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Abstract

Model-based object recognition commonly involves using a minimal set of matched model and

image points to compute the pose of the model in image coordinates. Furthermore, recognition

systems often rely on the \weak-perspective" imaging model in place of the perspective imaging

model. This paper discusses computing the pose of a model from three corresponding points

under weak-perspective projection. A new solution to the problem is proposed which, like

previous solutions, involves solving a biquadratic equation. Here the biquadratic is motivated

geometrically and its solutions, comprised of an actual and a false solution, are interpreted

graphically. The �nal equations take a new form, which lead to a simple expression for the

image position of any unmatched model point.
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1 Introduction

Recognizing an object generally requires �nding correspondences between features of a model

and an image. Since �nding corresponding features often requires trying all possible correspon-

dences, recognition systems frequently use correspondences between minimal sets of features

to compute poses of the model. For instance, \alignment" techniques repeatedly hypothesize

correspondences between minimal sets of model and image features, and then use those corre-

spondences to compute model poses, which are used to �nd other model-image correspondences

(e.g., [5], [10], [1], [9], [28], [29], [15], [3], [16]-[18], [30], [19]). In addition, \pose clustering"

techniques use every correspondence between a minimal set of model and image features to

compute a model pose, and then count the number of times each pose is repeated (e.g., [2],

[26], [25], [23], [11], [4]).

For computing poses of 3D objects from 2D images, a model of projection must be selected,

and typically either perspective or \weak-perspective" projection is chosen. Weak-perspective

projection is an orthographic projection plus a scaling, which serves to approximate perspective

projection by assuming that all points on a 3D object are at roughly the same distance from the

camera. For both perspective and weak-perspective projections, the minimal number of points

needed to compute a model pose up to a �nite number of solutions is three ([10], [18]). For

point features, then, the problem is to determine the pose of three points in space given three

corresponding image points. When perspective projection is the imaging model, the problem

is known as the \perspective three-point problem" [10]. When weak-perspective is used, I shall

call the problem the \weak-perspective three-point problem."

A few methods for solving the weak-perspective three-point problem have been suggested in

the past ([20], [8], [17], [18], [12]), and this paper proposes a new method (solution). The major

di�erences with the new solution is that it motivates and explains the solution geometrically,

and it does not compute a model-to-image transformation as an intermediate step. As will be

demonstrated later, understanding the geometry is useful for seeing under which circumstances

the solution simpli�es or breaks, and for analyzing where the solution is stable. Furthermore,

a geometric understanding may be useful for seeing how the solution is a�ected by error in the

image and the model.

In addition to providing a geometric interpretation, the solution in this paper gives direct

expressions for the three matched model points in image coordinates, as well as an expression

for the position in the image of any additional, unmatched model point. Earlier methods all

require the intermediate computation of a model-to-image transformation. This is meaningful

because, as mentioned above, many alignment-based recognition systems calculate the 3D pose

solution many times while searching for the correct pose of the model. Consequently, avoiding

the intermediate calculation of the transformation could cause such systems to run faster.

To illustrate how signi�cant such a speed-up can be, consider a system that performs 3D

recognition by alignment using point features to generate hypotheses. The input to the system

is a model and an image, and the goal is to identify all instances of the model in the image.

The model is speci�ed by a set of 3D points that can be detected reliably in images, along with

any number of extended features whose projections can be predicted using points (e.g., line
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segments, some sets of curves, and edges represented point-by-point). From the image, a set of

2D points is extracted by a low-level process that looks for points of the type corresponding to

points in the model. The alignment algorithm proceeds as follows:

1. Hypothesize a correspondence between three model points and three image points.

2. Compute the 3D pose of the model from the three-point correspondence.

3. Predict the image positions of the remaining model points and extended features using

the 3D pose.

4. Verify whether the hypothesis is correct by looking in the image near the predicted posi-

tions of the model features for corresponding image features.

This process is repeated until all pairs of triples of model and image (sensed) points have been

tried. For m model points and s sensed points, there are
�
m

3

��
s

3

�
3! distinct pairs of model and

image point triples. Consequently, the running time for the algorithm grows with the cubes

of the numbers of model and image points. Since these numbers can be large, the model and

image points typically are grouped in advance so that only triples of points from the groups

have to be tried (e.g., [23], [21], [18]). This can bring the number of pairs of triples into a

range where the algorithm is practical. Then a \constant-times" speed-up in the innermost

loop of the algorithm, that is, steps 2-4 listed above, could give a substantial improvement in

the overall execution time. As already suggested, the solution given in this paper should make

steps 2 and 3 signi�cantly faster.

From observing previous solutions, the solution given in this paper most resembles Ullman's

([28], [17]), in that both end up having to solve the same biquadratic equation, although each

derives the biquadratic di�erently. In this sense, the solution given here is an extension of

Ullman's, because, unlike Ullman's solution, it resolves which of the two non-equivalent solutions

to the biquadratic is correct. In addition, this paper explains graphically why the two solutions

arise and to what geometry each corresponds.

There is an intrinsic geometry that underlies the perspective three-point problem; it is

shown in Fig. 1. In the �gure, the three model points, ~m0, ~m1, and ~m2, are being perspectively

projected onto three image points,~i0,~i1, and~i2, via lines through the center of projection (center

point), ~p. The task is to recover ~m0, ~m1, and ~m2. The essential information is contained in the

side lengths and angles of the surrounding tetrahedron.

Similar to the perspective case, there is an intrinsic geometry underlying the weak-perspec-

tive three-point problem, shown in Fig. 2. The picture shows the three model points being

projected orthographically onto the plane that contains ~m0 and is parallel to the image plane,

and then shows them being scaled down into the image. In addition, the picture shows the

model points �rst being scaled down and then projected onto the image plane. In each case,

the projection is represented by a solid with right angles as shown. The smaller solid is a

scaled-down version of the larger. The relevant information consists of the side lengths of the

solids and the scale factor.

In what follows, �rst the perspective case is discussed (Section 2). Then I summarize

how to compute 3D pose from three corresponding points under weak-perspective projection
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Figure 1: Model points ~m0, ~m1, and ~m2 undergoing perspective projection to produce

image points ~i0, ~i1, and ~i2. a, b, and c are distances from the center point, ~p, to the

model points.

(Section 3). Third the 3D pose solution is shown to exist and be unique, and a geometrical

interpretation is provided (Section 4). Next a direct expression is derived for the image position

of an unmatched model point (Section 5). Then I review earlier solutions to the problem and

present the three most related solutions in detail (Sections 7 and 8). In addition, the new and

earlier solutions are examined and compared in terms of their stabilities (Sections 6 and 9).

2 The Perspective Solution

To see the di�erence between the perspective and weak-perspective cases, �rst let us observe

exactly what is required for the perspective three-point problem. As pictured in Fig. 1, I will

work in camera-centered coordinates with the center point at the origin and the line of sight

along the z axis. The distances R01, R02, and R12 come from the original, untransformed model

points. The angles �01, �02, and �12 can be computed from the positions of the image points,

the focal length, and the center point. To see this, let f equal the focal length, and let the

image points ~i0, ~i1, ~i2 be extended as follows: (x; y)! (x; y; f). Then

cos �01 = bi0 �bi1; cos �02 = bi0 �bi2; cos �12 = bi1 �bi2; (1)
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where in general bv denotes the unit vector in the direction of ~v. The problem is to determine

a, b, and c given R01, R02, R12, cos �01, cos �02, and cos �12. From the picture, we see by the

law of cosines that

a2 + b2 � 2ab cos�01 = R2
01 (2)

a2 + c2 � 2ac cos �02 = R2
02 (3)

b2 + c2 � 2bc cos�12 = R2
12 (4)

Over time, there have been many solutions to the problem, all of which start with the above

equations. The solutions di�er in how they manipulate the equations when solving for the

unknowns. Recently, Haralick et al. reviewed the various solutions and examined their stabili-

ties [13].

Given a, b, and c, we easily can compute the 3D locations of the model points:

~m0 = abi0; ~m1 = bbi1; ~m2 = cbi2: (5)

If a 3D rigid transformation is desired, it can be determined from the original 3D model points

and the 3D camera-centered model points just computed. A simple method for doing so is

given in Appendix A; for a least-squares solution, see Horn [14].

Although perspective (central) projection is a more accurate model, numerous researchers

have used weak-perspective projection instead (e.g., [24], [20], [7], [8], [25], [28], [29], [21], [22],

[16]-[18], [3], [30], [19], [12]). The justi�cation for using weak-perspective is that in many cases

it approximates perspective closely. In particular, for many imaging situations if the size of the

model in depth (distance in bz) is small compared to the depth of the model centroid, then the

di�erence should be negligible [25].

There are some advantages to using weak-perspective instead of perspective. In particular,

computations involving weak-perspective often are less complicated. In addition, the weak-

perspective math model is conceptually simpler, since it uses orthographic instead of perspective

projection. Another advantage is that we do not need to know the camera focal length or center

point. Furthermore, there are fewer solutions to deal with|four for perspective and two for

weak-perspective ([10], [18]). It should be understood, however, that �nding two solutions

instead of four is only an advantage if the four solutions actually collapse to two; otherwise, at

least two of the solutions are missed.

Lastly, the weak-perspective imaging model can be used without modi�cation to recognize

scaled versions of the same object, since the built-in scale factor incorporates object scale. For

perspective to handle scale, an additional scale parameter must be used. On the other hand,

weak-perspective is unable distinguish objects that di�er only in size, since a smaller scale could

mean the object is smaller or further away. Nonetheless, in cases where the weak-perspective

approximation applies, the perspective solution may be unstable in distinguishing di�erent-

sized objects ([27], [29], [18]). In these cases, moving the object further out in depth, that is,

past the point where perspective and weak-perspective projections are essentially equivalent,

will have the same e�ect in the image as uniformly scaling the object down in size. Since the

perspective solution always distinguishes the depth and size of the object, this suggests that
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small variations in the image could lead to very di�erent interpretations for the size as well as

the depth.

In sum, there are signi�cant advantages to using weak-perspective in place of perspective,

and under many viewing conditions the weak-perspective approximation is close to perspective.

As suggested in the introduction, for these situations it would be useful to know how to solve,

using weak-perspective projection, the problems of recovering the 3D pose of a model and

computing the image position of a fourth model point.

3 Computing the Weak-Perspective Solution

This section provides a summary of the results I will derive in the next two sections. Speci�cally,

it tells how to compute the locations of the three matched model points and the image location

of any additional, unmatched model point.

For reference, the geometry underlying weak-perspective projection between three corre-

sponding points, which was described in the introduction, is shown in Fig. 2. All that is

pertinent to recovering the 3D pose of the model are the distances between the model and

image points. Let the distances between the model points be (R01; R02; R12), and the corre-

sponding distances between the image points be (d01; d02; d12). Then the parameters of the

geometry in Fig. 2 are

s =

s
b+

p
b2 � ac
a

(6)

(h1; h2) = �
�q

(sR01)2 � d201; �
q
(sR02)2 � d202

�
(7)

(H1; H2) =
1

s
(h1; h2) (8)

where

a = (R01+ R02 +R12)(�R01 +R02 + R12)(R01 �R02 + R12)(R01 +R02 � R12) (9)

b = d201(�R2
01 +R2

02 +R2
12) + d202(R

2
01� R2

02 +R2
12) + d212(R

2
01 +R2

02 � R2
12) (10)

c = (d01+ d02 + d12)(�d01 + d02 + d12)(d01 � d02 + d12)(d01+ d02 � d12) (11)

� =

(
1 if d201 + d202 � d212 � s2(R2

01+ R2
02 �R2

12);

�1 otherwise.
(12)

As the equations show, the solution has a two-way ambiguity except when h1 and h2 are zero.

The ambiguity corresponds to a re
ection about a plane parallel to the image plane. When

h1 = h2 = 0, the model triangle (the triangle de�ned by the three model points) is parallel to

the image triangle (the triangle de�ned by the three image points). As a note, a and c measure

sixteen times the squares of the areas of the model and image triangles, respectively. Further,

the solution fails when the model triangle degenerates to a line, in which case a = 0; in fact,

this is the only instance in which a solution may not exist (for a discussion of this case, see

Section 4.5). Note, however, that no such restriction is placed on the image triangle; so the
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Figure 2: Model points ~m0, ~m1, and ~m2 undergoing orthographic projection plus scale

to produce image points ~i0, ~i1, and ~i2.

image points may be collinear. Even so, care should be taken since the solution may be unstable

when image points are collinear, when the model points are collinear, or when one of the sides

of the model triangle is parallel to the image plane (see Section 6).

Next, I give an expression for the image location of a fourth model point. Originally, the

models points are in some arbitrary model coordinate frame. Also, the image points are in

a camera-centered coordinate frame in which the image serves as the x-y plane. Denote the

original, untransformed model points by ~pi, to distinguish them from the camera-centered model

points ~mi shown in Fig. 2. Using ~p0, ~p1, and ~p2, solve the following vector equation for the

\extended a�ne coordinates," (�; �; 
), of ~p3:

~p3 = �(~p1 � ~p0) + �(~p2 � ~p0) + 
(~p1� ~p0)� (~p2 � ~p0) + ~p0 (13)

Given image points ~i0 = (x0; y0), ~i1 = (x1; y1), and ~i2 = (x2; y2), let

x01 = x1 � x0; y01 = y1 � y0;
x02 = x2 � x0; y02 = y2 � y0:
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Then the image location of the transformed and projected ~p3 is

(�x01 + �x02 + 
(y01H2 � y02H1) + x0; �y01 + �y02 + 
(�x01H2 + x02H1) + y0): (14)

Lastly, the weak-perspective solution can be used to compute the 3D locations of the model

points in camera-centered coordinates:

~m0 =
1

s
(x0; y0; w) (15)

~m1 =
1

s
(x1; y1; h1 + w) (16)

~m2 =
1

s
(x2; y2; h2 + w); (17)

where w is an unknown o�set in a direction normal to the image plane. It is worth noting that

if the 3D rigid transform that brings the model into camera-centered coordinates is desired, it

can be computed from these three camera-centered model points and the original three model

points. The unknown o�set w drops out when computing the rotation and remains only in the

z coordinate of the translation, which cannot be recovered. As mentioned in Section 2, a simple

method for computing the transform is given in Appendix A, and a least-squares solution was

given by Horn [14].

4 Existence and Uniqueness of the 3D Pose Solution

In deriving the 3D pose solution, I start with the basic geometry for the weak-perspective three-

point problem, shown in Fig. 2. Fig. 3 shows the smaller solid again with more labels. There

are three right triangles in the solid, from which three constraints can be generated:

h21 + d201 = (sR01)
2 (18)

h22 + d202 = (sR02)
2 (19)

(h1 � h2)2 + d212 = (sR12)
2 (20)

It should be pointed out that the distances R01, R02, R12, d01, d02, d12 and the scale factor s

are all positive, but the altitudes h1, h2 along with H1, H2 are signed. Since h1 and h2 are

signed, having \h1 � h2" in the third equation is an arbitrary choice over \h1 + h2"; it was

chosen because, when h1 and h2 are positive, it directly corresponds to the picture in Fig. 3.

Multiplying the third equation by �1 and adding all three gives

2h1h2 = s2(R2
01 +R2

02 � R2
12)� (d201 + d202 � d212):

Squaring and using the �rst two equations again to eliminate h21 and h
2
2, we have

4(s2R2
01 � d201)(s2R2

02 � d202) =
�
s2(R2

01 +R2
02 �R2

12)� (d201+ d202 � d212)
�2
; (21)

which leads to a biquadratic in s (for details see Appendix B):

as4 � 2bs2 + c = 0; (22)
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Figure 3: Smaller solid representing orthographic projection plus scale of three model

points into an image.

where

a = 4R2
01R

2
02 � (R2

01+ R2
02 �R2

12)
2

= (R01+ R02 +R12)(�R01 +R02 + R12)(R01 �R02 + R12)(R01 +R02 � R12)

b = 2R2
01d

2
02 + 2R2

02d
2
01 � (R2

01 +R2
02 �R2

12)(d
2
01 + d202 � d212)

= d201(�R2
01 +R2

02 +R2
12) + d202(R

2
01� R2

02 +R2
12) + d212(R

2
01 +R2

02 � R2
12)

c = 4d201d
2
02 � (d201 + d202 � d212)

2

= (d01+ d02 + d12)(�d01 + d02 + d12)(d01 � d02 + d12)(d01+ d02 � d12)
This biquadratic is equivalent to the one originally derived by Ullman. But Ullman made no

attempt to interpret or decide among its solutions, which will be done here.

To prove existence and uniqueness, the biquadratic's solutions must be examined. We are

interested only in positive, real solutions for s, the scale factor. In general, the positive solutions

of the biquadratic are given by

s =

s
b�

p
b2 � ac
a

(23)

Depending on the radicands, there will be zero, one, or two real solutions. Particularly, we

are interested in whether each number of solutions can arise, and, if so, to what the solutions

correspond geometrically.

To begin, let us determine the signs of a, b, and c. In Fig. 2, let � denote the angle between

~m1 � ~m0 and ~m2 � ~m0, and let  be the angle between ~i1 �~i0 and ~i2 �~i0. Notice by the law

of cosines that

a = 4R2
01R

2
02 � (2R01R02 cos�)

2

= 4(R01R02 sin �)
2 (24)
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b = 2R2
01d

2
02 + 2R2

02d
2
01 � (2R01R02 cos�)(2d01d02 cos )

= 2(R2
01d

2
02 +R2

02d
2
01 � 2R01R02d01d02 cos� cos ) (25)

c = 4d201d
2
02 � (2d01d02 cos )

2

= 4(d01d02 sin )
2 (26)

Further, 1
2
R01R02 sin� equals the area of the model triangle, so that a measures sixteen times

the square of the area of the model triangle. Analogously, c measures sixteen times the square

of the area of the image triangle.

In what follows, I assume that the model triangle is not degenerate, that is, not simply a

line or a point. This situation is the only time the solution is not guaranteed to exist. (For

a discussion of this case see Section 4.5.) Note that this assumption implies that a 6= 0 and

� 6= 0.

From Equations 24 and 26, clearly a > 0 and c � 0. From Equation 25, it is straightforward

to see that b > 0:

b = 2(R2
01d

2
02 + R2

02d
2
01 � 2R01R02d01d02 cos� cos )

> 2(R2
01d

2
02 + R2

02d
2
01 � 2R01R02d01d02); since cos� < 1; cos � 1

= 2(R01d02 � R02d01)
2

� 0

Returning to Equation 23, Appendix E shows that b2 � ac � 0. From this fact and that

a > 0, b > 0, and c � 0, we can derive that there are in general two solutions for s with a single

special case when b2 � ac = 0, which can be seen as follows:

b2 � ac � 0 =) b�
p
b2 � ac � 0; since b > 0 and ac � 0

=) b�pb2 � ac

a
� 0; since a > 0

Hence

s =

s
b� pb2 � ac

a
;

which gives one or two solutions for the biquadratic, depending on whether b2 � ac is positive

or equal to zero.

Next, I show that of the two solutions for the scale, exactly one of them is valid, that is, cor-

responds to an orthographic projection of the model points onto the image points. Furthermore,

the other solution arises from inverting the model and image distances in Fig 2. In addition,

there being one solution for scale corresponds to the special case in which the model triangle is

parallel to the image plane. The following proposition, which is proved in Appendix C, will be

useful in establishing these claims.

Proposition 1: Let

s1 =

s
b�pb2 � ac

a
s2 =

s
b+

p
b2 � ac
a

: (27)
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Then

s1 � d01

R01

;
d02

R02

� s2: (28)

4.1 The true solution for scale

Here it is shown that exactly one of the two solutions for scale can satisfy the geometry shown in

Fig. 2, and it is always the same one. If the two solutions are the same, then both solutions can

satisfy the geometry (this case is discussed in Section 4.3). As will be seen, the valid solution is

s =

s
b+

p
b2 � ac
a

:

Note that proving this statement establishes the existence and uniqueness of the solution given

in Section 3.

In Fig. 2, (sR01)
2 � d201 = h21 � 0 and (sR02)

2 � d202 = h22 � 0, which implies that any

solution s for scale satis�es

d01

R01

� s and
d02

R02

� s:

Consequently, Proposition 1 implies that s2 is the only possible solution. Still, the question

remains whether s2 is itself a solution; the fact that it satis�es the biquadratic (Equation 22)

is not su�cient since the steps used to derive the biquadratic from Equations 18-20 are not

always reversible due to the squaring used to obtain Equation 21.

Next, I show that s2 is indeed a solution by giving an assignment to the remaining variables

that satis�es the constraints in Equations 18-20. Since (sR01)
2�d201 � 0 and (sR02)

2�d202 � 0,

we can set h21 = (sR01)
2 � d201 and h

2
2 = (sR02)

2 � d202, which immediately give Equations 18

and 19. Furthermore, we know s satis�es Equation 22, or, equivalently, Equation 21. Substitute

h21 and h
2
2 into the left-hand side of Equation 21:

4h21h
2
2 =

�
s2(R2

01 +R2
02 � R2

12)� (d201 + d202 � d212)
�2
:

which is the same as

�2h1h2 = s2(R2
01+ R2

02 �R2
12)� (d201 + d202 � d212):

At this point, we are free to choose the signs of h1 and h2. In particular, let the sign of h1
watch the sign on the left-hand side so that

2h1h2 = s2(R2
01 +R2

02 � R2
12)� (d201 + d202 � d212): (29)

Once this choice is made, we are forced to choose the sign of h2 to make the sign of the left-hand

side consistent with the right-hand side. In particular, let � be the sign of h2. Then unless the

right-hand side is 0,

� =

(
1 if s2(d201 + d202 � d212) < R2

01 +R2
02 � R2

12;

�1 if s2(d201 + d202 � d212) > R2
01 +R2

02 � R2
12:
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Figure 4: Geometrically interpreting the inverted solution for scale

On the other hand, if s2(R2
12 � R2

01 � R2
02) = d212 � d201 � d202, then Equation 29 implies h1 or

h2 is 0, so that the sign of h2 is not forced and so is arbitrary. Having chosen the sign of h2,

substituting h21 and h
2
2 into the right-hand side of Equation 29 gives

2h1h2 = h21 + h22 � (s2R2
12 � d212);

or

(h1 � h2)2 = s2R2
12 � d212;

which is Equation 20.

Returning to the signs of h1 and h2, there is two-way ambiguity in the sign of h1 which

imposes the same two-way ambiguity on the pairs (h1; h2) and (H1; H2). As can be seen in

Fig. 2, the ambiguity geometrically corresponds to a 
ip of the plane containing the space points

~m0, ~m1, and ~m2. The 
ip is about a plane in space that is parallel to the image plane, but

which plane it is cannot be determined since the problem gives no information about o�sets

of the model in the z direction. Due to the re
ection, for planar objects the two solutions are

equivalent, in that they give the same image points when projected. On the other hand, for

non-planar objects the two solutions project to di�erent sets of image points.

There is a special case, as mentioned above, when the sign of h2 is arbitrary relative to the

sign of h1. In this case, the right-hand side of Equation 29 is zero, and this implies that h1 or

h2 is zero also. Looking at Fig. 2, geometrically what is occurring is that one of the sides of the

model triangle that emanates from ~m0 lies parallel to the image plane, so that the re
ective

ambiguity is obtained by freely changing the sign of the non-zero altitude.

4.2 The inverted solution for scale

Of the two solutions for scale that satisfy the biquadratic, we know that one of them

corresponds to the geometry in Fig. 2, but what about the other? Using a similar argument to

that used to prove s2 is a solution for the weak-perspective geometry, we can infer a geometric

interpretation for s1. Consider, then, s = s1. The interpretation I will derive satis�es the

equations,

H2
1 +R2

01 = (rd01)
2 (30)
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Figure 5: Geometrically interpreting the inverted solution for scale

H2
2 +R2

02 = (rd02)
2 (31)

(H1 �H2)
2 +R2

12 = (rd12)
2; (32)

where r = 1
s
. Observe that r = 1

s1
and s2 have similar forms (see Equation 27):

r =

s
a

b�
p
b2 � ac

=

s
b+

p
b2 � ac
c

: (33)

To begin the derivation, Proposition 1 gives that d201 � (sR01)
2 � 0 and d202 � (sR02)

2 � 0,

which implies we can set h21 = d201�(sR01)
2 and h22 = d202�(sR02)

2. Dividing through by s2 gives

Equations 30 and 31. As before, since s satis�es Equation 22 and, equivalently, Equation 21,

we can substitute into Equation 21 with h21 and h
2
2 to obtain

(h1 � h2)2 = d212 � s2R2
12;

where the sign of h2 relative to h1 is 1 if d
2
01+d

2
02�d212 � s2(R2

01+R
2
02�R2

12), and �1 otherwise.
Dividing through by s2 gives Equation 32, and so the derivation is completed.

Geometrically, Equation 30 forms a right triangle with sides H1 and R01, and hypotenuse

rd01. Analogously, Equations 31 and 32 imply right triangles as well. The interpretation is

displayed in Fig. 4. Another way to see what is occurring geometrically is to note that the roles of

image and model distances from Equations 18-20 are inverted in Equations 30-32. In e�ect, what

is happening is that instead of scaling down the model triangle and projecting it orthographically

onto the image triangle, the image triangle is being scaled up and projected orthographically

onto the model triangle, that is, projected along parallel rays that are perpendicular to the

model triangle. This interpretation is shown in Fig. 5 as a rotated version of Fig. 4.

12



4.3 Model triangle is parallel to the image plane

The two solutions for the scale factor are the same when b2�ac = 0, and here I demonstrate that

geometrically this corresponds to the plane containing the three model points being parallel to

the image plane. Before proving this, let us establish the existence of the solution for scale in

this special case of b2 � ac = 0. Looking at Equation 23,

b2 � ac = 0 =) b�
p
b2 � ac = b

=) s =

s
b

a

is a solution to the biquadratic since a > 0 and b > 0.

Appendix D shows that b2 � ac = 0 exactly when � = � or � = � + � and d01

R01

= d02

R02

.

Using this result and Equations 24 and 26,

s =

s
b

a
=

sp
cp
a
=

s
jd01d02 sin�j
jR01R02 sin j =

d01

R01

=
d02

R02

(34)

=) h1 =
q
(sR01)2 � d201 = 0

h2 =
q
(sR02)2 � d202 = 0:

Thus b2 � ac = 0 only if the model triangle is parallel to the image plane.

Conversely, if the model triangle is parallel to the image plane, it must be that � =  .

Further, in this case h1 = h2 = 0, so that

s =
d01

R01

=
d02

R02

; (35)

which from Appendix D implies that b2 � ac = 0.

Since the two solutions are the same, we know that s1 = s2 =
1
r
. Notice in Figs. 3 and 4

that the geometric interpretations for the two solutions for scale collapse to the same solution

when h1 = h2 = H1 = H2 = 0 and s = 1
r
. As a result, when there is one solution for scale,

there is also one solution for (h1; h2) and (H1; H2), albeit (0; 0).

4.4 Model triangle is perpendicular to the image plane

The situation where the model triangle is perpendicular to the image plane is of interest since

the projection is a line. Note, however, that the solution given earlier makes no exception for

this case as long as the model triangle is not degenerate. As for what happens in this case,

since the image triangle is a line, we know  = 0 =) c = 0 =) Equation 23 becomes

s =

s
b�

p
b2

a
= 0;

s
2b

a
: (36)
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Figure 6: Special case where model triangle is a line. The repeated labels correspond

to two di�erent solutions for the position of the model that leave sm1 projecting onto

i1. For both solutions sm2 projects onto the same image point.

As shown above, of the two solutions for scale, the true one is
q

2b
a
and the inverted one is 0.

To see why the inverted solution is zero, recall that the solution can be viewed as scaling

and projecting the image triangle onto the model triangle, using for scale r = 1
s
, which in this

case does not exist. Since the image triangle is a line, graphically this amounts to trying to

scale a line so that it can project as a triangle, which is not possible.

4.5 Model triangle is a line

This is the one case where the solution for the scale fails, and it fails because a, which is

a measure of the area of the model triangle, is zero. Despite this fact, we can determine

when a solution exists. First, we know that the image triangle must be a line as well. To

see if this condition is enough, consider looking for a 3D rotation and scale that leaves sm1

orthographically projecting onto i1 as in Fig. 6. Observe that every such rotation and scale

leaves sm2 projecting onto the same point in the image. This means is that for a solution to

exist, it must be that

d01

R01

=
d02

R02

:

Even when the image triangle is a line, this in general is not true. When it is true, there is an

in�nity of solutions corresponding to every scaled rotation that leaves sm1 projecting onto i1.

Another way to look at this situation is to notice that the model triangle being a line when

using the true solution is analogous to the image triangle being a line when using the inverted

solution, where the roles of the model and image triangles are reversed. As discussed in the

previous section, the image triangle is a line when the model triangle is perpendicular to the

14



image plane. The analysis there reveals that for the inverted solution the scale factor r is

unde�ned, which means that here the true solution for the scale factor s is unde�ned as well.

4.6 Summary

Our goal was to determine the three unknown parameters of the geometry displayed in Fig. 3,

namely s, h1, and h2. The �gure gave three constraints (Equations 18-20), from which a

biquadratic in the scale factor s was derived. The biquadratic always has two positive solutions,

and its coe�cients, a, b, and c, are all non-negative. Of the two solutions, Section 4.1 showed

that one and only one can satisfy the three constraints, and that solution is s = s2 from

Proposition 1 (see Equation 27). Given s, there are two pairs of valid assignments for h1 and

h2. They correspond to re
ecting the plane of the three matched model points about any plane

parallel to the image; all planes parallel to image plane are equally-good. This proved that the

solution for 3D pose exists and is unique up the re
ective ambiguity.

In Section 4.2, Proposition 1 was used to infer the geometry that gives rise to the other

solution to the biquadratic, namely s = s1 (Equation 27). This solution, which is illustrated in

Fig. 5, is obtained by inverting the roles of the model and image points in Fig. 3. The di�erence

with the inverted solution is that the image points are being scaled and then orthographically

projected onto the model points, instead of the reverse. The inverted geometry satis�es three

constraints, Equations 30-32, that parallel the true constraints in function and form. Similarly,

the expression for the scale factor of the inverted solution, r = 1
s1

(Equation 33), parallels the

expression for the true scale factor, s = s2.

Three special cases were discussed next, one in which the plane of the matched model points

is parallel to the image plane (Section 4.3), one in which it is perpendicular to the image plane,

or, equivalently, in which the matched image points are collinear (Section 4.4), and one in which

the matched model points are collinear (Section 4.5). The �rst case is the one and only situation

in which the two solutions collapse to the same one, and in this case h1 = h2 = 0. In addition,

this situation is exactly where the two solutions to the biquadratic are the same; this is seen

geometrically by looking at Figs. 3 and 4 with h1, h2, H1, and H2 all zero and s = s1 = s2 =
1
r
.

In the case where the matched image points are collinear, the solution for 3D pose is still

valid. It is interesting to note, however, that the inverted solution for the scale factor does not

exist. Yet the inverted solution for the scale does exist when the model points are collinear, but,

in this case, the true solution does not. Section 4.5 determined that when the model points are

collinear a solution for 3D pose may still exist, but if and only if a further constraint is satis�ed.

The section concludes by giving the constraint and describing how it arises geometrically.

5 Image Position of a Fourth Model Point

To compute the position in the image of a fourth model point, I �rst use the solution from

the previous section to compute its 3D position in camera-centered coordinates. By so doing,

I can project the camera-centered model point under weak-perspective and obtain the image

position without having to calculate a model-to-image transformation. Let the image points be

15



~i0 = (x0; y0), ~i1 = (x1; y1), and ~i2 = (x2; y2). Given s, h1, h2, we can invert the projection to

get the three model points:

~m0 =
1

s
(x0; y0; w)

~m1 =
1

s
(x1; y1; h1 + w)

~m2 =
1

s
(x2; y2; h2 + w);

where w is an unknown o�set in a direction normal to the image plane.

Given three 2D points, ~q0, ~q1, and ~q2, a fourth 2D point ~q3 can be uniquely represented by

its \a�ne coordinates," (�, �), which are given by the equation

~q3 = �(~q1 � ~q0) + �(~q2 � ~q0) + ~q0:

Given three 3D points, ~p0, ~p1, and ~p2, this representation can be extended to uniquely represent

any other 3D point ~p3 in terms of what I shall call its \extended a�ne coordinates," (�, �, 
),

as follows:

~p3 = �(~p1 � ~p0) + �(~p2 � ~p0) + 
(~p1� ~p0)� (~p2 � ~p0) + ~p0 (37)

Let

x01 = x1 � x0; y01 = y1 � y0;
x02 = x2 � x0; y02 = y2 � y0:

Then, using the three model points with ~p0 = ~m0, ~p1 = ~m1, and ~p2 = ~m2,

~p1 � ~p0 =
1

s
(x01; y01; h1) (38)

~p2 � ~p0 =
1

s
(x02; y02; h2) (39)

(~p1 � ~p0)� (~p2 � ~p0) =
1

s2
(y01h2 � y02h1; x02h1 � x01h2; x01y02 � x02y01) : (40)

Next, substitute Equations 38-40 into Equation 37 to get the three-space location of the fourth

point:

~m3 =
1

s
�(x01; y01; h1) +

1

s
�(x02; y02; h2)

+

1

s2
(y01h2 � y02h1;�x01h2 + x02h1; x01y02 � x02y01) + 1

s
(x0; y0; w)

=
1

s
(�x01 + �x02 + 


y01h2 � y02h1

s
+ x0;

�y01 + �y02 + 

�x01h2 + x02h1

s
+ y0;

�h1 + �h2 + 

x01y02 � x02y01

s
+ w) (41)
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To project, �rst apply the scale factor s:

s ~m3 = (�x01 + �x02 + 

y01h2 � y02h1

s
+ x0;

�y01 + �y02 + 

�x01h2 + x02h1

s
+ y0;

�h1 + �h2 + 

x01y02 � x02y01

s
+ w) (42)

Let � represent an orthogonal projection along the z axis. Then project orthographically to

get the image location of the fourth point:

�(s ~m3) = (�x01 + �x02 + 
(y01H2 � y02H1) + x0;

�y01 + �y02 + 
(�x01H2 + x02H1) + y0) (43)

Notice that the unknown o�set w has dropped out. This expression computes the image position

of ~p3 from its extended a�ne coordinates, from the image points, and from H1 and H2, the

altitudes in the weak-perspective geometry. There are no intermediate results about the actual

3D pose stored along the way, and as a result, this computation should be very e�cient.

Nonetheless, it should be kept in mind thatH1 andH2 depend on the speci�c imaging geometry;

that is, they depend on the pose of the model.

It may be worthwhile to observe that Equation 43, the expression for the fourth point, can

be rewritten as a weighted sum of the three image points:

�(s ~m3) = (�x01 + �x02 + 
(y01H2 � y02H1) + x0;

�y01 + �y02 + 
(�x01H2 + x02H1) + y0)

= (�x1 + 
H2y1; �y1 � 
H2x1)� (�x0 + 
H2y0; �y0 � 
H2x0) +

(�x2 � 
H1y2; �y2 + 
H1x2)� (�x0 � 
H1y0; �y0 + 
H1x0) +

(x0; y0)

=

"
1� � � � 
(H1�H2)

�
(H1 �H2) 1� � � �

# "
x0
y0

#
+"

� 
H2

�
H2 �

#"
x1
y1

#
+

"
� �
H1


H1 �

# "
x2
y2

#
Let R� represent a 2D rotation matrix that rotates by an angle �. Then

�(s ~m3) = �0R�
0

~i0 + �1R�
1

~i1 + �2R�
2

~i2; (44)

where

�0 =
q
(1� �� �)2 + (
(H1�H2))2 (45)

�1 =
q
�2 + (
H2)2 (46)

�2 =
q
�2 + (
H1)2 (47)
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cos �0 =
1����
�0

sin �0 =
�
(H1�H2)

�0

cos �1 =
�

�1
sin �1 =

�
H2

�1

cos �2 =
�

�2
sin �2 =


H1

�2

(48)

Thus, we can view the computation as a 2D rotation and scale of each image point separately

followed by a sum of the three. It is important to keep in mind, however, that the rotations

and scales themselves depend on the image points, because of H1 and H2.

When the model is planar, the form of Equation 44 facilitates understanding the e�ects

of error in the image points. Error in the locations of the matched image points leads to

uncertainty in the image location of the fourth model point. Suppose that the true locations of

the matched image points are known to be within a few, say �i, pixels of their nominal locations,

for i = 0; 1; 2. Let ~ii and ~ci be the true and nominal locations of an image point, for i = 0; 1; 2.

Then, for some ~e0, ~i0 = ~c0 + ~e0, where k ~e0 k= �0, and similarly for ~i1 and ~i2. Then

�(s ~m3) = �0R�
0

~i0 + �1R�
1

~i1 + �2R�
2

~i2

= (�0R�
0
~c0 + �1R�

1
~c1 + �2R�

2
~c2) + (�0R�

0
~e0 + �1R�

1
~e1 + �2R�

2
~e2)

When the fourth point is in the plane of the �rst three, 
 = 0, so that the scales, �0, �1, and �2,

and 2D rotations, R�
0
, R�

1
, and R�

2
, are all constant (see Equations 45-48). This means that

the �rst term in parentheses is just the nominal image location of the fourth model point. Since

~e0, ~e1, and ~e2 move around circles, the 2D rotations in the second term can be ignored. Further,

since these error vectors move independently around their error circles, their radii simply sum

together. Therefore, the region of possible locations of the fourth model point is bounded by a

circle of radius �0�0+ �1�1+ �2�2 that is centered at the nominal point. By plugging 
 = 0 into

Equations 45-47, we get that

�0 = j1� �� �j ; �1 = j�j ; �2 = j�j ;
Assuming �0 = �1 = �2 = �, this implies that the uncertainty in the image location of a fourth

point is bounded by a circle with radius (j1� �� �j + j�j + j�j)� and with its center at the

nominal point, which repeats the result given earlier by Jacobs [19].

Although the non-planar case clearly is more complicated, since the scales and 2D rotations

are no longer constant, Equation 44 may prove useful for obtaining bounds on the e�ects of

error in this situation as well.

6 Stability of the 3D Pose Solution

In numerical computations, it is well-advised to determine whether a computation is stable,

since, if not, it could produce inaccurate results. A computation is unstable if any roundo�

error can propagate and magnify such that the true answer is signi�cantly altered. The most

common source of roundo� error is known as catastrophic cancellation, where two numbers of

nearly equal magnitudes and opposite signs are summed. In fact, catastrophic cancellation is

the only way a sudden loss of precision can occur [31]. Otherwise, in general precision can be

lost by an accumulation of small errors over several operations.
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In the 3D pose solution, there are a few subtractions of positive numbers to be wary of. In

computing h1 and h2 from s (Equation 7), the values of h1 and h2 may have little precision if

cancellation occurs in the radicands, in which case h1 or h2 will be small relative to its range

of values. As discussed at the end of Section 4.1, h1 or h2 is zero when one of the sides of the

model triangle that emanates from ~m0 lies parallel to the image plane.

The calculation of h1 and h2 can also be unstable if s is inaccurate. Looking at Equation 6

and recalling that a, b, and c are non-negative, catastrophic cancellation can only occur in the

inner radicand. Even if it does, this is not a problem, since the result of the square root would

be negligible when added to b.

Another way for s to become inaccurate is if the value of a, b, or c in Equation 6 is obtained

with little precision. For a and c, Equations 9 and 11 show in parentheses one of the sides of

a triangle being subtracted from the sum of the other two; therefore, catastrophic cancellation

may occur when the triangle is nearly a line. Equation 10 shows that cancellation may occur

in computing b if either the terms in parentheses or the total sum approaches zero relative to

their ranges of values. From the law of cosines, the terms in parentheses are near zero when

some angle of the model triangle is small. From Equation 25, the total sum, i.e., b, is small

only if certain angles in the model and image triangles are small also. This says we should be

careful of b in the same circumstances in which we are careful of a and c, namely, when the

model or image points are nearly collinear.

To conclude, the parameters s, h1 and h2 (or s, H1, and H2) are prone to instability when

the matched model or image points are almost collinear, and, additionally, H1 or H2 can be

unstable when one of the vectors from ~m0 to ~m1 or ~m2 is nearly parallel to the image. In the

latter case, the unstable H1 or H2 is close to zero. If only one of H1 and H2 is close to zero,

then the instability can be avoided by re-ordering the matched points to make both H1 and

H2 large. However, if this is done, the di�erence H1 � H2 will be close to zero and may be

imprecise. If both H1 and H2 are almost zero, which means the model triangle is nearly parallel

to the image, then re-ordering the matched points will not help.

Finally, it is worth observing that much of the instability in the pose solution occurs at

places in which the problem is ill conditioned, that is, places where instability is inherent in

the geometry. For instance, H1 was said to be unstable when the vector from ~m0 to ~m1 is

nearly parallel to the image. Geometrically, in this situation a small change in the position of
~i1 can cause a large change in the altitude H1 (Fig. 2). For the same reason, recovering the

altitude H2 is unstable when the vector from ~m0 to ~m2 is nearly parallel to the image. This

situation would be worse if both vectors emanating from ~m0 were parallel to the image. By

a similar argument, it is intrinsically unstable to recover the pose when the model points are

nearly collinear, due to there being an in�nity of solutions when the model points are exactly

collinear (Section 4.5).

This suggests that recognition systems like alignment and pose clustering should give special

attention to situations where the model triangle is almost a line and where the model triangle

being viewed straight on. These cases could be avoided by checking if the model points are

nearly collinear or if the corresponding angles between the model and image points are very

close. For the latter case, the suggestion does not apply if alignment is being used to recognize
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planar models. This is because, if Equation 14 is used, error in H1 or H2 has no e�ect on the

image locations of points in the plane, since for these points 
 = 0.

7 Review of Previous Solutions

There have been several earlier solutions to the weak-perspective three-point problem, notably

by Kanade and Kender [20], Cyganski and Orr ([7], [8]), Ullman ([28], [17]), Huttenlocher

and Ullman ([16], [18], [29]), and Grimson, Huttenlocher, and Alter [12]. All the previous

solutions compute the 3D pose by going through a 3D rigid transformation or a 2D a�ne

transformation relating the model to the image. A 2D a�ne transform is a linear transform

plus a translation, and it can be applied to any object lying in the plane. All but Ullman's

and Grimson, Huttenlocher, and Alter's solutions compute an a�ne transformation between

the three model and image points. Also, all but Kanade and Kender's solution compute a

model-to-image rigid transformation, either via a rotation matrix or via Euler angles.

Not all of the solutions directly solve the weak-perspective three-point problem. The earliest

solution, which was given by Kanade and Kender in 1983, applies Kanade's skewed-symmetry

constraint to recover the 3D orientation of a symmetric, planar pattern [20]. More precisely,

Kanade and Kender showed how to compute the 3D orientation of the plane containing a

symmetric, planar pattern from a 2D a�ne transform between an image of the pattern and

the pattern itself. To apply this result to the weak-perspective three-point problem, the three

points can be used to construct a symmetric, planar pattern, and a 2D a�ne transform can be

computed from two sets of three corresponding points. The solution was shown to exist and to

give two solutions related by a re
ective ambiguity, assuming that the determinant of the a�ne

transform is positive.

The remaining methods all concentrate on computing the 3D rigid transform from the model

to the image. In 1985, while presenting a system for recognizing planar objects, Cyganksi and

Orr showed how to use higher-order moments to compute a 2D a�ne transform between planar

regions ([7], [8]). Given the a�ne transform, they listed expressions for computing the 3D

Euler angles from the 2D a�ne transform1. They did not, however, discuss how they derived

the expressions.

The next method is the solution given by Ullman in 1986 [28], which appeared again in [17].

The paper included a proof that the solution for the scale factor is unique and the solution for

the rotation matrix is unique up to an inherent two-way ambiguity. (This corresponds to the

ambiguity in H1 and H2.) But Ullman did not show the solution exists. When it does exist,

Ullman described a method for obtaining the rotation matrix and scale factor.

In 1988, Huttenlocher and Ullman gave another solution, and, in the process, gave the

�rst complete proof that the solution both exists and is unique (up to the two-way ambiguity)

([16], [18], [29]). Like Kanade and Kender, and Cyganski and Orr, Huttenlocher and Ullman's

solution relies on a 2D a�ne transform. The solution itself is based on algebraic constraints

derived from rigidity, which are used to recover the elements of the scaled rotation matrix.

1The expressions that appear in [7] contain typesetting errors, but are listed correctly in [8].
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The last solution, which was published this year, was developed by Grimson, Huttenlocher,

and Alter for the purpose of analyzing the e�ects of image noise on error in transformation

space [12]. Towards this end, the method facilitates computing how a small perturbation in

each transformation parameter propagates to uncertainty ranges in the other parameters.

8 Presentation of Three Previous Solutions

The solutions discussed in the previous section di�er signi�cantly in how they compute the

transformation, and, as a result, each one can provide di�erent insights into solving related

problems, such as error analysis in alignment-based recognition and pose clustering. It seems

useful, then, to present the previous solutions in detail, so they conveniently can be referred to

and compared.

The �rst method presented is Ullman's solution, which the �rst part of this paper extended.

After that, I give Huttenlocher and Ullman's solution. Lastly, I present the method of Grimson,

Huttenlocher, and Alter. I do not present Kanade and Kender's method nor Cyganski and Orr's,

because Kanade and Kender did not directly solve the weak-perspective three-point problem,

and Cyganski and Orr did not detail their solution.

It should be pointed out that the presentations here di�er somewhat from the ones given

by the original authors, but the ideas are the same. Basically, the presentations emphasize the

steps that recover the 3D pose while being complete and concise. For more details, the reader

is referred to the original versions in the references.

In the following presentations, we are looking for a rigid transform plus scale that aligns

the model points to the image points. In all methods, we are free to move rigidly the three

image points or the three model points wherever we wish, since this amounts to tacking on an

additional transform before or after the aligning one. For example, this justi�es the assumption

made below that the plane of the model points is parallel to the image plane.

For consistency, the same notation as in Sections 3 and 4 is used in the proofs that follow:

Let the model points be ~m0, ~m1, ~m2 and the image points be ~i0, ~i1, ~i2, with the respective

distances between the points being R01, R02, and R12 for the model points, and d01, d02, and

d12 for the image points.

8.1 Overview

This section provides an overview of the three methods.

Initially, all three methods compute a transformation that brings the model into image

coordinates, such that the plane of the three matched model points is parallel to the image

plane and such that ~m0 projects onto ~i0, which has been translated to the origin. The three

methods then compute the out-of-plane rotation and scale that align the matched model and

image points. In so doing, the methods all end up solving a biquadratic equation.

In Ullman's method, the model and image points are further transformed via rotations

around the z axis to align ~m1 and~i1 along the x axis. Then the 3D rotation matrix for rotating

successively around the x and y axes is expressed in terms of Euler angles. This leads to a
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series of three equations in three unknowns, which are solved to get a biquadratic in the scale

factor. To get the elements of the rotation matrix, the solution for scale factor is substituted

back into the original three equations.

Instead of further rotating the model and image points, Huttenlocher and Ullman compute

an a�ne transform between them, which immediately gives the top-left sub-matrix of the scaled

rotation matrix. Then by studying what happens to two equal-length vectors in the plane, a

biquadratic is obtained. The scale factor and the remaining elements of the scaled rotation

matrix are found using the algebraic constraints on the columns of a scaled rotation matrix.

Like Ullman did, Grimson, Huttenlocher, and Alter rotate the model further to align ~m1

and ~i1. The desired out-of-plane rotation is expressed in terms of two angles that give the

rotation about two perpendicular axes in the plane. Next, Rodrigues' formula, which computes

the 3D rotation of a point about some axis, is used to eliminate the scale factor and obtain two

constraints on the two rotation angles. The two constraints are solved to get a biquadratic in

the cosine of one of the angles. Its solution is substituted back to get the other angle and the

scale factor, which can be used directly by Rodrigues' formula to transform any other model

point.

As mentioned in the introduction, Ullman's solution is incomplete because it does not show

which of the two solutions for the scale factor is correct; actually, the solution is completed by the

result given in Section 4.1 of this paper. Similar to Ullman's method, Grimson, Huttenlocher,

and Alter's solution has the same drawback of not showing which solution to its biquadratic is

correct. Huttenlocher and Ullman, on the other hand, have no such problem because it turns

out that one of the two solutions to their biquadratic is obviously not real, and so it immediately

is discarded.

8.2 Ullman's method

This section gives Ullman's solution to the weak-perspective three-point problem. The main

idea is �rst to transform the three model points to the image plane and then solve for the scale

and out-of-plane rotation that align the transformed points.

Speci�cally, the model points �rst are rigidly transformed to put the three model points in

the image plane with ~m0 at the origin of the image coordinate system and ~m1� ~m0 aligned with

the x axis. After rigidly transforming the model points, the resulting points can be represented

by (0; 0; 0), ( �x1; 0; 0), and ( �x2; �y2; 0). Similarly, let the image points be rigid transformed to

put ~i0 at the origin and ~i1 �~i0 along the x axis, and let the resulting image points be (0; 0; 0),

(x1; 0; 0), and (x2; y2; 0).

Next, we break the out-of-plane rotation into a rotation around the x axis by an angle �

followed by a rotation around the y axis by an angle �, as pictured in Fig. 7. The corresponding

rotation matrix is

R =

264 cos� 0 sin�

0 1 0

� sin� 0 cos�

375
264 1 0 0

0 cos � � sin �

0 sin � cos �

375
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Figure 7: Interpreting the out-of-plane rotation angles in Ullman's method.

=

264 cos� sin� sin � sin � cos �

0 cos � � sin �

� sin� cos� sin � cos� cos �

375 (49)

After rotation and scale, (0; 0; 0), ( �x1; 0; 0), and ( �x2; �y2; 0) become (0; 0; 0), (x1; 0; z1), and

(x2; y2; z2), respectively, where z1 and z2 are unknown. Thus, we need to �nd �, �, and s

such that

sR( �x1; 0; 0) = (x1; 0; z1)

sR( �x2; �y2; 0) = (x2; y2; z2)

Expanding the �rst two rows of R yields three equations in three unknowns:

s �x1 cos� = x1 (50)

s �y2 cos � = y2 (51)

s �x2 cos�� s �y2 sin� sin � = x2 (52)

Fig. 7 gives a graphical interpretation of the �rst two equations. Substituting Equations 50

and 51 along with expressions for sin� and sin � into Equation 52 yields a biquadratic in the

scale factor s:

as4 � bs2 + c = 0; (53)

where

a = �x1
2 �y2

2 (54)

b = x21( �x2
2 + �y2

2) + �x1
2(x22 + y22)� 2x1x2 �x1 �x2 (55)

c = x21y
2
2 (56)

The positive solutions for s are given by

s =

s
b� pb2 � 4ac

2a
(57)
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In general there can be one, two, or no solutions for s. Ullman makes no further attempt to

determine when or if each solution arises, except to refer to a uniqueness proof he gives earlier

in the paper. The uniqueness proof implies there can be at most one solution for s, but does

not say which solution it is or whether it can be either one at di�erent times.

Given s, the rotation matrix R is obtained using cos� = x1

s �x1
and cos � = y2

s �y2
in Equation 49.

One di�culty with this is that we do not know the signs of sin � and sin �; this leaves four

possibilities for the pair (sin �; sin�). In his uniqueness proof, Ullman points out that the

inherent re
ective ambiguity corresponds to multiplying simultaneously the elements r13, r23,

r31, and r32 of R by �1. In Equation 49, the signs of those elements also are inverted when

both sin � and sin� are multiplied by �1, which, visually, corresponds to re
ecting the model

points about the image plane (Fig. 7). Still, we have no way to know which of the two pairs of

solutions is correct. One way to proceed is to try both and see which solution pair aligns the

points.

8.3 Huttenlocher and Ullman's method

First, assume the plane containing the model points is parallel to the image plane. Then

subtract out ~m0 and ~i0 from the model and image points, respectively, to align them at the

origin. Let the resulting model points be (0; 0; 0), ( �x1; �y1; 0), and ( �x2; �y2; 0), and the resulting

image points be (0; 0), (x1; y1), and (x2; y2). At this point, what is left is to compute the scaled

rotation matrix that brings ( �x1; �y1; 0) and ( �x2; �y2; 0) to (x1; y1; z1) and (x2; y2; z2), respectively,

where z1 and z2 are unknown. That is, we need

sR( �x1; �y1; 0) = (x1; y1; z1)

sR( �x2; �y2; 0) = (x2; y2; z2):

Letting l11 = sr11, l12 = sr12, etc., and focusing on the �rst two rows of the rotation matrix,

we get two sets of equations:

l11 �x1 + l12 �y1 = x1 (58)

l11 �x2 + l12 �y2 = x2 (59)

l21 �x1 + l22 �y1 = y1 (60)

l21 �x2 + l22 �y2 = y2; (61)

which give

"
l11 l12
l21 l22

#
; the top-left sub-matrix of the scaled rotation matrix. Note that this

step fails if the determinent, �x1 �y2 � �x2 �y1, equals zero.

Next, we make a digression to consider what happens to two orthogonal, equal-length vectors

in the plane, ~e1 and ~e2. Since ~e1 and ~e2 are in the plane, we can apply the sub-matrix just

computed to obtain the resulting vectors, ~e1
0 and ~e2

0:

~e1
0 =

"
l11 l12
l21 l22

#
~e1; ~e2

0 =

"
l11 l12
l21 l22

#
~e2 (62)
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Figure 8: Projecting two orthogonal same-length vectors in Huttenlocher and Ullman's

method.

When a model is transformed, ~e1 and ~e2 undergo a rigid transformation plus scale before

projection. As shown in Fig. 8, after transformation these vectors become ~e1
0+c1bz and ~e20+c2bz.

Since a scaled, rigid transform preserves angles and ratios of lengths between vectors, and since

~e1 � ~e2 = 0 and k ~e1 k=k ~e2 k, it must be that
(~e1

0 + c1bz) � (~e20 + c2bz) = 0

k ~e10 k +c21 =k ~e20 k +c22:
These two equations simplify to

c1c2 = k1

c21 � c22 = k2

where

k1 = �~e10 � ~e20 (63)

k2 = k ~e20 k � k ~e10 k (64)

Substituting for c2 =
k1

c1
in the second equation leads to a biquadratic in c1:

c41 � k2c21 � k21 = 0 (65)

The general solution is

c1 = �
s
1

2

�
k2 �

q
k22 + 4k21

�
:

Conveniently, the inner discriminant always is greater than or equal to zero. Furthermore, since

4k21 � 0, the real solutions are given by

c1 = �
s
1

2

�
k2 +

q
k22 + 4k21

�
; (66)
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since otherwise the outer discriminant is less than zero.

These two solutions for c1 give two corresponding solutions for c2, which from Fig. 8 can be

seen to correspond to a re
ection about the image plane.

The solution for c2 does not work when c1 = 0. In this case,

c2 = �
p
�k2 = �

q
k ~e10 k � k ~e20 k : (67)

This gives two solutions for c2, if it exists, which can be seen as follows. Since c1 = 0, ~e1 ends

up in the plane, so that that the length of ~e1 is just scaled down by s, whereas the length of

~e2 reduces both by being scaled down and by projection. Consequently, k ~e20 k�k ~e10 k, and,
therefore, c2 exists.

Given c1 and c2, we can recover two more elements of the scaled rotation matrix. Since ~e1
and ~e2 are in the plane, we know that sR~e1 = ~e1

0 + c1bz and sR~e2 = ~e2
0 + c2bz. Focusing on the

last row of the scaled rotation matrix, we get the two equations l31 = c1 and l32 = c2.

At this point, we have the �rst two columns of sR, and, from the constraints on the columns

of a rotation matrix, we can get the last column from the cross product of the �rst two. In

total, this gives

sR =

264 l11 l12
1
s
(c2l21 � c1l22)

l21 l22
1
s
(c1l12 � c2l11)

c1 c2
1
s
(l11l22 � l12l21)

375 (68)

Since the columns of a rotation matrix have unit length, we know

s =
q
l211 + l221 + c21 =

q
l212 + l222 + c22 : (69)

Notice that the ambiguity in c1 and c2 inverts the signs of the appropriate elements of the

rotation matrix as discussed in Section 8.2.

8.4 Grimson, Huttenlocher, and Alter's method

Grimson et al. gave another solution to the weak-perspective three point problem in order to

get a handle on how small perturbations a�ect the individual transformation parameters.

To start, assume the plane containing the model points is parallel to the image plane. Next,

rigidly transform the model points so that ~m0 projects to~i0 and ~m1� ~m0 projects along~i1�~i0.
Let � represent an orthogonal projection along the z axis, and in general let ~v? be the 2D

vector rotated ninety degrees clockwise from the 2D vector ~v. Then the translation is~i0��~m0,

and the rotation is about bz by an angle  given by

cos = bm01 �bi01; sin = � bm01 �bi?01:
(see Fig. 9).

At this point, assign ~m01 = ~m1 � ~m0, ~m02 = ~m2 � ~m0, ~i01 = ~i1 �~i0, and ~i02 = ~m2 � ~m0.

Also, consider the out-of-plane rotation to be a rotation about bi01 by some angle � followed by

a rotation about bi?01 by some angle �. Let us compute where the vectors bi01 and bi?01 project to
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Figure 9: After the rotation by  in Grimson, Huttenlocher, and Alter's method, the

plane of the model points is parallel to the image plane, ~m0 projects onto~i0, and ~m1� ~m0

projects along ~i1 �~i0.

after the two rotations and scale. To do this, we use Rodrigues' formula: Let Rbv;�~p represent
a rotation of a point ~p about a direction bv by an angle � . Rodrigues' formula is

Rbv;�~p = cos �~p+ (1� cos �)(bv � ~p)bv + sin �(bv � ~p): (70)

Using the formula, we can compute

Rbi?
01
;�
Rbi01;�bi01 = cos�bi01 � sin �bz (71)

Rbi?
01
;�
Rbi01;�bi?01 = sin � sin�bi01 + cos �bi?01 + sin � cos�bz:

Initially, ~m01 was rotated about bz to align it with ~i01. In order for the scaled orthographic

projection of ~m01 to align with ~i01, Equation 71 implies that

s =
k~i01 k
k ~m01 k

1

cos�

=
d01

R01

1

cos�
: (72)

Then

s�Rbi?
01
;�
Rbi01;�bi01 =

d01

R01

bi01 (73)

s�Rbi?
01
;�
Rbi01;�bi?01 =

d01

R01

1

cos�
(sin � sin �bi01 + cos �bi?01) (74)

Next, we use the expressions in Equations 73 and 74 to constrain � and � such that ~m02

projects along ~i02. When we aligned ~m01 and ~i01, ~m02 rotated to Rbz; ~m02. Since ~m02 has no bz
component (by assumption), we can represent Rbz; ~m02 by

R02 cos �bi01 + R02 sin �bi?01;
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where � is a known angle. Consequently, the transformed, projected, and scaled ~m02, which

must equal ~i02, is

s�Rbi?
01
;�
Rbi01;�(R02 cos �bi01 +R02 sin �bi?01)

= R02 cos �(s�Rbi?
01
;�
Rbi01;�bi01) +R02 sin �(s�Rbi?

01
;�
Rbi01;�bi?01)

= R02 cos �

�
d01

R01

bi01�+R02 sin �

�
d01

R01

1

cos�
(sin � sin�bi01 + cos �bi?01)�

=
d01

cos�

R02

R01

(cos � cos�+ sin � sin� sin �)bi01 + d01

cos�

R02

R01

(sin � cos �)bi?01:
Similar to Rbz; ~m02, we can represent ~i02 as

~i02 = d02 cos!bi01 + d02 sin!bi?01;
where ! is known. By equating terms we get

d01

d02

R02

R01

(cos � cos�+ sin � sin� sin �) = cos� cos! (75)

d01

d02

R02

R01

(sin � cos �) = cos� sin!: (76)

These two equations can be solved to get a biquadratic in cos�:

sin2 ! cos4 �� (t2 + 1� 2t cos! cos �) cos2 �+ t2 sin2 � = 0; (77)

where

t =
R02d01

R01d02
: (78)

Since Rbz; ~m01 is aligned with~i01, we need cos� to be positive so that ~m01 projects in the same

direction as ~i01. The positive solutions are given by

cos� =
1

jsin!j

r
� �

q
�2 � t2 sin2 ! sin2 � (79)

with

� =
1

2
(1 + t2 � 2t cos! cos �):

This equation gives up to two solutions, but Grimson et al. make no further attempt to show

which solutions exists when, except to say the equation gives real solutions only if � � 0 or

cos! cos � � 1 + t2

2t
: (80)
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Given �, Equations 75 and 76 provide �:

cos � =
sin! cos�

t sin �
(81)

sin � =
cos�(cos! � t cos �)

t sin � sin �
(82)

Given any model point ~m, we can use the computed angles along with Rodrigues' formula

to �nd its image location. In particular, once ~m0 and ~i0 have been subtracted out, only the

scale and 3D rotation are left. The scale is given by Equation 72, and, as shown above, the

rotation is

Rbi?
01
;�
Rbi01;�Rbz; : (83)

As with Ullman's method (Section 8.2), we do not know the signs of sin � and sin�, but only

that inverting both signs simultaneously corresponds to the re
ective ambiguity.

8.5 Summary of the three computations

Here I summarize how each method can be used to compute 3D pose from three corresponding

points. To begin, transform the model and image points so that (1) the model points lie in the

image plane, (2) ~m0 and ~i0 are at the origin of the image coordinate system, and (3) ~m1 � ~m0

and ~i1�~i0 lie along the x axis. Then use one of the three methods to compute the scale factor

and out-of-plane rotation, as follows:

� Ullman's method

1. Use Equations 54-56 to get a, b, and c.

2. Substitute a, b, and c into Equation 57 to get s.

3. Calculate cos� = x1

s �x1
and cos � = y2

s �y2
.

4. Calculate sin � =
p
1� cos2 � and sin � =

p
1� cos2 �.

5. Construct the rotation matrix R using Equation 49.

� Huttenlocher and Ullman's method

1. Solve Equations 58 and 59 for l11 and l12, and Equations 60 and 61 for l21 and l22.

2. Let ~e1 = (0; 1) and ~e2 = (1; 0). (Any orthogonal, equal-length vectors can be used.)

3. Use Equation 62 to get ~e1
0 and ~e2

0.

4. Substitute ~e1
0 and ~e2

0 into Equations 63 and 64 to get k1 and k2.

5. Substitute k1 and k2 into Equation 66 to get c1.

6. If c1 6= 0, calculate c2 =
k1

c1
. Otherwise get c2 from Equation 67.

7. Use Equation 69 to get s.
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8. Use Equation 68 to get sR. Divide through by s if R is desired instead of sR.

� Grimson, Huttenlocher, and Alter's method

1. From the model points, compute R01, R02 and �, and, from the image points, com-

pute d01, d02, and !.

2. Use Equation 78 to get t.

3. Use Equation 79 to get cos�.

4. Use Equation 72 to get s.

5. Calculate sin � =
p
1� cos2 �.

6. Use Equations 81 and 82 to get cos � and sin �.

7. To transform any point ~p, substitute cos�, sin�, cos �, sin �, and ~p into Rodrigues'

formula, Equation 70, to get R~p = Rbi?
01
;�
Rbi01;�~p.

9 Stability and Comparison of Three Previous Solutions

For computing 3D pose, it is desirable to know how the solutions compare in terms of stability.

To address this issue, let us examine how susceptible the solutions are to catastrophic cancella-

tion [31]. For ease of reference, I will indicate which steps in the pose computation summaries

of Section 8.5 may be unstable.

Ullman's solution computes s in the same way as this paper does, and, as a result, is unstable

at the same places (see Section 6). For instance, precision may be lost if the model or image

points are nearly collinear when computing the coe�cients, a, b, and c, of the biquadratic. (In

Section 8.5, this is step 1 of Ullman's solution.) Looking for a moment at Ullman's computation

of a and c, it may appear that the computation is stable since there is no addition in Equation 54

or 56. In actuality, instability is hidden in the initial transformation that aligns the model and

image with the x axis.

Given s, Ullman computes the cosines of the angles � and � and then implicitly usesp
1� cos2 � and

p
1� cos2 � to get their sines. (This is step 4 of Ullman's solution.) Ei-

ther sine could be inaccurate, however, if cos � or cos� is very close to one. Fig. 7 shows that

when this happens one of the vectors emanating from ~m0 is nearly parallel to the image plane.

When the rotation matrix R is computed, inaccuracy in the sines a�ects the elements r12, r13,

and r23 (see Equation 49). Since r12 is a�ected, when the solution is used to transform an

unmatched model point, the instability can propagate to points that lie in the plane containing

the three matched model points, which is not true for the solution in this paper (Section 6).

For Huttenlocher and Ullman's method in Section 8.5, catastrophic cancellations may occur

in step 1 when l11, l12, l21, and l22 are computed, in step 4 when k1 and k2 are computed, and

in step 8 when sR is computed. Instability in step 4 can a�ect c1 and c2 in Equation 49: If c1 is

near zero, then k1 and k2 in Equation 66 also must be near zero. From Equations 63 and 64, k1
and k2 are computed with additions, and so cancellation can occur if they are small. Similarly,

if c2 is near zero, k1 must be small as well, and so again cancellation can occur. From Fig. 8, c1
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or c2 is nearly zero when one of the vectors emanating from the origin (~m0) is nearly parallel

to the image plane.

When l11, l12, l21, and l22 are computed (Equations 58-61), the results will be inaccurate if

the determinant, �x1 �y2� �x2 �y1, is close to zero, which happens exactly when the model points are

almost collinear. In addition, if any of l11, l12, l21, or l22 is almost zero, then cancellation can

occur in computing it. There are many pairs of model and image triples that can make one or

more of l11, l12, l21, l22 close to zero (e.g., l12 � 0 whenever x1 � �x1 and x2 � �x2, independent

of y1, y2, �y1, and �y2). Furthermore, in step 8, the additions in computing sr13 and sr23 can

also contribute to instability (see Equation 68). Note, however, that the image triangle being

nearly collinear does not necessarily make the computation unstable.

In Grimson et al.'s solution, instability may arise in step 5 if cos� is almost 1, in step 6 if t

is 1 and ! is close to �, and in step 7 if cos� is near 1 or cos � is near 1. As with the solution in

this paper, these situations occur when the model or image points are nearly collinear or when

one of the sides of the model triangle that emanates from ~m0 is nearly parallel to the image

plane. Like Ullman's method and Huttenlocher and Ullman's methods, however, instability can

propagate to points inside the plane of the matched model points (in step 7).

In summary, each of the three previous solutions spreads instability in the pose solution

to points in the plane of the three matched model points; however, the solution in this paper

does not. Furthermore, the situations in which instability can arise are the same for Ullman's

method, the method of Grimson et al., and the solution in this paper. Speci�cally, these

situations are when one of the vectors from ~m0 is parallel to the image, when the model points

are nearly collinear, and when the image points are nearly collinear. Huttenlocher and Ullman's

method is unstable in the �rst two situations as well, which is expected since in these situations

the problem is ill conditioned (Section 6). In addition, Huttenlocher and Ullman's method can

be unstable in many cases where the other methods are not, but may be more stable in the

case that the image points are nearly collinear.

10 Conclusion

The weak-perspective three-point problem is fundamental to many approaches to model-based

recognition. In this paper, I illustrated the underlying geometry, and then used it to derive

a new solution to the problem and to explain the various special cases that can arise. In

particular, the times when there are zero, one, and two solutions are described graphically.

The new solution is based on the distances between the matched model and image points

and is used to recover the three-space locations of the model points in image coordinates. From

the recovered locations, a direct expression for the image location of a fourth model point is

obtained. In contrast, earlier solutions computed an initial transformation that brought the

model into image coordinates, and then computed an additional transformation to align the

matched model points to their corresponding image points. As a result, the solution given here

should be easier to use, and, for recognition systems that repeat the computation of the model

pose many times, should be more e�cient.

Another di�erence with the method presented here is that it makes evident the symmetry
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of the solution with respect to the ordering of the model and image points. Previous methods

that are based on the coordinates of the points after some initial transformations make this

symmetry unclear.

Furthermore, this paper provides stability analyses for both the new and past solutions, none

of which had been analyzed for stability previously. Each computation is examined for places

where precision may be lost. From these places, the geometries that give rise to instability are

inferred. These geometries are used to distinguish instabilities that arise in situations where

the problem is ill conditioned, that is, situations where instability is inherent, from ones that

are due to the particular computation.

In giving another solution, this paper revisits Ullman's original biquadratic equation for the

scale factor, but, in addition, goes on to interpret both solutions to the equation, and to prove

which one is correct. The false solution is shown to correspond to inverting the roles of the

model and image points.

Lastly, the new solution is accompanied by a proof that the solution exists and is unique.

Of the previous methods, only Huttenlocher and Ullman's demonstrates this as well, and was

the �rst to do so. Such proofs may be useful for gaining insights into related problems as well

as the problem itself. Even so, since existence and uniqueness have been established, all the

solutions are valid, and should all be considered when a related problem needs to be solved.
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A Rigid Transform between 3 Corresponding 3D Points

This appendix computes a rigid transform between two sets of three corresponding points using

right-handed coordinate systems built separately on each set of three points. A right-handed

system is determined by an origin point, ~o, and three perpendicular unit vectors, (bu; bv; bw).
Given three points in space, ~p0, ~p1, ~p2, we can construct a right-handed system as follows: Let

~p01 = ~p1 � ~p0 and ~p02 = ~p2 � ~p0. Then let

~o = ~p0

~u = ~p01

~v = ~p02 � (~p02 � bp01)bp01
~w = ~u� ~v

Let (~o1; bu1; bv1; bw1) and (~o2; bu2; bv2; bw2) be the coordinate systems so de�ned for the original and

camera-centered points, respectively.

Given a coordinate system (~o; bu; bv; bw), a rigid transformation that takes a point in world

coordinates to a point in that coordinate system is given by (R;~t), where

R = [bu bv bw]; ~t = ~o
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(see for example [6]); the transformed ~p is R~p+~t. Then we can bring a point ~p from the original

system to the world and then to the camera-centered system using

R2

�
R1

T (~p� ~t1)
�
+ ~t2 = R2R1

T~p+ ~t2 �R2R1
T~t1

where

R1 = [bu1 bv1 bw1]; ~t1 = ~o1
R2 = [bu2 bv2 bw2]; ~t2 = ~o2:

Consequently a rigid transformation (R;~t) that aligns the two coordinate systems is

R = R2R1
T ; ~t = ~t2 �R2R1

T~t1: (84)

B Biquadratic for the Scale Factor

This appendix shows

4(s2R2
01 � d201)(s2R2

02 � d202) =
�
s2(R2

12 �R2
01 �R2

02)� (d212� d201 � d202)
�2

(85)

is equivalent to a biquadratic in s.

Expanding Equation 85,

4
�
s4R2

01R
2
02 � s2(R2

01d
2
02 + R2

02d
2
01) + d201d

2
02

�
=

s4(R2
01 +R2

02 � R2
12)

2 � 2s2(R2
01 +R2

02 � R2
12)(d

2
01+ d202 � d212)

+(d201 + d202 � d212)2

s4
�
4R2

01R
2
02 � (R2

01+ R2
02 �R2

12)
2
�

�2s2
�
2R2

01d
2
02 + 2R2

02d
2
01 � (R2

01 +R2
02 � R12)(d

2
01 + d202 � d212)

�
+
�
4d201d

2
02 � (d201 + d202 � d212)2

�
= 0

as4 � 2bs2 + c = 0;

where

a = 4R2
01R

2
02 � (R2

01+ R2
02 �R2

12)
2

b = 2R2
01d

2
02 + 2R2

02d
2
01 � (R2

01 +R2
02 �R2

12)(d
2
01 + d202 � d212)

c = 4d201d
2
02 � (d201 + d202 � d212)

2:
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C Two Solutions for Scale

This appendix proves Proposition 1. The proof uses the following lemma:

Lemma : Let f be either
�
d01

R01

�2
or
�
d02

R02

�2
. Then

af2 � 2bf + c � 0: (86)

Proof:

af2 � 2bf + c

= 4(R01R02 sin �)
2f2 �

2
�
2(R2

01d
2
02 +R2

02d
2
01 � 2R01R02d01d02 cos� cos )

�
f +

4(d01d02 sin )
2; from Equations 24, 25, and 26

= 4
�
R2

01R
2
02(1� cos2 �)f2�

(R2
01d

2
02 + R2

02d
2
01 � 2R01R02d01d02 cos� cos )f +

d201d
2
02(1� cos2  )

�
(87)

Suppose that f =
�
d01

R01

�2
. Then 87 becomes

4

 
�R

2
02d

4
01

R2
01

cos2 �+ 2
R02d

3
01d02

R01

cos� cos � d201d202 cos2 
!

= �4R2
02d

2
01

�
d01

R01

cos� � d02

R02

cos 

�2

Suppose instead that f =
�
d02

R02

�2
. Then 87 becomes

4

 
�R

2
01d

4
02

R2
02

cos2 �+ 2
R01d

3
02d01

R02

cos� cos � d201d202 cos2 
!

= �4R2
01d

2
02

�
d02

R02

cos� � d01

R01

cos 

�2

Either way, af2 � 2bf + c � 0:

2

Proposition 1: Let

s1 =

s
b�pb2 � ac

a
; s2 =

s
b+

p
b2 � ac
a

:

Then

s1 � d01

R01

;
d02

R02

� s2:
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Proof: Starting from the result of the lemma,

af2 � 2bf + c � 0

1

a

�
(af � b)2 � (b2 � ac)

�
� 0

(af � b)2 � b2 � ac; since a > 0

jaf � bj �
p
b2 � ac

�(af � b) �
p
b2 � ac and af � b �

p
b2 � ac

f � b� pb2 � ac

a
and f � b+

p
b2 � ac

a

s21 � f � s22

s1 � d01

R01

;
d02

R02

� s2

2

D One Solution for Scale

In the \one solution" case, we wish to know when and if b2 � ac = 0 holds. Using the result of

Appendix F, this means that

4(R01d02)
4
�
t2 � 2 cos(�+  )t+ 1

��
t2 � 2 cos(��  )t+ 1

�
= 0:

For this to hold, either

t2 � 2 cos(�+  )t+ 1 = 0 or t2 � 2 cos(��  )t+ 1 = 0:

Solving for t gives

t = cos(�+  )� i sin(�+  ) or t = cos(��  )� i sin(��  ); (88)

where i =
p�1. Consequently, there are real values of t that make b2 � ac = 0 only if

sin(� +  ) = 0 or sin(� �  ) = 0. These situations occur when � = � and � = � + �.

Substituting into Equation 88 gives that b2� ac = 0 i� both � = � or � = � + � and t = 1,

where t = 1 is the same as d01

R01
= d02

R02
.
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E No Solutions for Scale

This appendix shows that there always exists a solution to the biquadratic by showing that

b2 � ac � 0. From Appendix F,

b2 � ac = 4(R01d02)
4
�
t2 � 2 cos(�+  )t+ 1

��
t2 � 2 cos(��  )t+ 1

�
� 4(R01d02)

4
�
t2 � 2t+ 1

� �
t2 � 2t+ 1

�
= 4(R01d02)

4(t� 1)4

� 0

F Simplifying b
2
� ac

In this appendix, I derive that

b2 � ac = 4(R01d02)
4
�
t2 � 2 cos(�+  )t+ 1

��
t2 � 2 cos(��  )t+ 1

�
; (89)

where

t =
R02d01

R01d02
:

From Equations 24, 25, and 26,

a = 4(R01R02 sin �)
2

b = 2(R2
01d

2
02 +R2

02d
2
01 � 2R01R02d01d02 cos� cos )

c = 4(d01d02 sin )
2

Then

b2 = 4(R4
02d

4
01 � 4R3

02d
3
01R01d02 cos� cos + 2R2

01R
2
02d

2
01d

2
02 +

4R2
01R

2
02d

2
01d

2
02 cos

2 � cos2 � 4R3
01d

3
02R02d01 cos� cos +R4

01d
4
02)

ac = 16R2
01R

2
02d

2
01d

2
02 sin

2 � sin2  

b2 � ac = 4
�
R4

02d
4
01 � 4R3

02d
3
01R01d02 cos� cos +

(2 + 4 cos2 � cos2 � 4 sin2 � sin2 )R2
01R

2
02d

2
01d

2
02 �

4R3
01d

3
02R02d01 cos� cos +R4

01d
4
02

�
= 4(R01d02)

4
�
t4 � 4 cos� cos t3 + (2 + 4 cos2 � cos2  � 4 sin2 � sin2  )t2�

4 cos� cos t+ 1) ; where t =
R02d01

R01d02
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= 4(R01d02)
4
�
t4 � 2 (cos(�+  ) + cos(��  )) t3+

(2 + 4 cos(�+  ) cos(��  )) t2 � 2 (cos(�+  ) + cos(��  )) t+ 1
�

= 4(R01d02)
4
�
t2 � 2 cos(�+  )t+ 1

��
t2 � 2 cos(��  )t+ 1

�
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