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Abstract

A scheme for recognizing 3D objects fromsingle 2D inages is introduced. The schene proceeds in two
stages. In the first stage, the categorization stage, the inage is conpared to prototype objects. For
each prototype, the viewthat nost resenbles the image is recovered, and, 1f the viewis found to be
simml ar to the inage, the class identity of the object is determined. In the second stage, the i dentficati on
stage, the observed object is conpared to the indi vi dual nodel s of 1ts class, where classes are expected to
contain objects with relatively simil ar shapes. Ior each model, a viewthat matches the image is sought.

If such a viewis found, the object’s specific identity is determined. The advantage of categorizing the
object before it is identified is twfold Frst, the inage is conpared to a snaller nunber of nodels,
since onl y nodel s that bel ong to the object’s class need to be considered. Second, the cost of conparing
the image to each nodel ina class is very low because correspondence is computed once for the vhol e
class. More specifically, the correspondence and object pose conputed in the categorizationstage to align
the prototype with the inage are reused in the identification stage to align the individual models wth
the image. % aresult, identificationis reduced to a series of sinple tenpl ate comparisons. The paper
concludes wi th an al gorithmfor constructing optinal prototypes for classes of objects.
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1 Introduction

Our world contains an over vhel mng variety of objects.
While peopl e demonstrate outstanding abilities to nem
orize and recognize thousands of objects [27, 37, 38],
computer vision applications largely fail to accormo-
date these munbers. Apparently, the main tool that en-
ables people to effectivel y handle this nassive anount
of objects is categorization. By dividing the objects into
classes, the visual systemis capable of concludi ng prop-
erties of unfamliar objects fromtheir resenbl ance to
famliar ones. For famliar objects, categorization offers
an indexing tool into the stored library of object repre-
sent ations.

Recognition can be performed in different “levels of
abstraction”. For exanple, the sane object can be rec-
ogni zed as a face, a hunanface, or as a specific person’s
face. Psychol ogi cal studies suggest the existence of apre-
ferredlevel for recognition, called “the basic level of ab-
straction”’ [33]. Existing conputational schemes usually
approach recogni tion in either one of tw levels. Several
schenas attenpt to classify objects in their basic level
of abstraction (ve refer to this task by categorization),
vhile other schenes attenpt to determmne the specific
identity of objects (ve refer to this task by identifica-
tion). This paper presents a novel approach for recogni-
tion that conines the tvo tasks.

B see howthe tw tasks are related, consider the fol -
low ng exarpl e. Suppose you are wal ki ng down a street,
and soneone is comng tovards you. You look at the
person’s face, and it looks famliar, but you cammot tell
vhoit is. Soyoutrytopicture the people you knowwho
l ook 11 ke the person yousee, until finally, yourealize vho
the personis.

Ammhber of hypotheses can be dravnfromthis story.
Frst, recogntion can be broken into tvo stages: cat-
egorization and identification, vhere categorization 1s
believed to precede identification. Second, during the
course of recognition the inage is compared against a
munher of object nodels. Asumng that indeed catego-
rization precedes identification, only nodels that bel ong
tothe object’s class need to be considered. Knally, when
a newnodel 1s conpared to the inmage, the conparison
process nay benefit fronthe use of 1nfornationacquired
during categorization. Note that the situation described
here is not specific to faces. Qe canimnagine that sim-
lar situations occur when other objects, such as animals,
cars, and chairs, are observed.

D see howinformation acquired during categoriza-
tion can be used for 1dentification, consider the exanple
of face recognition. Wenafaceis recognized, the inage
positions of 1ts parts and features are known. In partic-
ul ar, an observer already knows where the eyes, nose,
and nouth are and can even infer the direction of gaze
and expression. 'The person’s identityis not essential for
extracting and 1 ocating these features. Instead, they are
mtched against features 1n a “generic” representation.
In addition, other features, such as a beard, hair style,
and winkles, that nay better distinguish betveen dif-
ferent persons may be located. Mre generally, ve can
postul ate that, during categorization, sub-structures of

the objects (such as parts and features) are extracted
and located with respect to a generic nodel, and the
object’s pose is determned.

o followthis example, I propose a schena for recog-
nizing 3D objects fromsingle 2D vievs that conbines
the tw stages, categorization and identification. Cat-
egorization 1s achieved by aligmng the image to proto-
type objects. 'The prototype that appears mest simlar
to the 1mage determnes the class identity of the object.
Ater the object is categorized, 1ts specific identityis de-
termned by aligning the observed object to 1ndividual
mdels of 1ts class. By first categorizing the object, not
only the munher of nmedels considered for identification
is reduced, but also the cost of conparing each nwdel
to the 1mage significantly decreases. This is achieved by
reusing the correspondence and pose conputed for the
prototype in the categorization stage to align the 1nage
wi th the indi vi dual models. Wshowinthis paper that,
albeit a perfect match between the prototype and the
inage is not obtainable, the correspondence and pose
can be conputed for the prototype, and can be used
to bring the image and the object’s model into align
mant. (onsequently, recovering the correspondence and
pose for the 1 ndi vi dual nodel s becones unnecessary, and
1dentification 1s reduced to a series of sinple tenpl ate
conparisons.

The rest of this paper is divided as follows. Section 2
revievs the nain existing approaches for categorization
and 1dentification. Section 3 presents the schene of
recognition by prototypes. Section 4 proposes an al go-
rithmfor generating optimal prototypes for the schene.
Section b discusses the relevance of the schene to hi-
man recognition. Inpl ementation results are presented
in Section 6.

2 Previows Mpproaches

kxisting schenes for categorization often use a “reduc-
tiomst” approach. The image, vhich contains a detailed
appearance of an object, 1s transformed into a conpact
representation that is invariant for all objects of the
sane class. Qe common approach to generating such a
representation is by deconposing the object into parts.
Parts are extracted by cutting the object in concavities
[17, 22, 43] and | abel ed according to their general shape.
The labels, together with the spatial relationships be-
tveen the parts, are used toidentify the class of the ob-
ject [4, 6, 7, 26]. Asecond approachextracts the parts of
the object that fulfill certain functions. The list of func-
tions is used to determne the object’s class [16, 39, 47].
Scheras that break objects into parts are 1nsufficient
toexplainall the aspects of recognitionfor the follow ng
reasons. Hrst, inmany cases objects that belong to the
sama cl ass differ only by their detailed shape, while they
share roughl y the sane set of parts. Mreover, even ob-
jects that at some level nmay be considered bel onging to
diflerent classes, suchas acat and a dog, nay also share
roughl y the sane set of parts. Tosolve this probl emsev-
eral systems also store, inaddition to the part structure
of the objects, the detailed shape of the parts [2, 6, 7].
Another probl emi s that nany of the techm ques for rec-
ogni zing objects by part deconposition rely on findi ng



the entire parts fromthe inage.

D recognize the specific identity of objects, a rel-
ativel y detailed representation of the object’s shape is
conpared with the inage. An example for such neth-
ods is alignment [3, 9, 12, 13, 18 25, 40, 41]. Aignmant
invol ves recovering the positionand orientation (pose)in
vhi ch the object is observed and conparing the appear-
ance of the object fromthat pose with the 1mage. Qily
a few attenpts have been nmade in the past to extend
the alignnent schene to the probl emof object catego-
rization (e.g., [36]). The min difftul ty in applying the
al1gnnent approach is the recovery of the pose of the
observed object. In nest inplemantations this 1nvol ves
a tine- consumng stage for finding the correspondence
between the nodel and the 1nage. The process beconas
inpractical when the image is conpared against alarge
library of objects, because typically the correspondence
1s established betveen the i mage and each of the models
inthe library separatel y.

D handle large libraries, 1ndexing nethods vere pro-

posed (e.g., [20, 46, 14]). 'The basic ideais the following.

Acertainfunctionis defined and applied to the vievs of
all the objects in the library. The object nodels are ar-
ranged in a l ook-up table indexed by the obtained func-
tion values. WWen an inage is given, the function is
applied to the 1mage, and the obtained val ue is used to
indexinto the table. T reduce the size of the table and
the conplexity of its preparation, invariant functions,
functions that vhen applied to different views of an ob-
ject return the sam val ue regardless of viewpoint, often
are used as the indexing functions.

Indexi ng mathods suffer fromseveral shortcomngs.
Frst, existing indexing mathods handle only rigid ob-
jects. Fxtending these nethods to handle cl asses of ob-
jects has not been discussed. Second, because of com
plexity issues, 1ndexing functions usually are applied to
stal ] nunbers of features. A& a result, high rates of
false positives are obtained, and the effectiveness of the
indexing is reduced.

The schene presented in this paper is designed to
vork vhere traditional approaches to categorization and
indexing fail. The schema corbines both categorization
and 1 dentificationof objects, and uses fairly detailedrep-
resentations for objects. Rather than indexing directly
to the specific object nodel, the scheme indexes into
the library of objects by categorizing the object. TThe
cl asses handl ed by the schene include objects wthrel-
ativel y sinmlar shapes. 'Io fit into the scheme, in sone
cases basic level classes are brokeninto sub-classes. The
general problemof categorization therefore nay require

addi tional tools.

3 Recognition by Bototypes

The recognition by prototypes scheme proceeds as fol-
lows. Alibrary of 3D object nodels is stored in nem
ory. The nodels 1n the library are divided into classes,
and 3D prototype objects are selected to represent the
classes. Ior every class, the nmedels 1n the class are
aligned in the library wth the prototype object. The
role of this 3D alignnent will becone clear shortly.

A recogmtion time, an incomng 20 image is first
mtched against all of the prototypes. For each proto-
type object, the systemattenpts to recover the viewof
the prototype that nost resembles the 1mage. T do so,
the systenmwecovers the correspondence betveenthe pro-
totype and the image, and, usingthis correspondence, it
determnes the transfornation that best aligns the pro-
totype with the inage. This transformation, referred
to as the prototype transform, is then applied to the
prototype, and the simlarity betveen the transforned
prototype and the actual inage 1s evaluated. Since the
observed obj ect in general differs fromthe prototype ob-
ject, aperfect natch betveenthe tvois not anticipated.
The systemtherefore seeks a prototype that reasonabl y
matches the inage. (hee such a prototype 1s found, the
class 1dentity of the object 1s determned.

Ater the object’s class is determned, the systemat-
tenpts to recover the specific 1dentity of the object. A
this stage, the inage is matched against all the models
of the object’s class. Ior each of these models, the sys-
temseeks to recover the transformation that aligns the
model withthe inage. A wll be shown bel ow since the
model s are alignedinthe library wth the prototype, the
transformation that best aligns the prototype wth the
inage is 1dentical to the transformation that aligns the
mdel to the inage. The prototype transformtherefore
1s applied to the specific nodel s, and their appearance
fromthis pose is conpared wth the inage. The nodel
that aligns with the inage, if there 1s such, determnes
the specific 1 dentity of the object.

The rest of this sectionis divided as follows. In Sec-
tion 3.1 the object representation used 1n our schene 1s
presented. Section 3.2 describes the categorizationstage,
and Section 3.3 describes the 1dentification stage.

3.1 Object representation — the li near

combl nation schene

In our schene, an object is nedeled by a matrix M
of size n X k, vhere n is the munber of feature points,
and k represents the degrees of freedomof the object.
Avector @ € R *, referred to as the transformuvector,
represents the transfornation applied to the object ina
certain view and the object’s appearance fromthis view
is given by

V= Mu (1)

Inthe rest of this section ve expl ainthe use of this nota-
tion. The notation follows fromthe 1inear conbination
schene [42], vhichis briefly revieved bel ow

Under the linear combination scheme an object is
modeled by a small set of views, each is represented
by a vector contai ni ng polnt positions, vwhere the points
in these vievs are ordered in correspondence. Novel
views of the object are obtai ned by appl yi ng linear com
binations to the stored views. Additional constraints
nay apply to the coefftients of this linear conhi nation.
(onputing the obj ect pose therefore requires recovering
the coefltients of the linear conbination that align the
medel with the 1mage and verifying that the recovered
coeffei ents indeed satisfy the constraints. The nathod
handles r1gid objects under veak-perspective projection
(nanel y, orthographi ¢ projection folloved by a uniform



scaling). Tt was extended to approxi mate the appearance
of objects wth snwoth boundi ng surfaces and to handl e
articul ated objects. In our representation, the col urms
of the nodel natrix M contain vievs of the object, and
the coefftients of the linear corbination that align the
model with the image are gi ven by the transformvector

a .

Ior concreteness, we review the linear conbination
schema for rigid objects. (bnsider a 3D object O that
contains n feature points (X,V:, 7, 1<i<n. Uder
veak-perspective projection, the position of the object
folloving a rotation R, translationi, and scaling s is
g ven by

s 111X + 5 n2Y; +s m3Zi H oo (2)
S 7”21XZ' +s 7”22}/2' +s 7”23ZZ' + y

z;

Yi
vhere r ;; are the conponents of the rotation mtrix, R,
and? ;, %, are the horizontal and vertical conponents of

the translation vector,? respectively.

Denote by )?,37 ,Z, T, YPeeBRoasof X;, ¥, 4 ¢
and y; values respectively, and demote T =(1,
R™, ve canrewite Fy. 21inavector equation as fol l ows:

T = Cﬁ)_? +a 2}:} +Cl3_Z -I-Clzg (3)
Y = X 4b oY +b3Z +bal
vhere
aj = §7r bl = §7ran
a9 = 8§ T2 b2 = § T99
a3z = § 73 b3 = 8§ Ia3
ays = i » b4 =1 y
Therefore I
T, Y € saX¥{Z 1} (4

Dfferent vievs of the object are obtained by chang-
ing the rotation, scale, and translation paraneters, and
these changes resul t 1 n changi ng the coefltients in K. 3.
Wnay therefore conclude that all the vievs of arigid
object are containedin a 4D linear space.

This property, that the views of a rigid object are
contained in a 4D linear space, provides a nethod for
constructing viever-centered representations for the ob-
ject. The ideais touse images of the object to construct
a basis for this space. In general, tw views provide suf-
ficiently nany vectors. TTherefore, any novel viewis a
linear conbination of two views [30, 42].

Mot every linear conbinationis avalidviewof arigid
object. Followngthe orthonornality of the rowvectors
of the rotation matrix, the coefftients in Ky 3 nust
satisfy the two quadratic constraints

arby +a 202 +a 363 =0

Wen the constraints are not satisfied, distorted (by
stretch or shear) pictures of the objects are generated.
Incase aviever-centered representationis used, the con-
straints change in accordance wth the selected basis. A
third viewof the object can be used to recover the new
constraints.

For the purpose of this paper anodel for arigidobject
can be constructed by buil ding the foll owing n x 4 nodel
mtrix

—

M=( XY Z]1)

Vievs of the object can be constructed as foll ows

T = Mua
Y o= M (6)

vhere @ =(ai, @, g, &) and b =(b, b H b are the
coeffiients fromby. 3. Notice that the tw linear sys-
ters can be narged into one by constructing a nodi fied
medel matrix in the fol l owing way

(3)=(V 3)(f) o

Simmlar constructions can be obtained for objects with
stwoth boundi ng surfaces and for articul ated objects.
The width of M, &k, should then be nodified according
to the degrees of freedomof the medel ed object. A vas
mentioned above, viever-centeredrepresentations can be
obtained by constructing a basis for the 41 space from
inages of the object. Therefore, viever-centered nwdel s
can be obtained by repl acing the columm vectors of M

., 1) Evith the constructed basis.

© sumarize, followng the linear conbination
scheme ve can represent an object by a matrix M and
construct views of the object by applying it to trans-
formvectors @ . For rigid objects not every transform
vector 1s valid; the conponents of the transformvector
must satisfy the tvo quadratic constraints. Recognition
invol ves recovering the transformvector o and verifying
that its components satisfy the tvo constraints. Ignor-
ing these constraints wll result inrecogni zing the object
even vhenit under goes general 3D afliie transfornation.
In the analysis below ve largely ignore the quadratic
constraints. These constraints, hovever, can be verified
both during the categorization stage as vell as during
the 1dentification stage.

3.2 Categorization

The recognition by prototypes schere begins by deter-
mming the object’s category. Ths is achieved by com
paring the observed object to prototype objects, objects
that are “typical exenpl ars” for their cl asses. For a given
prototype, the viewof the prototype that nost resem
bles the inage is recovered and conpared to the actual
inage, and the result of this conparison determnes the
class 1dentity of the object.

W begin our description of the categorization stage
by defining the data structures used by the schene. A
class C=(P, {M M, . . },) M apair that includes a
prototype P and a set of object models M {, M, . . ;.,
Both the prototype and the nodels are represented by
n X k matrices, vhere n defines the nunher of feature
points considered, and k£ denotes the degrees of freedom
of the objects. For the sake of sinplicity ve assune here
that all the objects 1n the class share the sane mmber
of feature points, n, and that they have simmlar degrees
of freedom k. MNote that simlar objects tend to have
simlar degrees of freedom(e.g., all of themare rigid).
Both assunptions are not strict, hovever. 'The schena
can be nodified to tol erate both varyi ng nunher of fea-
ture points as well as different degrees of freedom The
details will be discussed later in this paper. Note that



the objects can be nodel ed by ei ther object-centered or
viever-centered representations. In case viewer-centered
representations are used ve shall assume that the nodel s
represent the objects fromthe same range of viewpoi nts.

Aclass in our scheme contains objects wth simlar
shapes. 'These objects share roughly the sane topolo-
gies, and there exists a “natural” correspondence be-
tveen them (bnsider, for instance, the tvo chairs in
K gure 1. Athough the shapes of these chairs are dif-
ferent, and sone parts (e.g., the arms) appear only in
one chair and not inthe other, a natural correspondence
betveen features in the two objects can be determned.

In the library of nodels, the natural correspondence
betveen objects 1s nade explicit. It 1s specified by the
order of the rowvectors of the nodels. Specifically, gi ven
a prototype P and object medels M 1, . . ;,,velbrder
the rows of these nodel s such that the first feature point
of P corresponds to the first feature point of eachof the
mdels M ¢, . . 4, ,anlffso forth.

Giventhe library of objects and gl venanincomng i
age, the recognition by prototypes schene begins by cat-
egorizing the object observed in the image. © achieve
this goal , the prototype objects are aligned and com
pared to the image. For every prototype, the correspon-
dence betveen the 1mage and the prototype 1s first re-
sol ved, and, uwsing this correspondence, the nearest pro-
totype viewis recovered. By doing so, the schene de-
coupl es the two factors that affect the appearance of the
object in the inage, namely, viewvariations and shape
variations. By selecting the nearest prototype viewto
the 1mage, the schene conpensates for viewvariations.
Then, by eval uating the simlarity betveen the nearest
prototype viewand the actual 1mage, 1t accounts for the
diflerences 1n shape between the prototype and the ob-
served object.

The first stage 1 nnat chi ng the prototype to the 1 nage
invol ves the recovery of correspondence between proto-
type and inage features. In existing systems for rec-
ogni zing the specific 1dentity of objects establishing the
correspondence betveen images and object nodels im-
vol ves a t1me-consurmmng process in whi ch sophisticated
al gorithrs are applied [10, 13, 15, 18, 23, 25 35, 41].
These al gorithm rely on the property that, vhen the
correct correspondence betveen a model and aninage is
established, a near-perfect natchbetvweenthe tvois ob-
tained. Wile this assunptionis valid for identification,
1t camnot be used under our schema since the prototype
and the inage generally represent diflerent objects.

B determine the correspondence betvween the proto-
type and the i nage, ve define an obj ective function that
1s applied to the prototype and the 1nage under a gi ven
correspondence and that obtains its mni nummder the
correct correspondence. 'The objectivefunctionwll mea-
sure the qual 1ty of the natch betveen the prototype and
the inage. Mnely, under this neasure the correct cor-
respondence 1s the one that brings the prototype into
1ts best alignnent with the image. Gventhis objective
function, correspondence is a conbi natorial optimzation
problem and so mmni mzation techm ques can be used to
resol ve the correspondence between the prototype and
the image. This paper does not propose a specific tech-

ni que for sol ving the correspondence probl em

Asumng the correspondence probl emcan be sol ved,
the schene proceeds as follows. (Gven a prototype P
and an inage I, we generate a viewvector b fromthe
inage by extracting the location of feature points and
arranging themin a vector. The points in @ are ordered
in correspondence to the prototype points; that is, the
first point in » corresponds to the first point in P and
so forth. The prototype transformis the transfornation
that brings the prototype points as close as possible to
their corresponding inage points. The prototype trans-
form therefore, is the transformvector b that nimi nizes
the Hicli dean di stance bet veen the prototype and 1 nage
points, nanaly

nin || PF — % || (8)
bl

Asolution for (8) is obtained as follows. Mssumng P
1s overdetermmned; that is, P is n X k vhere n > k and
rank(P) =k, and denote by P = (P TPy !PT the
pseudo-inverse of P, the prototype transform I;, 1s gl ven
by

b =Pt% (9)
and the nearest prototype view P is obtained by appl ying
P tothe prototype transform l_;, that 1s

P =B =PP%

The nearest prototype viewis now conpared to the
inage, and their resenbl ance determmnes the cl ass 1den
tity of the object. The quality of the match betweenthe
prototype and the image is defined by

o, )=l B - SR
© elimnate effects due to scaling of the object, this
masure should be nornalized, as is 1llustrated by the
exanpl e bel ow (bnsider an object seen fromsone view
4. Tts distance to the prototype is given by D(P, 1Ju
Suppose the object is nowseen froma newview » o that
1s identical to 1y except that the object is nowas twice
as close to the canera. Thder these conditions o 5 =27,
and its distance to the prototype is given by D(P, %) =
2D(P, 1 Qearly, ve should have a neasure that is
independent of the distance of the object to the camara.
(e way to obtai nsuch a masure is by dividing D(P, %)
by the norm|| % ||

A R PP —_I)%
b, PP DT

(10)

(12)

E(P, W ) is proposed here as an objective function for
establishing the correspondence between the prototype
and the image. Inother vords, ve expect that if the ob-
ject bel ongs to the prototype’s class thenf)(P, ) obtains
its mninal val ue vhen o is orderedin correspondence to
P . Ay other permutation will increase the value of D.
Formal ly, denote by o a pernutation natrix, we assune
that . .

D(P, %) =ni(P, ¢ %) (13)
g

The neasure ﬁ(P, D ) has asecondrole. Since it nea-
sures the simlarity between the prototype and the im
age, 1t can also be used to determmne the object’s class.



K gure 1: “Ntural” correspondences betveen tvo chairs

A object observedina view o belongs to the class rep-
resented by a prototype P if

D(P, b)<e
for sone constant € > 0. Wrefer to (14) as the catego-
rezation criterion.

The categorization stage proceeds as follows. Gven
animage I and a prototype P, the correspondence be-
tveen P and I 1s resolved by mnimzing the neasure
E(P, o v ) over all possible permutationo of ¥ |
obt al ned nini mum ﬁ(P,
the class 1dentity of the object 1s determined.

Note that in our schene the prototype and the cate-
gorization criterion determne the actual division of ob-
jects to classes; an object belongs to a certain class if
its vievs are sufftiently simlar, according to the cate-
gorization criterion, to views of the prototype. Under
the above defim tion, an object belongs to a prototype’s
classif the total difference betveenits feature points and
their corresponding prototype points does not exceed € .

The neasure E(P, D ) defined here deternines the sim
ilarity betveen the prototype P and the view o using
only the distances betveen feature points. In general
since correspondence is difftult to achieve, such a nea-
sure voul d not be robust. Including additional inforna-
tion about the features in the similarity measure nay
increase the robustness of the schene. Aso, neasures
that consider only the proximty of feature points are
limmtedinterns of dividing the libraryintoclasses, since
they induce cl asses of objects wthhighl y simlar shapes.
Masures that consider additional information can ex
tend the classes toinclude larger sets of objects.

The neasure E(P, ) can be enriched by consi dering
the simlarity betveen corresponding points. Asinple

(14)

exanpl e for a neasure that considers both the proxim
1ty and simml arity bet veen feature points is the followng
masure. Fach feature point i1s associated with a la-
bel (such as a corner or aninflection point). Again, the
neasure ﬁ(P, % ) is applied, but this tine only correspor
dences between points wth simlar labels are all owed,
narely, corners in the inage can only match corners in
the prototype, and, simlarly, inflection points can only
mtch inflection points. QGher examples for measures

. and 1f tP6a conhi ne proximty and sinil arity incl ude neasures
v ) is belowthe thresholde , thenthat retain the tangent or the curvature of points. Mre

sophisticated neasures nay conpare the topologies of
the objects in the two views, or, in other vords, verify
that the objects share simmlar part structures in 2D.

A useful technique in measuring the simlarity be-
tveen the inage and the nearest prototype viewis to
consider a different set of features than the set used to
determmne the prototype transform The rational behind
this techm que is that it is generally diffeult to recover
exact feature-to-feature correspondence, and while such
correspondences are necessary for recovering the proto-
type transformy simlarity mneasures can be successfully
applied even in the absence of exact feature-to-feature
correspondence. This idea resenbles the basic principle
of the alignment al gorithm[ 18, 41], in vhichasmll set
of points is used to conpute the object pose, while a
larger set of points is usedto verify this pose.

I't shoul d be noted that the general flowof the schene
and, in particular, the identification stage are indepen-
dent of the specific choice of simlarity neasure. A has
been noted above, the neasure affects the division of
nodel libraries into classes and the selection of optimnal
prototypes for these classes. A example for selecting
the optinal prototype for a given class under the nea-



sure specifiedin (12) (for either label ed or unl abel ed fea-
tures) is described in Section 4.

K nally, although the mainobjective of the categoriza-
tionstage is to determmne the class identity of the object,
the categorization schene described above 1s useful even
if the object’s category canmot be determned. Section
3.3 bel ow shows that the prototype transformcan be
reused to align the i nage with the specific nodels. Con-
sequently, followng the categorization stage the cost of
conparing the image to each of the specific mdels is
substantial ly reduced since the diffeult part of recover-
ing the transfornation that relates the nodels to the
inage 1s applied only to the prototype objects. & a
result, 1f the class identity of the object cannot be deter-
mned ve still need to consider all the specific nodel s in
the library, but the overall cost of conparing the nod
els to the 1mage wul d be lowbecause correspondence is
conputed once for the whol e cl ass.

3.3 Identification

Ater the observed object is categorized, the system
turns to recovering its individual identity. A this stage
the inage is matched to all the models 1n the object’s
class. Ior each nodel, the systemseeks to recover the
transformtion that aligns the nodel to the inage, 1f
there 1s such. Inprevious schems this requred recover-
ing the correspondence betveen the 1nage and each of

the nodel s separately. In our schene, hovever, this no
longer is necessary, since the object transformis deter-
mned directly fromthe prototype transform W show
inthis section that the prototype and the object trans-
forns are rel ated by a sinple transfornation, which can

be conputed i1n advance, and which can in fact be un-

done already in the library of stored models. (onse-
quently, the prototype transformcan be reused in the
1dentification stage to align the individual nedels wth
the 1 nage.

The imtial stage of categorization recovers three
pieces of information that can be used for identification.
The three are (i) the object class, (ii) the correspon
dence betveen the prototype and the inage, and (iii)
the prototype transform This information is used in
the 1dentification stage as follows. Frst, since the ob-
ject’s class is determned, only nodels that belong to
this class are considered. Second, using the correspon
dence betveen the prototype and the i mage established
in the categorization stage, and using the stored corre-
spondence betveen the prototype and the object nodel s,
the correspondence between the nodels and the 1nage
1s immedi ately recovered. Fnally, as is shown bel ow
the nodel transform namely, the transfornation that
aligns the model with the inage, is recovered fromthe
prototype transform

Asune ve are given with a view » of som object
model M ;, nanael y

v =M (15)
for sone transformvector @ . Wen the 1dentification
process begins, it is still unknown which of the nodels

My, . . ¢ of Mhe object’s class accounts for the inage
and vhat the transformvector @ 1s. The first task faced

by the schene at this stage is to recover the nodel trans-
formp . This is done, as is explained bel ow using the
prototype transform b =P+ definedin (9). Qxe T is
recovered, 1t is appliedto all the models M, . . ;, ,anllf
the nodel for which a near-perfect nmatch i1s obtained
determmnes the object’s 1dentity.

Theoreml bel owestabl i shes that the model transform
o canbe recovereddirectly fromthe prototype transform

b by appl yi ng alinear transfornation whichis referredto
as the prot ot ype-t o-model transform Ths transformhas
tvointeresting properties. First, it is viewindependent;
nanel y, for any gi ven viewof the object, the sane trans-
formmnaps the prototype transformthat corresponds to
this viewtothe correct nodel transform The protot ype-
to-nodel transformtherefore can be conputed in ad
vance and stored in the library of nodels. Second, the
prototype-to-nodel transformcan be used to recover the
mdel transformregardless of the quality of natch be-
tveen the prototype and the image. In other words,
even if the prototype aligns poorly with the inage, the
transformtion that aligns the nodel with the inage is
determned correctly in this process.

Theoreml: Given a view v =M;a . Lebt =Pt%
be the prototype transform, that is, the transformvec-
tor that best ali gns the prototype with the i nage. The

nodel transform “a, can be recoveredfromthe prototype

transfornf; , by appl ying a natrix, Ananely
a :A;I_;
A; 1s referred to as the prototype-to-nodel transform
Proof: Moti ce that
b =Pt =P M
Msum P TM; is invertible, let

A; I(P +Mi)_1
ve obtain that .
o =Ab
O
Gorrollary 2: ‘The prototype-to-nmodel transformis
view 1 ndependent .
Proof': The prototype-to-nodel transform A ;, isin

dependent of both pose vectors, & and b. (hangi ng the
inage » wll result inanewpair of pose vectors, a and

I;, but simmlar to the old pair, the new pair is related
through the sane transformA ;. The prototype-to-model
transformA ; therefore can be used to recover the object
pose for any viewof M ;. O

A; exists if PM; is invertible. This condition is
equivalent to requiring that the tvwo columm spaces of
P and M; will not be orthogonal in any direction. The
condition holds, in general, when the tvo objects are
fairly simlar. This is illustrated by the following ex
anple. (bnsider the case that both colurm spaces of
P and M; are one-dinensional ; nanaly, each represents
a line through the origin. 'The only case in this one-
dinensional exanple invwhich A ; does not exist 1s when
P and M; are orthogonal . Bit these lines are farthest



apart when they are orthogonal . (bnsequently, if the
objects are rel ativel y simmlar Awoul d exist.

Since 1t depends only on the prototype P and the
model M ;, the prototype-to-nodel transformA ; can be
pre-conputed and storedinthe 11 brary of nedels. Frery
nodel M ; € C is associated wth its own transformA;
that relates, for every possible viewof M, between the
prototype transformand the nodel transform T com
pare the image to the model M ; the model transform
shoul d first be recovered. This is achieved by appl yi ng
A; to the prototype transformconputed in the catego-
rization stage.

Aso, the prototype-to-nodel transformy A ;, can be
used to align the nodel M ; wth the prototype P in 3D.
Rrote the aligned nodel by M/, M/ nodels the sane
object as M does, since their columm vectors span the
sane space. In addition, the aligned model M [ has the

property that 1t 1s brought by the prototype transform b ,
to a perfect alignnent wth the inage. Consequently, if
the nodel s are alignedinthe 11brary wth the prototype,
the prototype transformconputed in the categorization
stage can be reused for identification with no further
mani pul ations. This is established 1n Theorem3 bel ow

Let M | =M ;A; be the nodel M aligned

Theorem3:

wi th the prototype P. For any view v ;=M the proto-
type transformfor this vibew=Pt % is identical tot

nodel transformfor this view, that is, ?}E:M

Proof: Since
MZ»/ =M ; A;
ve obtain that
MZ»/I; IMAZI; =M;a =7

O

Ging Theorem3, the identification schene is sim
plified as follows. The models M 1, . . ; areldlignedin
the library with the prototype P by applying the cor-
respondi ng prototype-to-model transform A ¢, . . ;. AA
recognition tine, the prototype transform b =Pt , 18
applied to the aligned nodels M 1, . . {., Adording to
Theorems 1 and 3, by transformng the nodels by b the
correct nodel, M/, would perfectly alignw th the i nage.

In the scheme above ve assumed that full feature-to-
feature correspondence 1s established bet veen the proto-
type and the image. This assunptionis not mandatory.
Mthods for estimating the prototype transformusing
partial correspondence or by considering other types of
features (such as line segrents) can also be used. MNote
that in case the prototype transformcan onl y be approx-
imated, the accuracy of the nodel transformobtainedis
determned by the quality of this approxination and by
the condition munber of the prototype-to-nodel trans-
formA ;. The condition nuber of A ; affects the match
even if Theorem3 is applied, narely, evenif the nod
els are aligned wth the prototype in advance. (onse-
quently, the conditionnunher of the prototype-to-nedel
transformA ; should be taken into account vhen the 11-
braryis dividedinto classes.

Fnally, the scheme can be extended to handl e cl asses
of objects wth different degrees of freedom (onsider,

he

for instance, the case of simil ar chairs, sone of whichare
folding. Owiously, the fol ding chairs have nore degrees
of freedomthan the regular, rigid chairs, and therefore
they woul d be represented in the library by wider na-
trices than the rigid chairs are. % is explained bel ow
the chairs can be handled in a cormon class, and the
prototype for the class voul ditself be afol ding chair.
Mre generally, let My, . . ; be Adclass of nodels of
different wdths, and denote by £ 1, . .;.thekudth of
My, . . ;respbctively. Let P be the prototype for this
class, and denote by k& ,, the wdth of P, we set k, to be

gtk (16)

In other words, we require the prototype to have the
sane degrees of freedomas the nost flexible object 1n
the class. Wecanset k , according to our goal since, as it
1s shownin Section4, the prototype P is obtainedinour
schena by nani pul ating the objects in the class. The
prototype-to-nodel transformA ; is defined inthis case
by

kp =max{ k 1,

A; =(P+M;)* (17)

vhere A ; is b x k;. It is straightforvard to extend The-
oreml to also include this case. (bnsequently, for any
viewof M;, the model transforma canbe recoveredfrom

1ts corresponding prototype transform b by appl y1 ng the

prototype-to-nodel transformA ; to b . DNote that since
ky > k; the prototype can appear in poses that do not
natch any possible nodel pose (and therefore in noise-
less conditions they are inpossible to obtain). In case
the object 1s observed fromsuch a view A ; voul d map
this unnat ched prototype transformto the nodel trans-
formthat corresponds to the nearest natched prototype
transform Bysetting &k , to be as large as the naxi num
of ki, . .;vg akoldcases where there exist vievs of the
object that cannot be accounted for by the prototype.
Mdel transforms that correspond to such vievs cannot

be recovered fromprototype transforns.

3.4 Sunmary

Wrpresentedinthis sectionaschene for recognizing 3D
objects fromsingle 2D vievs that proceeds intwostages,
categorization and identification. In the categorization
stage the image i1s compared against the stored proto-
types. Ior every prototype, the correspondence betveen
the 1mage and the prototype is recovered, and the near-
est viewof the prototype is constructed. The simlarity
betveenthis viewand the i nage is evaluated, and, if the
tvo are found simlar, the class identity of the object is
determned. In the 1dentification stage the observed ob-
ject is conpared against the models of its class. Since
the prototype and the nodel s vere brought inthe l1brary
into alignnent, the same transformation that aligns the
prototype to the image also aligns the object nodel to
the 1mage. The prototype transformtherefore 1s applied
to the nodel s, and the obtained vievs are conpared w th
the image. The viewthat is found to be identical up to
noise and occl usion to the inage determnes the indivi d
ual 1dentity of the object.

The presented schene 1s based on several key princi-
pals. Recognitionis dividedinto two sub-processes, cat-



egorization and identification. In both processes nod-
els are aligned with the inage, and the identity of the
object is determned by a 2D conparison; 30D recom
struction of the observed object fromthe inage is not
performed.  The difltult conponent of the alignnent
approach, nanely, the recovery of correspondence and
object pose, is perforned only once for each class; the
prototype transformis reused in the identification stage
to align the 1mage with the indivi dual nodels.

4 Comstructing optimal prototypes

In the schena above ve assuned that the classes inthe
library of nodels are represented by prototype objects.
Since categorization is achieved by matching the im
age to prototype objects, the question of howto select
the best prototype should be addressed. In this section
ve present an al gorithmfor constructing optimal proto-
types.

Gven a class of objects, the optimal prototype for
this class is the object that resenbl es the objects of the
class the nost. Uhder our formul ation, such an object
voul d share as nany features as possible with the ob-
jects of 1ts class, the position of these features on the
prototype voul d be as close as possible to their position
on the objects, and the prototype-to-nodel transform
for these objects wuld be as stable as possible. Below
ve showthat the optimal prototype can effectively be
computed using principal conponent anal ysis; that is,
by conputing the domnant eigenvectors for sone na-
trix determned by the nedel s of the class.

Bincipal conponent analysis often is used in clas-
sification problems to construct classes and prototypes
[11]. Tnexisting applications, anobject is represented by
apoint insone hi gh di nensional space, vwhere each com
porent of this point contains aninvariant attribute of the
object. Ahyperpl ane in that space represents a cl ass of
objects. 'The goal of the principal conponent anal ysis
is, given a set of points (objects), to recover the class
that these points induce. Quir case is sonavhat difler-
ent. Inour case an object 1s represented by a conti nuous
linear space rather than by a point. Wereas the use
of hyperplanes in other schenes oftenis arbitrary and
nade prinarily for convenience, their use in our schena
1s appropriate following the linear combination schene
[42] (see Section 3.1).

The differences outlined above also inply differences
in the proof that principle conponent analysis applies
to our case. Wshowbel owthat the optinal prototype
can be conputed by principal conponent anal ysis. The
traditional proof needs to be extended since in our case
objects are represented by contimuous spaces rather than
by discrete points.

The prototype constructedinthis process is a 3D ob-
ject obtained by nanipul ating the objects in its class.
B allowthe construction, it seems as if the objects in
the class shoul d first be brought into alignment. In par-
ticular, 1f the objects are represented by viever- centered
nodels (that is, bysets of their views, see Section3.1 for
details), the different objects woul d then have to be rep-
resented by 1 mages taken fromsimlar viewpoints. Nev-
erthel ess, the process presented bel owdoes not require

anintial alignment of the objects. The sare prototype
1s obtainedinthis process even when the objects are not
al1gned
Wnowturn to constructing the optinal prototype.
Frst, ve define an objective function. Gven a proto-
type P and anobject nodel M ;, we define the simlarity
betveen P and M ; as follows. Iet pbe a viewof M,
ve neasure the simlarity between the prototype P and
the view ¥ using (12). Then, ve sumthe neasure over
all possible views of M. Assuming wthout 1oss of gen-
erality that ||/ =1, (14) can be rewitten as
D(P, Jo=Il (PP 1 )7 (13)
Wthout loss of generality, we can assume that the
constructed prototype, P, is composed of orthonormnal
columms. Note that an overdetermined matrix P with
orthonormal columms satisfies P T =P 7. W can there-
fore rewite (18) as

D(P, ifo=|| (PP =1 ) (19)
The distance betveen P and the nedel M

; 18 nowgl ven
by sunming  D( P, ;Joover all unit-length (to elimnate

scaling effects) views of M;, nanely
L, E=

T obtain the objective function, ve sunthese di stances
over all nodels

5(P) Z/|

The object P that mnimzes this functionis defined to
be the optinal prototype.

MNote that (21) is not the only possible objective func-
tion for this purpose. An alternative “vorst case” ap-
proachis to neasure the di stance betveen the prototype
to the farthest nodel inthe class (rather than sunming
this distance over all nodels). Fxcept for being difftul t
to conmpute, this measure also is sensitive to “outlier”
model s.

The prototype that mnimzes (21) can be constructed
in a process that includes the followng steps.

D(P, ¥ = (20)

Nl (PP —1)if (21)

1. Bsinplifythe process ve assuna the col unm vec-
tors of eachof the nodel matrices M ;, (1<i <)
are orthonornal . (Incase they are not, ve first ap-
plya Gamschmdt process tothem Suchaprocess
obvi ousl y does not alter the space of views inplied

by the nodels.)
2. Bildthe n x n symmetric matrix

bl

l
F=> MM
=1
3. Hnd the £ domnant ei genvectors of F. 'The opti-

ml natrix P is constructed fromthese eigenvec-
tors.



Note that, ingeneral , ve are tryingto construct a pro-
totype object that woul d bel ong to the givenclass. This
condition determmnes the choice of width & for the pro-
totype. If all the nodels share the same width then the
prototype vould assune this wdth. In the rigid case,
for exanple, k =4 (see Section 3.1). & nentionedin
Section 3.3 above, 1n case the objects have diflerent de-
grees of freedom k 1s set tobe the maxa mumof & 1, . .;.
vhere k 1, . .;.are khe wdths of M1, . . ; resplctively.
In case more than & large ei genval ues are obtained, one
may 1 gnore these guideline rules and construct a proto-
type that has hi gher degrees of freedomthan the objects
inthe class (see for exanple [31]).

Theoremtt bel owestabl 1 shes that the al gori thmabove
produces the optimal prototype. W consider here the
case that all the objects share siml ar degrees of freedom
The sane procedure can be applied withslight nodi fica-
tions toinclude the case of objects with diflerent degrees
of freedom

Theorem4: ILet M |, M,
belonging to sone class C .

., 1Me a set of nodels
Assune every nodgli 3

bl

I thereforeis constant for any choi ce of orthonornal vec-
tors for M, . . ,,, aldsoits domnant ei genvectors rep-
resent the best vector space for for any orthonornal rep-
resentation of the objects. (bnsequently, P mmmzes
the objective function regardless of choice of basis for
the nodel s, and therefore i1t al so mini mzes the required

term
k {

By =Y [ NP E-I
(]

" surmarize, we shoved that gi vena class of object
models; the optimal prototype for this class is given by
the dominant ei genvectors of the matrix /', vhichis con-
structed fromthe object nodels. MNote that in proving
Theoremd ve shoved that the prototype is independent
of choice of basis for the nodels. Ths inplies that, in
order to construct the prototype, the object nodels M 1,
..., Mdo not need to first be brought into alignnent.
The process above guarantees to output the same pro-
totype object evenif the nodels are not aligned.

represented by ann xk natrixwi thorthonornal columg R evance to human vision

vectors. The prototype P that mnimzes the term

5(P) Z |

(PP 1)

’U:” =1

where the integration is done over all the unit-le
views pof each nodel M, is conposed of the k eigen

vectors of the matrix

{
F =" MM

1=l
that correspond toits k largest ei genval ues.

Proof: Iet P be conposed of the & domnant ei gen-
vectors of F'. According to regression principles P mn-
imzes the term

l k
Sl E-1) T

=1 5=

where 7n;; is the j’th colum vector of M ;. In other
vords, consider 7r; as apoint inR”™. ‘The space spanned
by the col uim vectors of P is the nearest k - dinensional
hyperpl ane to these points, 7n;;. The rest of this proof
extends the clai mfromthe discrete sumover the col urm
vectors of M; to the contimious integral over all views
spanned by these vectors. According to our assunptions,
each matrix M ; contains an orthonornal set of col urm
vectors. Repl aci ng these vectors by anot her orthonor nal
basis for M will not change the matrix P; that 1s, P is
independent of the choice of orthonornal basis for the
models. This is 1llustrated by the foll owing derivation.
B obtain a neworthonornal basis for the col unm space

of M; ve can apply a & X k rotation matrix R to M,
(nanely, M ;R). P is the best vector space for the new
set as vell, since

M;R(M;R)" =M ;RE"MT =M ;I M =M ; M}

The recognition by prototypes schere uses the general
shape of objects as the cue for recogmzing them A was
al ready nentioned, classes inour scheme containobjects
wth fairly simlar shapes. In contrast, the hunan vi-
”iéﬁh systemrecogni zes objects using both shape cues as
as nany other cues, such as color, texture, notion,
and context, and ohjects are categorized in their basic
level of abstraction [33]. Quly little is currently known
about the underlying processes for recognition used by
the visual system Fomwhat 1s known, inspite of the
di flerences poi nted above, the recogni tion by prototypes
scheme seems to be consistent inseveral key issues with
mychol ogi cal and physiol ogi cal findings. In this section
ve briefly reviewthese findi ngs.

The schema presented in this paper pronotes the no-
tion that categorization andidentification are performed
uwsing simlar tools. In both cases view variations first
are conpensated for, and then a viewof either the hy-
pothesized prototype or object nodel is conpared with
the inage. This is in contrast to methods (such as part
deconposition and functional description) that in gemw
eral handle either categorization or identification, but
do not extend to deal with both problem. The avail-
able studies inthis case are 1nconcl usive. Some evi dence
seemto indi cate that the tvo processes are handl ed sepa-
ratel y by the visual system Agnostic and prosopagnostic
patients of ten denonstrate degradedidentification ahili-
ties, whereas their perfornance incategorizationrenains
intact. Idbuble dissociation betveen the tvo processes,
hovever, has not beenfound, andsothe assumption that
the tvo processes are handl edseparatel y inthe brain has
not been established. In fact, both cells that respond
to general faces as vell as cells that respond to specific
faces wvhere found lying side by side within the same
brain area, STS, of the nacaque nonkey [29]. The vul-
nerability of the identification process to brain lessions
can be expl ai ned by that the process requires arel ativel y
l arge nenory to encode the detail ed shapes of objects as



vell as sophi sticated inage processing nechanism tore-
cover a detailed description of the observed object from
the inage (seee.g., [19]).

Another 1dea proposed here 1s that categorizationin
vol ves tvo stages: a stage of conpensating for viewvari-
ations folloved by a stage of 2D conparison to account
for shape differences. A decoupling of view variation
and semantic categorization vas suggested by lissauer
[24]. VArrington and TBylor [44, 45] found that pa-
tients that suffer fromlessions in the posterior lobe of
the right hemsphere deronstrate difliul ties in catego-
rizing objects fromunconventional views, vhereas their
performance in categorization of objects fromconven
tional vievs remains intact. Additional evidence for the
effect of view variations on categorization perfornance
vere found for heal thy subjects. Subjects that are asked
to name objects respond slover wvhen the objects ap-
pear in unconventional views [28]. Aso, mental rotation
effects, nanely, response tine that grows linearly with
the tilt of the object, vere observed in naming tasks of
natural objects [21].

Finally, the process of categorization presented here
1s achieved by conparing the inage to prototype ob-
jects, and these prototype objects can be constructed by
mani pul ating the famliar objects of the class. Recent
studies 1ndicate that response tine in namng tasks is
typically shorter and error rates are lover when the ob-
served object is simlar to the prototype [5]. Similarly,
shorter reactiontine is obtai ned vhen subjects are asked
to ansver questions of the type “does the object X be-
long to the class Y?” [34]. Qher studies reported that
chil drenlearn good exanpl es of classes before they learn
poor ones [1, 32] and that subjects recall having seen
the prototype or average configuration of studied face
imges evenif this configuration vas not studied[8§].

D summarize, although the presented schene gen-
erally does not recognize objects in their basic level of
abstraction, i1t is consistent wth psychol ogi cal and phys-
1ol ogical findings in several key issues including a single
approach for the tvo sub-problens of recogmtion, cat-
egorization and i1dentification, view dependency of the
tvo sub-processes, and the role of prototypes in catego-
rization. 'The findings discussed here obviously are in-
concl usi ve, since psychol ogi cal and physiol ogi cal studies
including the ones discussed here have nore than one
possible interpretation.

6 Inpl enartation

B test the 1deas presentedin the paper, ve have inple-
mnted the scheme and applied it to several objects. In
our inplenantation, the library of nedels 1ncluded tvo
classes. The first (Figure 2) contained tw four-legged
chairs (denoted by Aand B), and the second (Fi gure 3)
incl uded tvo car nodel s, a WVand a Saab.

D deronstrate categorization, ve used chair Aas a
prototype and natched it to animnage of chair B (orre-
spondences betveen the prototype and the inmage vere
pi cked nmanual 1y, and, using these correspondences, the
prototype transformwas recovered and applied to the
prototype. The resul ts of matchingthe transforned pro-
totype wththe inage are seenin H gure 4. It can be seen

10

that the transformed prototype (nddl e figure) assunad
the sane orientationas the observed object (left figure),
and that the natch between the tvois good considering
that the objects have different shapes. Note that inthis
inpl erentation ve all oved the objects to undergo gen
eral affie transfornations 1in 3D, including stretch and
shear, and so the natch between the prototype and the
inage was better thanif only rig dtransformations vere
alloved. Additional exanpl es using chair Band the tvo
cars as the prototypes are shownin H gures 5-7.

In Hgures 89 ve tried tomatch the prototypes to the
inages w th wong correspondences. The results of these
matches vere significantl y vorse than when the correct
mtches vere used. This is consistent with the 1dea dis-
cussed in Section 3.2 that the quality of the match can
be used as the objective functionfor resol ving the correct
correspondence.

H gure 10 shovs the results of matching a prototype
four-legged chair to a single-legged offte chair. It can
be seen that the upper portions of the chairs match rel-
atively vell, while the legs of the chairs do not find ap-
propriate matches.

K gure 11 shows the result of matching a prototype
chair to an inmage of a Saab car. & an anecdotal ex-
anpl e, ve natched the hole bel owthe back of the chair
to the wndshield of the car and the seat to the hood.
In general | whatever correspondence is used, the two ob-
jects woul d match poorly rel ative to matching the pro-
totypes to objects of their class.

H gures 12-13 denonstrate the identificationstage. In
the library ve first aligned the nodel for chair Awth
the prototype chair (chair B using the prototype-to-
model transform Then, an image of chair Awas cate-
gorized (Figure 5) by matchingit tothe prototype chair,
and the prototype transformwas conputed. In the next
step, the prototype transformwas appliedto the specific
nodel of chair A The result of this application is seen
in Figure 12. It can be seen that a near-perfect align-
mnt vas achievedinthis process. Asimlar process vas
applied to the Whcar in K gure 13 using the Saab car
as the prototype. (The result of the corresponding cat-
egorization stage is shown in Figure 6.) These figures
denonstrate that al though a perfect natch betveen the
prototype and the 1nage coul d not be obt ai ned, the pro-
totype transformcan still be used to align the observed
object wthits specific nodel .

7  Sumary

Wintroduced in this paper a recognition schene that
proceeds intwo stages: categorizationandidentification.
Categorization is achieved by al i gning the inage to pro-
totype objects. Ior every prototype, the nearest proto-
type viewis recovered, and the simlarity between this
view and the image is evaluated. 'The prototype that
nost resenhl es the observed object determines its class
identity. Tikewise, identification is achieved by align-
ing the observed object to the individual nodels of its
class. A this stage the prototype transformconputed
in the categorization stage is reused to align the nodels
wth the image. The nodel that natches the observed
object determmnes its specific identity. In addition, we



Hgure 2: Rctures of two chairs wed as mdels. We refer to these chairs by A(left) and B(right). Mdels for the tvo chairs
vere corstructed fomsingl e 1 mages using symetry [31].

Hgure 3: Rctwes of tw cars wed as mdels. Teft: a VWdel. Hght: a Saab mdel. Mdels for the tvo cars vere
borroved from[ 42] .

H gure 4: Mtching a prototype chair (chair 4 to animge of chair B This figure, as vell as the rest of the figures, contain
three pictures. Teft: the image to be recognzed Nlddle: the appearance of the prototype foll owng the appication of the
prototype transform Hght: an overl ay of the left and the mddle pictures.
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Hgure 5: Mtching a prototype chair (chair B to animge of chair A

H gure 6: Mtching a prototype car (Saab) to animage of a Wikar.

Hgure 7: Mtching a prototype car (WY to an image of a Saab car.
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Hgure 9: Mtching a prototype car (Saab) to animage of a Wicar wth wong correspondence.

=4

K gure 10: Miching a four-1egged chai r to an image of an oflie chair.
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H gure 11: Mtching a prototype to a chair (chair A to an image of a Saab car.

K gure 12: Miching a mdel of chair Ato an image of the sam chair wsing the prototype transformconpated in the

Mtching a mdel of a WVcar to an image of the same car wing the prototype tramsformconputed in the

rization s

H gure 13:
catego

tage.
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presented an al gori thmfor constructing the optimal pro-
totypes and discussed the rel evance of the schene to hu-
man recogni t1on.

A inportant issue conveyed by our schene 1s that
categorization can be used to facilitate the 1 dentification
of objects. Wshoved that by first categorizing the ob-
ject, the diffeul t stages of the alignnent process, nanel y,
the recovery of the object pose and the correspondence
betweenthe 1 nage and the nodel , canbe perforned onl y
once per class. (bnsequently, identificationis reducedin
this schema into a series of sinple tenpl ate conparisons.

The schene presented in this paper differs fromex-
1sting categorization schemes in two inportant aspects.
The existing schemas (e.g., [4]) first attenpt to recover
the part structure (geons) of the object fromthe inage
alone. This structure is assuned to be alnest invari-
ant both to rotation of the object and across objects of
the sane class. In contrast, our scheme does not at-
terpt to recover any 3D information fromthe inage
alone. Mreover, it separates the two effects that deter-
mine the object’s appearance: viewvariationeflects and
defornations due to class variability. Mewvariations are
conpensated for by recovering the viewof the prototype
that nost resenbles the inage, and the amount of de-
formation that separates the prototype fromthe specific
object is evaluated by assessing the difference (in 2D)
between the nearest prototype viewand the 1mage.

(en problems for future researchincl ude sol ving the
correspondence bet veen prototypes and i nages, conbi n-
ing the schere wi th existing 1 ndexing approaches, defin-
ing effective masures to eval uate the qualityof natches,
and extendi ng the systemto i ncorporate additional cues,
such as color and texture.
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