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Abstract

In this paper we present some extensions to the k-means algorithm for vector quantization
that permit its efficient use in image segmentation and pattern classification tasks. It
is shown that by introducing state variables that correspond to certain statistics of the
dynamic behavior of the algorithm, it is possible to find the representative centers of
the lower dimensional manifolds that define the boundaries between classes, for clouds of
multi-dimensional, multi-class data; this permits one, for example, to find class boundaries
directly from sparse data (e.g., in image segmentation tasks) or to efficiently place centers
for pattern classification (e.g., with local Gaussian classifiers). The same state variables
can be used to define algorithms for determining adaptively the optimal number of centers
for clouds of data with space-varying density. Some examples of the application of these
extensions are also given.
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This scheme suffers from some limitations: in the first
place, it is difficult to analyze (except in some particular
cases [25]), and thus to understand its performance in a
precise way; besides, the neighborhood structure is im-
posed rather than found from the data (although some
modifications have been proposed to this end [21]), which
limits its usefulness in unsupervised clustering tasks.

The above considerations provide the motivation for
the present work: it is our purpose to extend the LKMA
so that some of its limitations are overcome; specifically,
we will propose extended versions of the algorithm that:

1) Allow for a rigorous analysis of its convergence
properties.

ii) Work well for clustered data.

ii) Will, if desired, find the centers of the inter—class
boundary set.

iv) Adapt the number of centers to the local spatial
density of the data.

v) Find the “natural” neighborhood structure for the
centers of a data set (i.e., may be used for unsu-
pervised clustering).

The plan of the presentation is as follows: in sec-
tion 2, we introduce a family of algorithms that include
the LKMA as a limiting case, and give a general con-
vergence theorem for this class; also in this section, we
present some basic extensions and generalizations needed
for finding the centers of the inter—class boundary set,
and for adapting the number of centers to the data den-
sity. In section 3 we give examples of the application
of the extended scheme, specifically, to image segmenta-
tion and pattern classification, and finally, in section 4,
we present some conclusions and open problems.

2 Extended Local K-Means Algorithms

First, we will introduce a generalization of the LKMA
that will help us to understand its convergence proper-
ties. Consider again a set X = {2;,...,zn5} of points
in RP | aset of centers {m;,...,mp}, and the weighted
eIror measure:

N M
1
E(m) =53 > llas — me|Pwfy (6)
i=1k=1
where ,
wf, = — xRl = ma|[] )

7L exp[—Bllei — m;||2]

It is clear that the error measure (2) may be obtained
as the limit of (6) as # — oo. Now, & is differentiable,
and its gradient with respect to my, is given by:

N
ngp = E(mk - ﬁi)Wﬁc (8)

i=1
where

Wh = wh(1+ 80O wlllzi — m;||? = ||z — mi||%)
J

A standard gradient descent procedure for minimizing
&s would therefore take the form:

N
m{t) = mg) —ay Z(my) —z)Wi . (9)
=1
for some sequence {a;} converging to zero. However, it
is often more convenient to adopt a stochastic gradient
descent algorithm for minimizing &, that is equivalent
to approximating, at each step, the sum on the right side
of eq. (9) with just one term, randomly drawn among
the N terms. In formula:

m ™ =l —a(ml) — 2 )Wy (10)
where {£;} is a sequence of random variables which take
values on {1,2,..., N}. This minimization technique is

especially convenient when the data points z; come one
at a time, and it has been extensively used by the neural
network community, as a part of the so called “back-
propagation” procedure for neural networks training. In
the limit as 8 — oo, (10) becomes precisely the LKMA
(3). The convergence of (10) to a local minimum of £
follows from the following lemma (the proof is given in
the appendix; see also [28] for closely related results):

Lemma 2.1 Let F(y) : R* — R be of the form:

| &
F(y) = fo(y) + Nz.fi(y)
i=1

where f; are differentiable functions whose gradient is
bounded and salisfies the following Lipschiz condition:

for some positive number M. Let {y,} be the sequence

an(Vfo(yn) + Ve, (yn)) + annn  (11)
where {€,} is a sequence of random variables that take
values in {1,..., N} with uniform probability distribu-
tion, {an} is a sequence of scalars satisfying:

Ynd1 = Yn —

o0 00

Zan = oo and Za?l < o0

i=1 i=1

and {n,} is a sequence of random variables that is
bounded and converges to zero with probability one. As-
sume that {y,} is bounded and that S is a locally asymp-
totically stable point of the ordinary differential equation:

y=-VF (12)
with domain of attraction As. Then, if y, € G for all

n, for some compact domain G C Ag, {y,} converges to
S with probability one.

To satisfy the conditions of the lemma, the sequence
{a:} in (10) must be chosen appropriately. One possible
choice is, for example,

(lt:]./t .



else if hy > 0, N, generate a new center at a loca-
tion corresponding to one the data points inside the
current Voronot polytope of center k.

where 0;,0, € [0,1] are two suitably chosen thresholds
such that (6, — ;)N > 1. Note that this choice for
the location of the new centers is necessary to ensure
convergence (see below); in practice, however, one may
simply locate them at my + er where r is a random unit
vector, and € a positive number small enough, so that
the new center is attracted by at least one data point
inside Sy.

If the total number of centers change after a sweep,
one should reset hj to zero for all k, and a; to a;_x, and
effect a new sweep until the number of centers stabilize.

It is not difficult to show the convergence of (18) when
the lower threshold 6; is set to 0: in this case, one starts
with one processor (center) and successively generate
new ones until the Voronoi polytopes corresponding to
all centers contain less than 6, N data points. Since in
this case the number of centers increases monotonically
and it is bounded above, (e.g., by the total number of
data points), it will necessarily converge to a fixed num-
ber M*.

0, is a free parameter that controls the expected av-
erage number of points per center, while 6; controls the
variance of this number (a small variance is obtained if
(05 — 0;) is small). The fact that one has control over
the variance means that one can generate more uniform
center distributions with this method than with the stan-
dard k-means scheme. This, in turn, will usually improve
significantly the performance of other procedures that
may use these centers, for example, for vector quantiza-
tion or for function approximation (see section 3).

In practice, it is convenient to set the lower thresh-
old to a positive value to prevent centers to be attracted
to single outlier data points, as well as the existence of
centers with empty Voronoi polytopes (which may hap-
pen due to random initialization, if one starts with more
than one center). Note, however that convergence can-
not be guaranteed in this case; consider the following
example: suppose we have N = 7 data points; N8, = 5
and N@; = 4. It is clear that the number of centers
generated by (18) will always oscillate between 1 and 2.

This kind of pathological situations are unlikely to
occur in practice though, specially if (8, — ;) is large
enough (say, if 6, > 36;). A practical way of ensuring
convergence in any case is to let 6; go to zero after a
fixed number of iterations.

2.2.2 Boundary Finders

In the case of multi-class data, the augmented state
may be used to find the inter-class boundaries directly
from sparse data.

Let us assume that we have class—specific centers for
classes 1 through M — 1. Consider the 2—class case first:
the augmented state will contain, for each center k, the
vector (mk,hk,izlk) (we only have one type of centers
in this case). The idea is to constrain the update rule
so that a center position is updated approximately the
same number of times by data points belonging to each
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class, so that at all ¢,

The boundary—finding update rule may thus take the
form:

mgﬂ) mit) + a¢(z; — msj)),

(19)
if z; € S,(ct) and il(ltk) < %hg)

mg) , otherwise
where &; is the data point chosen at time ¢.
It is clear that with this rule we will have, at any time

t, | hgct) - 2i1(1t,€) |< 1, so that there will be approximately
the same number of data points belonging to each class
inside the Voronoi polytope of each center, provided that
the data density is uniform. In this case, upon conver-
gence, every center £ will be located at about the mid-
point of the centroids of the sets {Co NSk} and {C; N Sk}
where C,, is the set of data points of class n.

To see why this is true, note that when the update
rule (20) reaches its steady state, we must have that

El(wi —mi)l =Y > (2 —me)Pe(i,e) = 0

c=1z,€5,

where Py (i, c) is the probability of selecting an example
i that is in Sy and belongs to class ¢ and E[] denotes
the expected value. Now,

Pi(i,c) = Pr(select i |i € C, N Si) Pr(select C.) ~
1 |
N — = 2
| C.N Sk | 2 ( O)

where | C. NSy | denotes the number of points of class
c inside Sg, so that

2
1 1

mriy Ly
2 1C08| i€C.NS)

It is in this sense that one may say that the centers
are representative samples of the inter—class boundary
set.

This procedure may be generalized to @ > 2 classes,
by sampling, for each class {1,...,Q — 1}, the boundary
between itself and all the other classes. This however, is
not very efficient, since many parts of the boundary will
be sampled several times. A more economical sampling
may be obtained by defining the sets:

TE = C;

le = Ck+1 UCk+2 U CQ
for k =1,...Q — 1, and finding, for each k, the centers
{mg1,...,mepr, } that sample the boundary between the
sets T and T¥ using algorithm (20).
It is of course possible (and desirable) to combine this
procedure with the one for finding the number of centers
in an adaptive way. Figure 3 shows the performance of



Figure 4 around here

A more efficient way of achieving the same result is to
define a “pyramid” of processes that operate from coarse
to fine scales, and that increase the number of centers at
each refining step: one may start with a 3 x 3 lattice ,
which after a few iterations of (22) may be refined by
adding intermediate centers whose initial positions cor-
respond to the midpoints of existing ones (see figure 5),
and repeat the whole procedure recursively until the de-
sired number of centers is obtained. Note that with this
procedure, the potentials are always of the form (23)
with k£ = 1.

Figure 5 around here

The final configurations obtained in this way (see fig-
ure 4-b) are very similar to those obtained with Koho-
nen’s algorithm [15] (which also incorporates long range
interactions), but since the neighborhood size remains
fixed, the computational complexity is lower, and since
the new centers are already close to their correct (glob-
ally ordered) positions, the convergence rate is signifi-
cantly faster.

It is convenient, as in the case of Kohonen’s scheme,
to mantain a fixed, relatively large a; in (22) until the
final number of centers is reached. At this point, the use
of an appropriately decreasing sequence guarantees the
final convergence to a local minimum of (21) (see lemma
1). Other examples of the use of this approach will be
given in the next section.

3 Applications

In this section we present some applications that illus-
trate the power of the techniques we have developed

3.1 Edge Detection from Sparse Data

Suppose we have a set of sparse data points X =
{z1,...,zn} inside the unit square  in R?, which may
belong to either one of two classes {0,1}, and suppose
there is a closed region A C Q whose boundary is a
closed, smooth curve, and such that

Cle)=1eze A

(1.e., all the data points in class 1 are inside A). The
problem now is to find a polygonal line (i.e., a sequence
of points {mi,...mp}) that lies close to the smooth
curve that defines the boundary of A.

This may be achieved by combining the adaptive
boundary-finding scheme of section 2.2.2 with a prior
MRF constraint on the configuration of centers that cor-
responds to a circular lattice (i.e., a closed polygonal
line). In particular, to every clique of 3 neighboring sites
(,7, k) we associate the potential:

1
Vigk(m) = 5 — mi + 2m; — ]|
(note that m; and mps are considered neighbors in a
circular lattice).
The combined update rule takes the form:

6

mch]) )) A Z

m
CikeC Omy

_ (t)+a [( Ve ( m(t))] |

ifz; € S,(ct) and }Alg) < %hg)

®
= mgct) [z\ Z IWelm )]

m
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= mg) otherwise

(24)

where ; is the data point chosen at time ¢.

An example of the performance of this algorithm is
shown in figure 6. Note that since in the final config-
uration the centers are ordered, this scheme is in fact
finding the (discrete) boundary curve from sparse data
without interpolating the corresponding surface. In this
sense, it may be said that this algorithm finds the initial
position, the number of knots and the final configura-
tion of a “snake” [12] that approximates the inter—class
boundary.

Figure 6 around here

Figure 7 around here

With straightforward modifications, this scheme may
be used for finding: multiple closed boundaries (fig. 7-a
and 7-c); open curves that go from one border of the
image to another (fig. 7-b and 7-d), etc.

3.2 Local Gaussian Classifiers

Gaussian Classifiers [5] are a well known class of pro-
cedures for the segmentation of multi—class, multi-
dimensional data. The classification procedure for
each specimen z € R” involves the computation of Q
quadratic discriminant functions (one for each class) :

De = (2—pm) 27 (2 — px) + log | i |

fork=1...,Q (25)

where py is the estimated location of the centroid of
class k; Iy = [at(»f)] is the estimated (n x n) covariance
matrix and | X | is its determinant. The specimen is
then assigned to the class with the lowest value of D;.
The “learning” phase consists in the computation of g
and X from a set of examples {z;,...,zx} with known

classes {¢1,...,cen}:
N
=1 2:6(C(z,) — k
= Zr.].vl z (v (17 ) ) (26)
T, 8(Cer) — k)
N Y .
(k) — Zr:l .’L‘ml‘” 6((/(1?7») k) _ /Jk‘l.t]gj (27)

e w(CE) — b
so that it takes only one pass through the data.



and Poggio in [4].

In both cases the training and test error were less than
5% with 3 centers (3 Gaussians per class), and less than
8% with one Gaussian per class.

Figure 8 around here

3.3 Image Segmentation

As a final example, we consider an image segmentation
problem that arises in the processing of certain biomed-
ical images: scintigraphic images [11, 19], which are ob-
tained by counting the number of radioactive particles
that incide on each cell of a receptor array. The goal of
the processing step is to obtain from these measurements
an estimate of the radioisotope distribution in specific
organs within the human body.

Particle count and radioisotope concentration are re-
lated by the Poisson distribution formula; therefore, the
processing step consists in the restoration of a piecewise
smooth function corrupted by Poisson noise. If it were
possible to find the boundaries of the organ in question
(e.g., the heart), the problem would reduce to filtering a
smooth function within a given domain, for which effec-
tive methods are available (for example, Bayesian esti-
mation methods with MRF priors and quadratic poten-
tials to model the smoothness constraint [20]). In the
example that we give here, we show that it is possible
to adapt the methods that we have presented to classify
the pixels of a scintigraphic image of the heart in such
a way that one class corresponds approximately to the
interior of the organ.

To do this, we will use the following concepts:

We assume that the two classes are characterized
solely by the intensity level of the image, i.e., the in-
terior (class 1) has high intensity with respect to the
background (class 2). It is assumed that the classes are
fuzzy sets [29] with membership functions of the form:

1
$1(2) 1 +exp[-pB(z - 0)]
¢2(Z) = 1-—¢ (Z)

where 3 and 8 are positive parameters.

The formulae for the parameters of the discriminant
functions of the local Gaussian classifier ¢ are modified
in the obvious way:

PR ST NCES)

2, o (2(2r))

(ck) _ 2o T2 r(2(2r))
Y 2 or(2(2r))

where the sums are taken over the learning domain of
the classifier; @, denotes the coordinates of pixel r of
the image, and z(z,) denotes the value of the observed
intensity.

The learning domain of each local classifier is taken
as before, as the Voronoi polygon of a center that sam-
ples the image in an appropriate way. In this particular

(28)

(29)

[og

— i, (30)
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example, we are interested in segmenting the left ven-
tricule of the hearth taken from a left anterior oblique
projection. From this viewpoint, the ventricule appears
as a high intensity “donut” over a dark background (see
figure 9-a). Therefore, it is desirable that the centers
are located uniformly along a closed, smooth curve that
is attracted towards the higher intensity region of the
image (note that the quadratic decision surface of each
local classifier may be an hyperbola, and therefore, it
can adequately segment a region that looks like a band
within its domain).

Since a scintigraphic image is actually representing
particle counts, we may use update rule (24) directly,
considering that at each location z, there are z(z,) data
points. To get an appropriate behavior for this update
rule, however, it is necessary that all the data points are
visited in a random order (see lemma 1). To obtain this
condition, it is not enough to visit the sites of the lattice
randomly; it is also necessary, when, each site ¢ is vis-
ited, to “flip a coin”, and only update the corresponding
center location with probability Pupdate = 2(2i)/zmaxz,
where 2,4, = max; 2(z;).

Figure 9 around here

The results of this procedure applied to the real scinti-
graphic image of figure 9-a are shown in figure 9-b.
The white squares indicate the center locations, and the
white line the final compound decision boundary. The
threshold 6 was obtained as the minimum between the
two largest peaks of the global histogram of the image; in
the experiments we performed, however, we found that
the final results are not very sensitive to the precise value
of neither this nor the other parameter (8).

4 Conclusions

In this paper we have analyzed the local K-Means algo-
rithm, and have presented some extensions that increase
its range of applicability. Our main contributions are the
following:

i) We have established sufficient conditions for the
convergence of this algorithm to a (local) minimum
of a quadratic distorsion measure (lemma 1). In
doing so, we showed that it can be obtained as the
limit (as the parameter 8 becomes large) of a fam-
ily of algorithms which are closely related to those
obtained by minimizing an information distorsion
measure. For moderate values of 3, we showed
that these algorithms can be used for unsupervised
learning (clustering) tasks, since they can find a
neighborhood structure for the centers that reflects
the structure of the data.

i) We showed that by varying the parameter 8 and

adding a noise term to the update equation, it is

possible to improve significantly the performance
of the algorithm for clustered data.

iii) We introduced a modification to this algorithm

that consists in augmenting the state of each pro-

cessor (center) so that it keeps track of its own
dynamic behavior. With this modification, it is



Theorem A.2 Let {z,} be a sequence of independent
random vartables with zero mean. Then, if

i E[2%] < >
n=1

the series ZZO:I Zn converges with probability 1.

In order to apply this theorem to the random variable
s;, we first need to check that s; has zero mean. The
probability distribution of the random variables £ has
been assumed to be uniform, and therefore P(&;)
We then have:

=%

E[S,’] a,E[VF _ fol — Vfo] =

a,-[VF - E[fo‘] - Vfo] =

N
1
a;VF — N;Vﬁ —Vf]=0.
Similarly we have

E[s?] = a?E[(VF — Vfe, — V)Y = a?C(y)

for some function C(y). If we assume that

[e9)
D a <
n=1

then 57

neq Bls2] = C(z) o, a2 < +oo. Therefore
the series ) . | s; converges with probability 1, assump-
tion A4 holds, and lemma 2.1 is proved.

Note that the assumptions about the boundedness of
the sequence {y,}, and the boundedness of the gradi-
ent of the f; are not as restrictive as they seem, and in
practice may be dropped. In fact, we can restrict the
sequence {y, } to a compact region (G C R", considering,
instead of eq. (31), the following sequence:

Yn41 = HG[yn - an(vfo(yn) + fon(yn)) + annn] (33)

where Il is the projection onto (i. In this case, lemma
2.1 now holds if we substitute VF in eq. (12) with
OeVF. Choosing G sufficiently large to contain the
fixed points of interest, the conclusion of the theorem
is practically unchanged. Moreover, since now the se-
quence is restricted to the compact set (i, the derivatives
of the f; are certainly bounded on (, being continuous,
and therefore the assumpions of boundedness of the gra-
dient of the f; can be dropped.
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