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Abstract

A typical robot vision scenario might involve a vehicle moving with an
unknown 3D motion (translation and rotation) while taking intensity images
of an arbitrary environment.

This paper describes the theory and implementation issues of tracking
any desired point in the environment. This method is performed completely
in software without any need to mechanically move the camera relative to
the vehicle.

This tracking technique is simple and inexpensive. Furthermore, it does
not use either optical flow or feature correspondence. Instead, the spatio-
temporal gradients of the input intensity images are used directly.

The experimental results presented support the idea of tracking in soft-
ware. The final result is a sequence of tracked images where the desired
point is kept stationary in the images independent of the nature of the rela-
tive motion. Finally, the quality of these tracked images are examined using
spatio-temporal gradient maps.
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1 Introduction

In many applications there is a definite need for tracking an environment point using vision
sensory data. This task is equivalent to obtaining a sequence of tracked images which is, in
essence, the well known tracking problem. People have been working on different aspects of
this problem using various techniques for many years [13, 7, 18]. For example, Aloimonos &
‘Tsakiris [2] propose a method for tracking a foveated target of known shape; Bandopadhay
et al. [3] use optical flow and feature correspondence for tracking the principal point in
order to find the motion in a special case (they assume that there is no rotation along the
optical axis) without considering noise; and Sandini & Tistarelli [17] use an optical flow
based tracking method for finding the depth in a special case (no rotation along the optical
axis). All these methods use optical flow and/or feature correspondence and address only
special cases.

Traditionally, tracking has been associated with mechanically moving the camera to keep
the image of a particular point stationary at the image center. Some techniques even rely on
such a system. For example, Thompson [23] introduces an optical flow method for recovering
the motion in the special case where the rotational velocity along the optical axis is zero.
His method requires a sequence of tracked images at the principal point but he acknowledges
that the actual implementation of such tracking requirement in engineering systems is not
possible yet.

Hardware tracking is done by physically moving the camera with respect to the environ-
ment. Considering that in general the point of interest has a motion relative to the observer,
the second tracked image cannot be obtained in one step. As a result, a feedback control
loop is required for the camera system to compensate for the errors resulting from the new
position of the tracking point [14, 6, 8, 12, 24, 5]. These difficulties and other problems
such as expense, need for real time response, and potential errors involved make mechanical
(hardware) tracking unattractive, especially in vision systems.

This paper describes how a sequence of tracked images can be constructed from an
arbitrary image sequence (resulting from an arbitrary 3D relative motion) using a purely
software technique.

2 Equivalent Rotational Velocity

Figure 1 shows a viewer-centered coordinate system. The coordinate system OXY Z is
attached to the vision system. The viewer moves with arbitrary rotational and translational
velocities relative to an arbitrary rigid environment and takes a sequence of images. We refer
to any consecutive pair of images in the input sequence as original images. Our final goal
is to obtain a sequence of tracked images where the image of a desired point (fization point
or tracking point) is kept stationary no matter what kind of relative motion is involved. In
any pair of input images, we can use the first original image as the first tracked image so we
only need to construct the second fizated image.

If point 1 is chosen for tracking in the first original image, then in general its corresponding
image point in the second original image moves to a new location such as point 2; see fig. 1.
Determining the location of point 2 is the same as finding the motion of the tracking point
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Figure 1: An imaginary rotation opposite to the equivalent rotational velocity, —(Q, is applied
to the vision system to bring point 2 to point 1. This rotation transforms the second original
image into the second tracked image.

in the image plane (the so called fization velocity). Earlier, we introduced a simple technique
for the estimation of the fixation velocity [19, 22]. The experimental results have shown
that the fixation velocity can be estimated reliably even from real and noisy images [21, 22].
Accordingly, it is assumed here that the fixation velocity components (%o, Vo) in the image
plane have been already computed. In other words, we know the new location of the tracking
point (point 2) in the image plane.

There are infinite combinations of translations and rotations which can be applied to
the vision system or camera to bring the image point at 2 to the location 1 and result in a
sequence of tracked (fixated) images. Among all these combinations, we choose to accomplish
this task by a pure rotation because it does not require any depth information. To find the
desired rotation, we first introduce an equivalent rotational velocity, @ = (9,,9Q,,Q,), as a
rotation which can result in the same fixation velocity (40, v,) at the fixation point (z,, Yo)-
It can be shown that the components of £ must satisfy the following set of equations [20]

U, = ToYolle — (24 1), + 9.0, (1)
ve = (y24+1)Q, — TolYolly — x,0,.

There are also an infinite number of rotations € that satisfy the system of equations in 1.
However, we choose the only one which does not introduce any new rotational velocity along
the fixation axis r,. Mathematically it is equivalent to having @ - r, = 0 which results in an
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extra constraint on the components of {2,
zofle + Yoy + O, = 0. (2)

Considering that the fixation velocity (u,,v,) has already been computed and the fixation
point coordinates z, and y, are known here, the equivalent rotational velocity € is obtained
by solving the combination of the three linear equations in 1 and 2. For example, in the
special case that the tracking point is at the pr1nc1pa1 point, z, = y, = 0, the equivalent
rotational velocity becomes simply, :

Q = (vo, —u,, 0). | | (3)

However, it should be emphasized that the tracking point is not restricted to the principal
point and virtually any point can be chosen for tracking.

3 Pixel Shifting Process

After obtaining the equivalent rotational velocity £, the task of obtaining the second tracked
image is equivalent to finding the transformation exerted on the second original image if an
imaginary rotation —{2 is applied to the vision system.

Similar to eqn. 1, the following set of equations give the component of the corresponding
shifting vector (u, v) for any pixel (z, y) of the second original image

u = —zyQ, + (2+1)Q, — yQ, 1

{ v = —(¥*+1)Q, + zyQl, + z29Q.. (4)

Here O, ), and Q, are known values. As a result, the shifting vector (u,v) can be obtained

for every pixel of the second original image. Note that this shifting vector is not uniform
over the image but varies depending on the location of a pixel.

Figure 2 shows the process of constructing the second tracked image using the second
original image. The process is called pizel shifting. The task of constructing the second
tracked (fixated) image is equivalent to finding the brightness at any of its pixels. The
brightness at pixel (z,y) of the second tracked image is the same as the brightness at the
corresponding point (z—T"u, y—T'v) in the second original image, where T is the time interval
between two original images. In general, a computed original point will not be located at
the center of a pixel in the second original image. As a result, its brightness cannot be read
directly from the image file and should be computed by a method like averaging, bilinear
interpolation or bicubic interpolation of the brightnesses at its neighboring pixels.

3.1 Bilinear interpolation

We showed that the brightness E at pixel (z,y) of the second tracked image is the same as
the brightness at the pixel (z — T'u,y — T'w) of the second original image where the shifting
vector (u,v) is given by eqn. 4 and T is the time interval between two original images.

In practice, the point (z —Tw,y—Tv) does not necessarily coincide with any pixel. Instead
it is usually lies between four pixels whose brightnesses may be denoted by E; ;, E; ;,1, Eiiq;,
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Figure 2: The pizel shifting process for constructing the second tracked (fizated) image from
the second original (initial) image. :

and FEiyy 415 see fig. 3. In this figure, p and ¢ are the horizontal and vertical distances of the
mapped point from pixel (4,5). Considering that this can happen for any pixel, the average
%(Ei,j + E;ij+1+ Eig1; + Eiy1j41) is not a good estimation for E because it corrupts the
constructed image by introducing aliasing.

Bilinear interpolation of the surrounding brightness levels has proven to be a good esti-
mate for E. It is computed as,

E=1-p)1-9)Ei;+p(1 —q)Eijs1+q(1 — p)Eis1; + pgEis1 j41. (5)

As shown in fig. 3, p and ¢ represent the horizontal and vertical distance of the mapped
point from pixel (7, 7). Such an algorithm gives the largest weight to the pixel closest to the
mapped point and results in the exact brightness value when it coincides with any pixel,
p=q=0.

All the images which we have constructed are obtained using bilinear interpolation. Our
experimental results have shown that such interpolation is quite satisfactory. There are
some other techniques such as bicubic interpolation [1, 4, 11, 15, 16] which are much more
expensive, however, we did not find that we needed to use them in this work.

4 Experimental Results

Two successive original frames of the landscape image sequence (taken at the Imaging Labo-
ratory of Carnegie Mellon University) are shown in figures 4 and 5. These are 8 — bit images
but the last two digits are usually too noisy to be reliable. The true motion between these
frames is a combination of translation and rotation. The real rotation is 0.3 deg about the
optical axis Z and the real translation is 2 mm along the horizontal axis X.



Figure 3: The mapped point in the second original image does not necessarily coincide with
any single pixel. Instead it is usually lies between four pixels.

4.1 Gradient maps of the original images

Using the formulation given in the appendix, we can compute the brightness gradients. The
spatio-temporal gradients are the primary source of input data for direct method algorithms
which do not use either optical flow or feature correspondence. The corresponding spatial
and temporal brightness gradients for the original landscape image sequence are shown in
figures 6, 7 and 8 respectively.

In these maps, larger gradient values are shown brighter. Such gradient maps suggest
a way of visually representing the brightness gradients which renders them more intuitively
meaningful. The horizontal gradient map F, in fig. 6 captures the vertical lines and feature
in the images. Similarly, the vertical gradient map E, in fig. 7 picks up the edge-like lines and
features in the image. These experimental results show that the spatial gradients capture
the geometric and shading characteristics of the images. It is important to notice that the
computation behind spatial gradients is very simple. However, they implicitly capture the
edges, features, and boundaries in the scene.

The temporal brightness gradient in fig. 8 tells us about the motion between two original
images. First of all, the vertical lines and features are seen all over this temporal gradient
map. This observation indicates that the motion has a horizontal translation component.
Secondly, there are also horizontal lines in this gradient map but they become weaker as they
get close to the left side of the map (this argument becomes more obvious if one compares the
horizontal lines in here with those of E, in fig. 7). This means that motion has a rotational



Figure 4: The first original frame in the landscape image sequence. The true motion is

a 0.3 deg rotation about the nominal optical axis Z, and a 2 mm translation along the
horizontal axis X.

Figure 5: The second original frame in the landscape image sequence.



Figure 6: The visual representation of the spatial brightness gradient E, for the original
landscape image sequence. This horizontal gradient map captures the vertical edges and
features in the image.

Figure 7: The visual representation of the spatial brightness gradient E, for the original

landscape image sequence. This vertical gradient map captures the horizontal edges and
features in the image.



Figure 8: The visual representation of the temporal brightness gradient E; for the origi-
nal landscape image sequence. The vertical edges with relatively uniform strength suggest
that motion has a horizontal translation component. The horizontal edges with decreasing
strength towards left indicate that there is also a rotation centered at the left of the image
center.

component which is centered in the left side of the image that is really the case for this
image sequence [21, 22]. Also, we can observe that at any vertical stripe of the spatial
gradient map, the horizontal lines become stronger as their distance from the center of the
stripe increases. This observation indicates that the rotation center is located in the middle
of the image.

4.2 Construction of the tracked images

The landscape images in figures 4 and 5 are used as input (original) images in our experiments.
As we discussed earlier, the first original image (fig. 4) is directly used as the first tracked
image. Then the pizel shifting process and the bilinear interpolation techniques (in section 3)
are applied to the second original image in figure 5 to construct the second tracked image in
fig. 9. This constructed image is quite good and looks as natural and crisp as the original
images do. We will describe the quality of this constructed image further in the following
section.

Depending on the size and direction of the equivalent rotational velocity €2, the brightness
E at some border pixels are not computable because they are mapped to points outside the
original images domain. The brightness at such bordering pixels are given an arbitrary value
of 0 which causes the appearance of bold black lines at the border of constructed images.
This should not concern us because in general the results near the image borders are not



Figure 9: The constructed landscape image, second tracked image.

considered reliable anyway.

4.3 Gradient maps of the tracked images

The gradient maps are good measures for studying the quality and characteristics of a tracked
image sequence. This section examines the gradient maps of the tracked image sequence
constructed from the landscape original real image sequence.

The combination of the first original image in fig. 4 and the second tracked image in fig. 9
form the tracked image sequence. The corresponding spatial gradient maps in figures 10 and
11 show that these gradients contain valuable information. The vertical and horizontal lines
and features of the original images are implicitly represented in these spatial gradients.

The temporal gradient map of the tracked image sequence is shown in fig. 12. This map
contains very important information. First of all it clearly shows the characteristic of the
tracked image sequence. Both the horizontal and vertical features of the image sequence
become more obvious as their distance from the tracking point location (image center in this
case) increases. Secondly, the appearance of the horizontal and vertical lines here provides
hints about the existence of a rotational component about the fixation axis. And finally the
dominant vertical lines are an indication that the equivalent rotational velocity has a major
component about the vertical axis.
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Figure 10: The spatial gradient map E, of the tracked landscape image sequence in
horizontal direction.

Figure 11: The spatial gradient maps of the tracked landscape image sequence in
vertical direction.
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Figure 12: The temporal gradient map of the tracked landscape image sequence.

5 Summary

This paper described the pizel shifting process and presented the experimental results of con-
structing a sequence of fixated (tracked) images from an arbitrary image sequence resulting
from an arbitrary 3D motion. This method solves the tracking problem in its most chal-
lenging case. In other words, it does not require any knowledge about the motion or shape.
Furthermore, the tracking point is not restricted to the principal point (image center) and
virtually any point can be chosen as the tracking point. Our technique is neither a simple
2D tracking nor an image feature alignment.

Our tracking technique is performed completely in software without any need to me-
chanically move the camera relative to the vehicle for tracking. It is computationally simple
and inexpensive. It uses neither optical flow nor feature correspondence. Instead, brightness
gradients of the original input images are used directly.

The quality of the tracked images are examined using spatio-temporal gradients which
implicitly capture not only the features of the scene but also preserve the characteristics of
the involved motion.
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Appendix: Computation of Brightness Gradients

The spatial and temporal derivatives of the image brightnesses are the basic data blocks in
the direct methods. This appendix describes the formulations behind the estimation of the
brightness gradients in images [10, 9].

The spatial brightness gradients E,, E,, and temporal brightness gradient E; are com-

puted simply by using the first differences of image brightness values on a cubic grid; see
fig. 13.
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Figure 13: The first brightness derivatives required in the direct methods can be estimated
using first differences in a 2 x 2 x 2 cube of brightness values. The estimates apply to the
point where four neighboring pixels in an image meet, and at a time halfway between two
successive images.

Using the indices ¢, j, and k to represent z, y, and time t respectively, the estimates of
spatial gradients E, and F, are give by:

1
E, ~ E((Eiﬂ,j,k + Eivtkt1 + By + Eigrji1,641)

—(Eijk + Eijkr1 + Eijyrx + Eijp1541)), (6)
and
1
E, ~ m((Ei,jH,k + Eijtikr1 + Eoprjrne + Eiprjeke1)
~(Eijk + Eijrr1 + Eix1jk + Eig15041)), (7)

and the temporal gradient F, is

1
Ey = Zé_t((Ei,j,kH + Eijt1h+1 + Eip1 k1 + Eigr jy1ee1)
—(Eijk + Eijy1k + Eig1jk + Eig1j418))- (8)
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These formulations give the brightness gradients at a point lying between four neighboring
pixels, and between successive images.

Considering the fact that we perform spatial tessellation by using pixels and temporal
tessellation by employing individual time varying frames, the above algorithms compensate
for part of the tessellation errors involved in discrete digitized images.
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