent toa 10
error at position z =100.

So far we have considered the di screpancies betwen the weak perspective and the persp
tive projections of points. The accuracy of the LCschene depends on the validity of the -

12
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20/x + 1 —

300

Figure Q:ZQ0 as a function of z for ¢ =20 pi xels.
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z\e|5 10 15 20
25[1.2 1.4 1.6 1.8
50 ‘1.1 L2 1.3 1.4
75(1.07 1.13 1.2 1.27

100‘ 1.05 1.1  1.15 1.2

Table 1: Allowed depth ratié@,as a function of  (half the width of the field considered
and the error allowed (€, in pixels).

perspective projection bothin the nodel views and for the i ncomi nginage. In the rest of
section we devel op an error termfor the LCschene assuni ng that both the nodel views anc
the inconing i nage are obtained by perspecti ve projection.

The error obtained by using the LCschene is gi ven by

E=lz— ag— by— cg— { (29)
Since the scheme accuratel y predicts the appearances of points under weak perspective pr
tion, it satisfies
r=al; — biy— cf— d (30)

where accented letters represent orthographic approxi nations. Assune that in the two mo
pictures the depth ratios are roughl y equal :

%_ﬁw@ (31)
ZM_Z1 Z9

(This conditionis satisfied, for exanple, when between the two nodel inages the camera or
transl ates al ong the i mage plane.) Using the fact that

X fXZy | Z
Tr = = —— =z

s 20 2
7 7y 7 7 (32)

we obtain

E = |t - ag— by— cg— d
R/ N/
iy bigg = cdgg -

4

A
r—
Z
7 M
= i70— (a@— b]?/— CZAU)L_ +
A
r—
Z

—(@—%—% (33)



Zo M

AAL

IN

ZM
- |

The error therefore depends on two terns. The first gets snaller as the i mage points get cl
to the center of the frane and as the di flerence between the depth ratios of the nodel and-
image gets snaller. The second gets smaller as the translation conponent gets smaller ar
the nodel gets close to orthographic.

Foll owi ng t his anal ysis, weak perspctive can be used as a projection nodel when the de
variations in the scene are rel ativel yl owand when the systemconcentrates on the center
of the i nmnge. W conclude that, by fixating on distinguished parts of the environnent,
linear conbinations schene can be used for localization and positioning.

6 Ipposing Corstraints

localization and positioning require alarge menory and a great deal of on-line conputa
Alarge nunber of nodels must be stored to enable the robot to navigate and mani pul ate
in relatively large and conplicated environnents. The conputational cost of nodel-ir
conparisonis high, andif context (suchas pathhistory) is not available the nunber of re.
conparisons may get verylarge. Tbreduce this computational cost anunber of constraints 1
be enpl oyed. These constraints take advantage of the structure of the robot, the propert
indoor envi ronnents, and the natural properties of the navigation task. This section ex:
sonme of these constraints.

One thing a systemmay attenpt to dois to build the set of nodels so as to reduce th
effect of perspective distortions in order to avoid performing iterative conputations.
of the environnment obtained when the systemlooks relatively deep into the scene usu
satisfythis condition. Wien perspectivedistortions arelarge the systemmay consi der mo
subsets of views related by a transl ation parallel to the i nage pl ane (perpendicul ar to 1
of sight). In this case the depth values of the points are roughly equal across all
considered, and it can be shown that novel views can be expressed by linear conbinations
two nodel views evenin the presence of large perspective distortions. This becomes app:
fromthe follow ng derivation. Jet,(%X), 1 < ¢ < n be a point projected in the innge
to (x, %) =(fX/%, fY %), and let {,af) be the projected point after applying a rigid

transfornation. Assuning thait=Z; we obtain

Zivt = ruXi+r2Yi +risZ; o,

Ziyt = roaXi+raYitranZ +t, (34)
D vi di ng by Zwe obtain
1
xp = v gy s+t v
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Y = T +7 22y +7 23 ‘I’tyi (35)
K3
Rewriting this in vector equation formgives
X' = rux+r py+rosltt gz
Yy = roaX+r goy+r gsl 4t gz (36)

where x, y, & and y are the vectors of %, #, and § val ues respectively, 1is a vector
of all 1s, and'zis a vector of 1%l ues. Consequently, as in the weak perspective case,
novel views obtained by a translation parallel to the i nmage plane can be expressed by 1
conbi nations of four vectors.

An i ndoor environment usually provides the robot with a flat, horizontal support. Con
quently, the motion of the canerais often constrained to rotation about the vertical (Y
and to translationin the XZ-plane. Such notion has only three degrees of freedominstea
the six degrees of freedomin the general case. Under this constraint fewer correspondend
required to align the nodel with the inage. lor exanple, in Eq. (4) (above) the coefftie
a3 =by =bz =b,4=0. Three points rather than four are required to determi ne the coeffti ent
by sol ving alinear system Two, rather than three, are requiredif the quadratic constrai
al so considered. Another advantage to considering only horizontal motionis the fact the
motion constrains the possible epipolar lines between inages. This fact can be used to
the task of correspondence seeking.

Objects inindoor environnents sonetines appear inroughly pl anar settings. In partic
the relatively static objects tend to be located along walls. Such objects include w
shel ves, pictures, closets and tables. Wen the assunption of orthographic projection i
(for exanple, when the robot is relatively distant fromthe wall, or when the line of s
roughl y perpendi cul ar to the wall) the transfornation between any two views can be descri
by a 2Dafthe transfornnati on. The di nensi on of the space of views of the sceneis thenreduc
to three (rather than four), and Fq. (4) becones

"= a1x1 taq2y1 taq4l

y' = bixi+bay1 +b4l (37)
(a3 =b3=0.) Onlyone viewis therefore sufftient to model the scene.

Mst offte-1ike i ndoor environnents are conposed of roons connected by corridors. Nav
gatinginsuchan envi ronnent i nvol ves naneuveri ng t hrough the corridors, enteri ng and exi
the roonms. Not all pointsinsuchanenvironnment are equallyinportant. Junctions, places
the robot faces a nunber of options for changingits direction, are nore i nportant than
places for navigation. In an indoor environment these places include the threshol ds of
and the begi nni ngs and ends of corridors. Anavigation systemwould therefore tend to s
more nodels for these points than for others.

One inportant property shared by nmany junctions is that they are confined to rel ative
snall areas. C(onsider for example the threshold of a room It is a relatively narrow
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that separates the roomfromthe adjacent corridor. Wen a robot is about to enter a roc
a common behavi or i ncl udes steppi ng through the door, 1ookingintothe room andidentif;
it before a decisionis nade to enter the roomor to avoidit. The set of interesting i nag
this task includes the set of views of the roomfromits entrance. Provided that threshol
narrowthese views are rel ated to each other al nost exclusi vely by rotati on around the ve
axis. Under perspective projection, such arotationis relativelyeasy torecover. The
of points in novel views can be recovered fromone nodel viewonly. This is apparent fi
the followi ng derivation. Consider apoint p=(X, Y, Z). Its positionin a nodel viewis
by (z, y) =(fX/Z, fY/Z). Now, consider another viewobtained by a rotation Raround t
canera. The location of p inthe newviewis givenby (assuning f =1)

riuX+r 12Y +r13Z roi X 47 22Y +ro3”Z

4,4 = : 38
(&, 4) (7‘31X-|-7‘ 32Y 47332 r5n X 47 32Y +razZ (38)

inmpl ying that
11T +7r12y +7r13 1% 722y +723

b
r31% +7r32y +7r33 318 +732Y +733

() =(

Depthis therefore not afactor indeternining the relation betweenthe views. Eq. (39) be
even sinpler if only rotations about the Y-axis are considered:

(39)

(117 L{/) :( T Ccos a4+sina Y ) (40)

N ) N
— zslna+cos'a rsina—4cos’ o

where ais the angle of rotation. In this case a can be recovered nerely froma single c
spondence.

7 Kperimits

The LCnethod was inpl emented and applied to i nages taken in an i ndoor environment.
Images of twooffces, Aand B, that have sinmilar structures were taken usi ng a Panasoni ¢ cane:
withafocal lengthof 700 pixels. Seni-static objects, such as heavy furniture and pictur
used to distinguish betwen the offtes. Figure 3 shows two nodel views of offte A The view
were taken at a distance of about 4mfromthe wall. Correspondences were picked nmanuall
The resul ts of aligni ng the model views toinages of the two offtes are presented in Figur
The left i nage contains an overlay of a predictedimnge (the thick white lines), construc
linearly conbining the two views, and an actual innage of offte A Agood match between the
two was achi eved. The right i mage contains an overlay of a predicted inage constructed -
a model of offte Band an i nage of offte A, Because the offtes share asinilar structure the
static cues (the wall corners) were perfectly aligned. The seni-static cues, however,
mat ch any features in the i nage.

Figure 5 shows the natching of the nodel of offte Awi th an i nage of the sane offce ob-
tained by arelativel ylarge notion forward (about 2m) and to the side (about 1.5m). Altho
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Figure 4: Mmtéhi ng a nodel of offte Ato aninnge of ofﬁ:e‘A-(left), and mat chi ng a nodel of
offte Bto the sane i nage (right).

Figure 5: Mtching a nodel of offte Ato an i nage of the sane offte obtained by a rel atively

large notion forward and to the right.
18



Figure 7: Mtching the corridor nodel with two inmages of the corridor. The right i nage v
obtained by a relatively large notion forward (about half of the corridor length) and t
right.

the distances are rel ati vel y short nost perspective distortions are negligible, and a go
bet ween t he nodel and the i nage is obtained.

Another set of innges was taken in a corridor. Here, because of the deep structure
the corridor, perspective distortions are noticeable. Nevertheless, the alignment re
denonstrate an accurate natchinlarge portions of the i mage. Figure 6 shows two nodel vie
of the corridor. Figure 7 (left) shows an overlay of a linear conbination of the nodel
with an i nage of the corridor. It can be seen that the parts that are relatively distan
perfectly. Figure 7 (right) shows the natchi ng of the corridor nodel wi th aninage obtai ne
arelativelylarge notion (about half of the corridor length). Because of perspective dis
the rel ativel y near features nolonger align (e.g., the near door edges). The relatively
however, still match.

The next experinment shows the application of the iterative process presented in Sect
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in cases where large perspective distortion were noticeable. Figure 8 shows two nodel v
and Figure 9 shows the results of matching a linear conbination of the nodel views to
image of the same offte. In this case, because the inange was taken froma relatively cl
distance, perspective distortions cannot be neglected. The effects of perspective distor
be noticed on the right corner of the board, and on the edges of the hanger on the top ri
Perspective effects were reduced by using the iterative process. The results of applyirz
procedure after one and three iterations are shownin Figure 10.

The experinental resul ts denonstrate that the LCnethod achi eves accurate localizatic
many cases, and that when the nethod fails because of l arge perspective distortions anite
conput ati on can be used to i nprove the quality of the nmatch.

8 nclwsiors

Anethod of localization and positioninginanindoor environment was presented. The meth
is based onrepresenting the scene as a set of 2Dviews and predi cting the appearance of 1
views by linear conbinations of the nodel views. The nethod accurately approxinates t
appearances of scenes under weak perspective projection. Analysis of this projection
as experinental results denonstrate that in nmany cases this approximtion is suffcien
accurately describe the scene. Wen the weak perspective approximationis invalid, eit
l arger nunber of nodels can be acquired or an iterative solution can be enployed to acco
for the perspective distortions.

The net hod presented in this paper has several advantages over existing methods. It v
relativelyrichrepresentations; the representations are 2Drather than 3D, and1ocalizea
be done froma single 2Dviewonly. The same basic nethod is used in both the localizati
and positioning problems, and asinple al gori thmfor repositioningis derivedfromthis m
Fature work i ncl udes handling the probl emof acquisition and nai ntenance of nodels, devel
ing eflti ent and robust al gorithns for sol ving the correspondence problem and buil di ng 1
using visual input.

Appendi x

Inthis appendi x we derive the explicit val ues of the coeffti ents of the linear conbi nati ons
case of horizontal notion. Consider a point p =(z, y, z) that is projected by weak persp
to three inagesy,PB, and P, Bis obtained fromPBy a rotation about the Y-axis by an
angle a, translatipndnd scale factgr, and Pis obtained from#& rotation about the
Y-axis by anangle 6, transl gtamddcale,s The positionof pinthe threeinnges is given
by

(2, ) = (2, y)
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Figure 9: Mtching the nodel to an innge obtained by a relatively large notion. Perspect
distortions can be seenin the table, the board, and the hanger at the upper right.

one (left) and three (right) iterations.
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(22, 8) = (Sprcosats,zsinath, sy)
(Z,9) = (s,vcosb +$zsinb + sy)
The point (% §) can be expressed by a linear conbination of the first two points:

!
T = a121tagzr2tas

/

y = bn

Rewriting these equations we get

sprcos B +szsinf +f = a2 +az(s,2cos ats,zsina+f,) +as
spy = by

Equati ng the val ues for the coeffcients in both sides of these equations we obtain

spcos = @ taqsy, cos a
spsind = @gsysina

t, = asty tas

s, = b

and the coeffctients are therefore gi ven by

i - f
o = spsin(a )

sina

B spsind

as = —

Smsina
B tmSpsind
ag = t,— 2P
Smeina

b = s,
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