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Abstract

A scheme for recognizi ng 3D objects f romsi ngle 2D images i s i ntroduced. The scheme proceeds i n two
stages. In the �rst stage, the categorizat i on st age, the image i s compared to prototype obj ects. For
each prototype, the vi ew that most resembl es the image i s recovered, and, i f the vi ew i s f ound to be
simi l ar to the image, the cl ass i denti ty of the obj ect i s determi ned. In the second stage, the i dent i �cat i on
st age, the observed obj ect i s compared to the i ndi vi dual model s of i ts cl ass, where cl asses are expected to
contai n obj ects wi th rel ati vel y simi l ar shapes. For each model , a vi ewthat matches the image i s sought.
If such a vi ew i s f ound, the obj ect's speci �c i denti ty i s determi ned. The advantage of categori zi ng the
obj ect bef ore i t i s i denti �ed i s twof ol d. Fi rst, the image i s compared to a smal l er number of model s,
si nce onl y model s that bel ong to the obj ect' s cl ass need to be consi dered. Second, the cost of compari ng
the image to each model i n a cl ass i s very l ow, because correspondence i s computed once f or the whol e
cl ass. More speci �cal l y, the correspondence and obj ect pose computed i n the categori zati on stage to al i gn
the prototype wi th the image are reused i n the i denti �cati on stage to al i gn the i ndi vi dual model s wi th
the image. As a resul t, i denti �cati on i s reduced to a seri es of simpl e templ ate compari sons. The paper
concl udes wi th an al gori thmfor constructi ng optimal prototypes f or cl asses of obj ects.
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1 Introduction

Our worl d contai ns an overwhelmi ng vari ety of obj ects.
Whi l e peopl e demonstrate outstandi ng abi l i ti es to mem-
ori ze and recogni ze thousands of obj ects [27, 37, 38],
computer vi si on appl i cati ons l argel y f ai l to accommo-
date these numbers. Apparentl y, the mai n tool that en-
abl es peopl e to e�ecti vel y handl e thi s massi ve amount
of obj ects i s categori zati on. By di vi di ng the obj ects i nto
cl asses, the vi sual systemi s capabl e of concl udi ng prop-
erti es of unf ami l i ar obj ects f romthei r resembl ance to
f ami l i ar ones. For f ami l i ar obj ects, categori zati on o�ers
an i ndexi ng tool i nto the stored l i brary of obj ect repre-
sentati ons.

Recogni ti on can be perf ormed i n di �erent \l evel s of
abstracti on". For exampl e, the same obj ect can be rec-
ogni zed as a f ace, a human face, or as a speci �c person' s
f ace. Psychol ogi cal studi es suggest the exi stence of a pre-
f erred l evel f or recogni ti on, cal l ed \the basi c l evel of ab-
stracti on" [ 33] . Exi sti ng computati onal schemes usual l y
approach recogni ti on i n ei ther one of two l evel s. Several
schemes attempt to cl assi f y obj ects i n thei r basi c l evel
of abstracti on (we ref er to thi s task by cat egori zat i on),
whi l e other schemes attempt to determi ne the speci �c
i denti ty of obj ects (we ref er to thi s task by i dent i �ca-
t i on). Thi s paper presents a novel approach f or recogni -
ti on that combi nes the two tasks.

To see howthe two tasks are rel ated, consi der the f ol -
l owi ng exampl e. Suppose youare wal ki ng downa street,
and someone i s comi ng towards you. You l ook at the
person' s f ace, and i t l ooks f ami l i ar, but you cannot tel l
who i t i s. So youtry to pi cture the peopl e youknowwho
l ook l i ke the personyousee, unti l �nal l y, youreal i ze who
the person i s.

Anumber of hypotheses canbe drawnf romthi s story.
Fi rst, recogni ti on can be broken i nto two stages: cat-
egori zati on and i denti �cati on, where categori zati on i s
bel i eved to precede i denti �cati on. Second, duri ng the
course of recogni ti on the image i s compared agai nst a
number of obj ect model s. Assumi ng that i ndeed catego-
ri zati on precedes i denti �cati on, onl y model s that bel ong
to the obj ect' s cl ass needto be consi dered. Fi nal l y, when
a newmodel i s compared to the image, the compari son
process maybene�t f romthe use of i nf ormati onacqui red
duri ng categori zati on. Note that the si tuati on descri bed
here i s not speci �c to f aces. One can imagi ne that simi -
l ar si tuati ons occur when other obj ects, such as animal s,
cars, and chai rs, are observed.

To see howi nf ormati on acqui red duri ng categori za-
ti on can be used f or i denti �cati on, consi der the exampl e
of f ace recogni ti on. Whena f ace i s recogni zed, the image
posi ti ons of i ts parts and f eatures are known. In parti c-
ul ar, an observer al ready knows where the eyes, nose,
and mouth are and can even i nf er the di recti on of gaze
and expressi on. The person' s i denti ty i s not essenti al f or
extracti ng and l ocati ng these f eatures. Instead, they are
matched agai nst f eatures i n a \generi c" representati on.
In addi ti on, other f eatures, such as a beard, hai r styl e,
and wri nkl es, that may better di sti ngui sh between di f -
f erent persons may be l ocated. More general l y, we can
postul ate that, duri ng categori zati on, sub-structures of

the obj ects (such as parts and f eatures) are extracted
and l ocated wi th respect to a generi c model , and the
obj ect' s pose i s determi ned.

To f ol l owthi s exampl e, I propose a scheme for recog-
ni zi ng 3D obj ects f romsi ngl e 2D vi ews that combi nes
the two stages, categori zati on and i denti �cati on. Cat-
egori zati on i s achi eved by al i gni ng the image to proto-
type obj ects. The prototype that appears most simi l ar
to the image determi nes the cl ass i denti ty of the obj ect.
Af ter the obj ect i s categori zed, i ts speci �c i denti ty i s de-
termi ned by al i gni ng the observed obj ect to i ndi vi dual
model s of i ts cl ass. By �rst categori zi ng the obj ect, not
onl y the number of model s consi dered f or i denti �cati on
i s reduced, but al so the cost of compari ng each model
to the image si gni �cantl y decreases. Thi s i s achi eved by
reusi ng the correspondence and pose computed f or the
prototype i n the categori zati on stage to al i gn the image
wi th the i ndi vi dual model s. We showi n thi s paper that,
al bei t a perf ect match between the prototype and the
image i s not obtai nabl e, the correspondence and pose
can be computed f or the prototype, and can be used
to bri ng the image and the obj ect' s model i nto al i gn-
ment. Consequentl y, recoveri ng the correspondence and
pose f or the i ndi vi dual model s becomes unnecessary, and
i denti �cati on i s reduced to a seri es of simpl e templ ate
compari sons.

The rest of thi s paper i s di vi ded as f ol l ows. Secti on 2
revi ews the mai n exi sti ng approaches f or categori zati on
and i denti �cati on. Secti on 3 presents the scheme of
recogni ti on by prototypes. Secti on 4 proposes an al go-
ri thmfor generati ng optimal prototypes f or the scheme.
Secti on 5 di scusses the rel evance of the scheme to hu-
man recogni ti on. Impl ementati on resul ts are presented
i n Secti on 6.

2 Previous Approaches

Exi sti ng schemes f or categori zati on of ten use a \reduc-
ti oni st" approach. The image, whi ch contai ns a detai l ed
appearance of an obj ect, i s transf ormed i nto a compact
representati on that i s i nvari ant f or al l obj ects of the
same cl ass. One common approach to generati ng such a
representati on i s by decomposi ng the obj ect i nto parts.
Parts are extracted by cutti ng the obj ect i n concavi ti es
[ 17, 22, 43] and l abel ed accordi ng to thei r general shape.
The l abel s, together wi th the spati al rel ati onshi ps be-
tween the parts, are used to i denti f y the cl ass of the ob-
j ect [ 4, 6, 7, 26] . Asecondapproachextracts the parts of
the obj ect that ful �l l certai n functi ons. The l i st of f unc-
ti ons i s used to determi ne the obj ect' s cl ass [ 16, 39, 47] .

Schemes that break obj ects i nto parts are i nsu�ci ent
to expl ai n al l the aspects of recogni ti on f or the f ol l owi ng
reasons. Fi rst, i n many cases obj ects that bel ong to the
same cl ass di �er onl y by thei r detai l ed shape, whi l e they
share roughl y the same set of parts. Moreover, even ob-
j ects that at some l evel may be consi dered bel ongi ng to
di �erent cl asses, such as a cat and a dog, may al so share
roughl y the same set of parts. To sol ve thi s probl emsev-
eral systems al so store, i n addi ti on to the part structure
of the obj ects, the detai l ed shape of the parts [ 2, 6, 7] .
Another probl emi s that many of the techni ques f or rec-
ogni zi ng obj ects by part decomposi ti on rel y on �ndi ng
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the enti re parts f romthe image.
To recogni ze the speci �c i denti ty of obj ects, a rel -

ati vel y detai l ed representati on of the obj ect' s shape i s
compared wi th the image. An exampl e f or such meth-
ods i s al i gnment [ 3, 9, 12, 13, 18, 25, 40, 41] . Al i gnment
i nvol ves recoveri ng the posi ti on andori entati on(pose) i n
whi ch the obj ect i s observed and compari ng the appear-
ance of the obj ect f romthat pose wi th the image. Onl y
a f ewattempts have been made i n the past to extend
the al i gnment scheme to the probl emof obj ect catego-
ri zati on (e. g. , [ 36] ). The mai n di�cul ty i n appl yi ng the
al i gnment approach i s the recovery of the pose of the
observed obj ect. In most impl ementati ons thi s i nvol ves
a time-consumi ng stage f or �ndi ng the correspondence
between the model and the image. The process becomes
impracti cal when the image i s compared agai nst a l arge
l i brary of obj ects, because typi cal l y the correspondence
i s establ i shed between the image and each of the model s
i n the l i brary separatel y.

To handl e l arge l i brari es, i ndexi ng methods were pro-
posed (e. g. , [ 20, 46, 14] ). The basi c i dea i s the f ol l owi ng.
Acertai n functi on i s de�ned and appl i ed to the vi ews of
al l the obj ects i n the l i brary. The obj ect model s are ar-
ranged i n a l ook-up tabl e i ndexed by the obtai ned func-
ti on val ues. When an image i s gi ven, the functi on i s
appl i ed to the image, and the obtai ned val ue i s used to
i ndex i nto the tabl e. To reduce the si ze of the tabl e and
the compl exi ty of i ts preparati on, i nvari ant functi ons,
f uncti ons that when appl i ed to di �erent vi ews of an ob-
j ect return the same val ue regardl ess of vi ewpoi nt, of ten
are used as the i ndexi ng functi ons.

Indexi ng methods su�er f romseveral shortcomi ngs.
Fi rst, exi sti ng i ndexi ng methods handl e onl y ri gi d ob-
j ects. Extendi ng these methods to handl e cl asses of ob-
j ects has not been di scussed. Second, because of com-
pl exi ty i ssues, i ndexi ng functi ons usual l y are appl i ed to
smal l numbers of f eatures. As a resul t, hi gh rates of
f al se posi ti ves are obtai ned, and the e�ecti veness of the
i ndexi ng i s reduced.

The scheme presented i n thi s paper i s desi gned to
workwhere tradi ti onal approaches to categori zati on and
i ndexi ng f ai l . The scheme combi nes both categori zati on
and i denti �cati onof obj ects, anduses f ai rl y detai l ed rep-
resentati ons f or obj ects. Rather than i ndexi ng di rectl y
to the speci �c obj ect model , the scheme i ndexes i nto
the l i brary of obj ects by categori zi ng the obj ect. The
cl asses handl ed by the scheme i ncl ude obj ects wi th rel -
ati vel y simi l ar shapes. To �t i nto the scheme, i n some
cases basi c l evel cl asses are broken i nto sub-cl asses. The
general probl emof categori zati on theref ore may requi re
addi ti onal tool s.

3 Recognition by Prototypes

The recogni ti on by prototypes scheme proceeds as f ol -
l ows. Al i brary of 3D obj ect model s i s stored i n mem-
ory. The model s i n the l i brary are di vi ded i nto cl asses,
and 3D prototype obj ects are sel ected to represent the
cl asses. For every cl ass, the model s i n the cl ass are
al i gned i n the l i brary wi th the prototype obj ect. The
rol e of thi s 3D al i gnment wi l l become cl ear shortl y.

At recogni ti on time, an i ncomi ng 2D image i s �rst
matched agai nst al l of the prototypes. For each proto-
type obj ect, the systemattempts to recover the vi ewof
the prototype that most resembl es the image. To do so,
the systemrecovers the correspondence betweenthe pro-
totype and the image, and, usi ng thi s correspondence, i t
determi nes the transf ormati on that best al i gns the pro-
totype wi th the image. Thi s transf ormati on, ref erred
to as the prot ot ype t ransform, i s then appl i ed to the
prototype, and the simi l ari ty between the transf ormed
prototype and the actual image i s eval uated. Si nce the
observed obj ect i n general di �ers f romthe prototype ob-
j ect, a perf ect matchbetween the two i s not anti ci pated.
The systemtheref ore seeks a prototype that reasonabl y
matches the image. Once such a prototype i s f ound, the
cl ass i denti ty of the obj ect i s determi ned.

Af ter the obj ect' s cl ass i s determi ned, the systemat-
tempts to recover the speci �c i denti ty of the obj ect. At
thi s stage, the image i s matched agai nst al l the model s
of the obj ect' s cl ass. For each of these model s, the sys-
temseeks to recover the transf ormati on that al i gns the
model wi th the image. As wi l l be shownbel ow, si nce the
model s are al i gned i n the l i brary wi th the prototype, the
transf ormati on that best al i gns the prototype wi th the
image i s i denti cal to the transf ormati on that al i gns the
model to the image. The prototype transf ormtheref ore
i s appl i ed to the speci �c model s, and thei r appearance
f romthi s pose i s compared wi th the image. The model
that al i gns wi th the image, i f there i s such, determi nes
the speci �c i denti ty of the obj ect.

The rest of thi s secti on i s di vi ded as f ol l ows. In Sec-
ti on 3. 1 the obj ect representati on used i n our scheme i s
presented. Secti on3. 2 descri bes the categori zati onstage,
and Secti on 3. 3 descri bes the i denti �cati on stage.

3.1 Object representation { the li near

combi nati on scheme

In our scheme, an obj ect i s model ed by a matri x M

of si ze n � k, where n i s the number of f eature poi nts,
and k represents the degrees of f reedomof the obj ect.
Avector ~a 2 R k, ref erred to as the t ransf ormvect or ,
represents the transf ormati on appl i ed to the obj ect i n a
certai n vi ew, and the obj ect' s appearance f romthi s vi ew
i s gi ven by

~v = M~a (1)

In the rest of thi s secti onwe expl ai n the use of thi s nota-
ti on. The notati on f ol l ows f romthe l i near combi nati on
scheme [ 42] , whi ch i s bri e
y revi ewed bel ow.

Under the l i near combi nati on scheme an obj ect i s
model ed by a smal l set of vi ews, each i s represented
by a vector contai ni ng poi nt posi ti ons, where the poi nts
i n these vi ews are ordered i n correspondence. Novel
vi ews of the obj ect are obtai ned by appl yi ng l i near com-
bi nati ons to the stored vi ews. Addi ti onal constrai nts
may appl y to the coe�ci ents of thi s l i near combi nati on.
Computi ng the obj ect pose theref ore requi res recoveri ng
the coe�ci ents of the l i near combi nati on that al i gn the
model wi th the image and veri f yi ng that the recovered
coe�ci ents i ndeed sati sf y the constrai nts. The method
handl es ri gi d obj ects under weak-perspecti ve proj ecti on
(namel y, orthographi c proj ecti on f ol l owed by a uni f orm
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scal i ng). It was extendedto approximate the appearance
of obj ects wi th smooth boundi ng surf aces and to handl e
arti cul ated obj ects. In our representati on, the col umns
of the model matri xM contai n vi ews of the obj ect, and
the coe�ci ents of the l i near combi nati on that al i gn the
model wi th the image are gi ven by the transf ormvector
~a .

For concreteness, we revi ew the l i near combi nati on
scheme for ri gi d obj ects. Consi der a 3D obj ect O that
contai ns n f eature poi nts (Xi; Yi; Zi), 1 � i � n . Under
weak-perspecti ve proj ecti on, the posi ti on of the obj ect
f ol l owi ng a rotati on R, transl ati on~t, and scal i ng s i s
gi ven by

xi = s r11Xi + s r12Yi +s r13Zi +t x

yi = s r21Xi +s r22Yi +s r23Zi +t y
(2)

where r ij are the components of the rotati on matri x, R,
and t x, ty are the hori zontal and verti cal components of

the transl ati on vector, ~t respecti vel y.

Denote by ~X; ~Y ;~Z ; ~x ; ~y 2 Rn vectors of Xi; Yi; Zi; xi
and y i val ues respecti vel y, and denote ~1 =(1; :: : ; 1) 2
Rn, we can rewri te Eq. 2 i n a vector equati on as f ol l ows:

~x = a1 ~X +a 2
~Y +a3 ~Z +a 4~1

~y = b1 ~X +b 2
~Y +b3 ~Z +b 4~1

(3)

where
a1 = s r11 b1 = s r21
a2 = s r12 b2 = s r22
a3 = s r13 b3 = s r23
a4 = t x b4 = t y

Theref ore
~x ; ~y 2 s pa n f~X; ~Y ;~Z ;~1g (4)

Di �erent vi ews of the obj ect are obtai ned by chang-
i ng the rotati on, scal e, and transl ati on parameters, and
these changes resul t i n changi ng the coe�ci ents i n Eq. 3.
We may theref ore concl ude that al l the vi ews of a ri gi d
obj ect are contai ned i n a 4D l i near space.

Thi s property, that the vi ews of a ri gi d obj ect are
contai ned i n a 4D l i near space, provi des a method f or
constructi ng vi ewer-centered representati ons f or the ob-
j ect. The i dea i s to use images of the obj ect to construct
a basi s f or thi s space. In general , two vi ews provi de suf -
�ci entl y many vectors. Theref ore, any novel vi ew i s a
l i near combi nati on of two vi ews [ 30, 42] .

Not every l i near combi nati on i s a val i d vi ewof a ri gi d
obj ect. Fol l owi ng the orthonormal i ty of the rowvectors
of the rotati on matri x, the coe�ci ents i n Eq. 3 must
sati sf y the two quadrati c constrai nts

a21 +a
2
2 +a

2
3 =b

2
1 +b

2
2 +b

2
3

a1b1 +a 2b2 +a 3b3 =0
(5)

When the constrai nts are not sati s�ed, di storted (by
stretch or shear) pi ctures of the obj ects are generated.
Incase a vi ewer-centeredrepresentati on i s used, the con-
strai nts change i n accordance wi th the sel ected basi s. A
thi rd vi ewof the obj ect can be used to recover the new
constrai nts.

For the purpose of thi s paper amodel f or a ri gi dobj ect
canbe constructedbybui l di ng the f ol l owi ng n �4 model
matri x

M =( ~X; ~Y ;~Z ;~1)

Vi ews of the obj ect can be constructed as f ol l ows

~x = M~a

~y = M~b
(6)

where ~a =(a1; a2; a3; a4) and ~b =(b1; b2; b3; b4) are the
coe�ci ents f romEq. 3. Noti ce that the two l i near sys-
tems can be merged i nto one by constructi ng a modi �ed
model matri x i n the f ol l owi ng way�

~x
~y

�
=

�
M 0
0 M

��
~a
~b

�
(7)

Simi l ar constructi ons can be obtai ned f or obj ects wi th
smooth boundi ng surf aces and f or arti cul ated obj ects.
The wi dth of M, k , shoul d then be modi �ed accordi ng
to the degrees of f reedomof the model ed obj ect. As was
menti onedabove, vi ewer-centeredrepresentati ons canbe
obtai ned by constructi ng a basi s f or the 4D space f rom
images of the obj ect. Theref ore, vi ewer-centeredmodel s
can be obtai ned by repl aci ng the col umn vectors of M
wi th the constructed basi s.

To summari ze, f ol l owi ng the l i near combi nati on
scheme we can represent an obj ect by a matri x M and
construct vi ews of the obj ect by appl yi ng i t to trans-
f ormvectors ~a . For ri gi d obj ects not every transf orm
vector i s val i d; the components of the transf ormvector
must sati sf y the two quadrati c constrai nts. Recogni ti on
i nvol ves recoveri ng the transf ormvector ~a and veri f yi ng
that i ts components sati sf y the two constrai nts. Ignor-
i ng these constrai nts wi l l resul t i n recogni zi ng the obj ect
evenwheni t undergoes general 3D a�ne transf ormati on.
In the anal ysi s bel owwe l argel y i gnore the quadrati c
constrai nts. These constrai nts, however, can be veri �ed
both duri ng the categori zati on stage as wel l as duri ng
the i denti �cati on stage.

3. 2 Categori zati on

The recogni ti on by prototypes scheme begi ns by deter-
mi ni ng the obj ect' s category. Thi s i s achi eved by com-
pari ng the observed obj ect to prototype obj ects, obj ects
that are \typi cal exempl ars" f or thei r cl asses. For a gi ven
prototype, the vi ewof the prototype that most resem-
bl es the image i s recovered and compared to the actual
image, and the resul t of thi s compari son determi nes the
cl ass i denti ty of the obj ect.

We begi n our descri pti on of the categori zati on stage
by de�ni ng the data structures used by the scheme. A
cl ass C =(P; fM1; M2; : : : ; Mlg ) i s a pai r that i ncl udes a
prototype P and a set of obj ect model s M 1; M2; : : : ; Ml.
Both the prototype and the model s are represented by
n � k matri ces, where n de�nes the number of f eature
poi nts consi dered, and k denotes the degrees of f reedom
of the obj ects. For the sake of simpl i ci ty we assume here
that al l the obj ects i n the cl ass share the same number
of f eature poi nts, n , and that they have simi l ar degrees
of f reedom, k . Note that simi l ar obj ects tend to have
simi l ar degrees of f reedom(e. g. , al l of themare ri gi d).
Both assumpti ons are not stri ct, however. The scheme
can be modi �ed to tol erate both varyi ng number of f ea-
ture poi nts as wel l as di �erent degrees of f reedom. The
detai l s wi l l be di scussed l ater i n thi s paper. Note that
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the obj ects can be model ed by ei ther obj ect-centered or
vi ewer-centered representati ons. In case vi ewer-centered
representati ons are usedwe shal l assume that the model s
represent the obj ects f romthe same range of vi ewpoi nts.

Acl ass i n our scheme contai ns obj ects wi th simi l ar
shapes. These obj ects share roughl y the same topol o-
gi es, and there exi sts a \natural " correspondence be-
tween them. Consi der, f or i nstance, the two chai rs i n
Fi gure 1. Al though the shapes of these chai rs are di f -
f erent, and some parts (e. g. , the arms) appear onl y i n
one chai r and not i n the other, a natural correspondence
between f eatures i n the two obj ects can be determi ned.

In the l i brary of model s, the natural correspondence
between obj ects i s made expl i ci t. It i s speci �ed by the
order of the rowvectors of the model s. Speci �cal l y, gi ven
a prototype P and obj ect model s M 1; : : : ; Ml, we order
the rows of these model s such that the �rst f eature poi nt
of P corresponds to the �rst f eature poi nt of each of the
model s M 1; : : : ; Ml, and so f orth.

Gi venthe l i brary of obj ects andgi venan i ncomi ng im-
age, the recogni ti onbyprototypes scheme begi ns by cat-
egori zi ng the obj ect observed i n the image. To achi eve
thi s goal , the prototype obj ects are al i gned and com-
pared to the image. For every prototype, the correspon-
dence between the image and the prototype i s �rst re-
sol ved, and, usi ng thi s correspondence, the nearest pro-
totype vi ew i s recovered. By doi ng so, the scheme de-
coupl es the two f actors that a�ect the appearance of the
obj ect i n the image, namel y, vi ewvari ati ons and shape
vari ati ons. By sel ecti ng the nearest prototype vi ewto
the image, the scheme compensates f or vi ewvari ati ons.
Then, by eval uati ng the simi l ari ty between the nearest
prototype vi ewand the actual image, i t accounts f or the
di �erences i n shape between the prototype and the ob-
served obj ect.

The �rst stage i nmatchi ng the prototype to the image
i nvol ves the recovery of correspondence between proto-
type and image f eatures. In exi sti ng systems f or rec-
ogni zi ng the speci �c i denti ty of obj ects establ i shi ng the
correspondence between images and obj ect model s i n-
vol ves a time-consumi ng process i n whi ch sophi sti cated
al gori thms are appl i ed [ 10, 13, 15, 18, 23, 25, 35, 41] .
These al gori thms rel y on the property that, when the
correct correspondence betweena model andan image i s
establ i shed, a near-perf ect matchbetween the two i s ob-
tai ned. Whi l e thi s assumpti on i s val i d f or i denti �cati on,
i t cannot be used under our scheme si nce the prototype
and the image general l y represent di �erent obj ects.

To determi ne the correspondence between the proto-
type and the image, we de�ne an obj ecti ve functi on that
i s appl i ed to the prototype and the image under a gi ven
correspondence and that obtai ns i ts mi nimumunder the
correct correspondence. The obj ecti ve functi onwi l l mea-
sure the qual i ty of the matchbetween the prototype and
the image. Namel y, under thi s measure the correct cor-
respondence i s the one that bri ngs the prototype i nto
i ts best al i gnment wi th the image. Gi ven thi s obj ecti ve
functi on, correspondence i s a combi natori al optimi zati on
probl em, and so mi nimi zati on techni ques can be used to
resol ve the correspondence between the prototype and
the image. Thi s paper does not propose a speci �c tech-

ni que f or sol vi ng the correspondence probl em.
Assumi ng the correspondence probl emcan be sol ved,

the scheme proceeds as f ol l ows. Gi ven a prototype P
and an image I, we generate a vi ewvector ~v f romthe
image by extracti ng the l ocati on of f eature poi nts and
arrangi ng themi n a vector. The poi nts i n ~v are ordered
i n correspondence to the prototype poi nts; that i s, the
�rst poi nt i n ~v corresponds to the �rst poi nt i n P and
so f orth. The prot ot ype t ransf ormi s the transf ormati on
that bri ngs the prototype poi nts as cl ose as possi bl e to
thei r correspondi ng image poi nts. The prototype trans-

f orm, theref ore, i s the transf ormvector~b that mi nimi zes
the Eucl i deandi stance betweenthe prototype and image
poi nts, namel y

mi n
~b0

kP~b0 � ~v k (8)

Asol uti on f or (8) i s obtai ned as f ol l ows. Assumi ng P

i s overdetermi ned; that i s, P i s n � k where n > k and
r a n k (P ) = k , and denote by P+ =(P TP )�1P T the

pseudo- i nverse of P , the prototype transf orm, ~b , i s gi ven
by

~b =P+~v (9)

and the nearest prot ot ype vi ew ~p i s obtai ned by appl yi ng

P to the prototype transf orm, ~b , that i s

~p =P~b =P P+~v (10)

The nearest prototype vi ew i s nowcompared to the
image, and thei r resembl ance determi nes the cl ass i den-
ti ty of the obj ect. The qual i ty of the matchbetween the
prototype and the image i s de�ned by

D(P ; ~v ) =k ~p � ~v k =k (P P+
� I )~v k (11)

To el imi nate e�ects due to scal i ng of the obj ect, thi s
measure shoul d be normal i zed, as i s i l l ustrated by the
exampl e bel ow. Consi der an obj ect seen f romsome vi ew
~v1. Its di stance to the prototype i s gi ven by D(P ; ~v1).
Suppose the obj ect i s nowseen f roma newvi ew~v 2 that
i s i denti cal to ~v1, except that the obj ect i s nowas twi ce
as cl ose to the camera. Under these condi ti ons ~v 2 =2~v1,
and i ts di stance to the prototype i s gi ven byD(P ; ~v2) =
2D(P ; ~v1). Cl earl y, we shoul d have a measure that i s
i ndependent of the di stance of the obj ect to the camera.
One way to obtai n sucha measure i s bydi vi di ngD(P ; ~v )
by the normk ~v k

D̂(P ; ~v ) =
k (P P+ � I )~v k

k ~v k
(12)

D̂(P ; ~v ) i s proposed here as an obj ecti ve functi on f or
establ i shi ng the correspondence between the prototype
and the image. In other words, we expect that i f the ob-

j ect bel ongs to the prototype' s cl ass thenD̂(P ; ~v ) obtai ns
i ts mi nimal val ue when~v i s ordered i n correspondence to

P . Any other permutati on wi l l i ncrease the val ue of D̂.
Formal l y, denote by � a permutati onmatri x, we assume
that

D̂(P ; ~v ) =mi n
�

D̂(P ; � ~v ) (13)

The measure D̂(P ; ~v ) has a second rol e. Si nce i t mea-
sures the simi l ari ty between the prototype and the im-
age, i t can al so be used to determi ne the obj ect' s cl ass.
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Fi gure 1: \Natural" correspondences between two chairs

An obj ect observed i n a vi ew~v bel ongs to the cl ass rep-
resented by a prototype P i f

D̂(P ; ~v ) < � (14)

f or some constant � > 0. We ref er to (14) as the cat ego-
ri zat i on cri t eri on.

The categori zati on stage proceeds as f ol l ows. Gi ven
an image I and a prototype P , the correspondence be-
tween P and I i s resol ved by mi nimi zi ng the measure

D̂(P ; � ~v ) over al l possi bl e permutati on� of ~v , and i f the

obtai nedmi nimum D̂(P ; ~v ) i s bel owthe threshol d � , then
the cl ass i denti ty of the obj ect i s determi ned.

Note that i n our scheme the prototype and the cate-
gori zati on cri teri on determi ne the actual di vi si on of ob-
j ects to cl asses; an obj ect bel ongs to a certai n cl ass i f
i ts vi ews are su�ci entl y simi l ar, accordi ng to the cate-
gori zati on cri teri on, to vi ews of the prototype. Under
the above de�ni ti on, an obj ect bel ongs to a prototype' s
cl ass i f the total di �erence between i ts f eature poi nts and
thei r correspondi ng prototype poi nts does not exceed � .

The measure D̂(P ; ~v ) de�nedhere determi nes the sim-
i l ari ty between the prototype P and the vi ew~v usi ng
onl y the di stances between f eature poi nts. In general ,
si nce correspondence i s di�cul t to achi eve, such a mea-
sure woul d not be robust. Incl udi ng addi ti onal i nf orma-
ti on about the f eatures i n the simi l ari ty measure may
i ncrease the robustness of the scheme. Al so, measures
that consi der onl y the proximi ty of f eature poi nts are
l imi ted i n terms of di vi di ng the l i brary i nto cl asses, si nce
they i nduce cl asses of obj ects wi thhi ghl y simi l ar shapes.
Measures that consi der addi ti onal i nf ormati on can ex-
tend the cl asses to i ncl ude l arger sets of obj ects.

The measure D̂(P ; ~v ) can be enri ched by consi deri ng
the simi l ari ty between correspondi ng poi nts. Asimpl e

exampl e f or a measure that consi ders both the proxim-
i ty and simi l ari ty between f eature poi nts i s the f ol l owi ng
measure. Each f eature poi nt i s associ ated wi th a l a-
bel (such as a corner or an i n
ecti on poi nt). Agai n, the

measure D̂(P ; ~v ) i s appl i ed, but thi s time onl y correspon-
dences between poi nts wi th simi l ar l abel s are al l owed;
namel y, corners i n the image can onl y match corners i n
the prototype, and, simi l arl y, i n
ecti on poi nts can onl y
match i n
ecti on poi nts. Other exampl es f or measures
that combi ne proximi ty and simi l ari ty i ncl ude measures
that retai n the tangent or the curvature of poi nts. More
sophi sti cated measures may compare the topol ogi es of
the obj ects i n the two vi ews, or, i n other words, veri f y
that the obj ects share simi l ar part structures i n 2D.

A useful techni que i n measuri ng the simi l ari ty be-
tween the image and the nearest prototype vi ew i s to
consi der a di �erent set of f eatures than the set used to
determi ne the prototype transf orm. The rati onal behi nd
thi s techni que i s that i t i s general l y di�cul t to recover
exact f eature-to- f eature correspondence, and whi l e such
correspondences are necessary f or recoveri ng the proto-
type transf orm, simi l ari ty measures can be successf ul l y
appl i ed even i n the absence of exact f eature-to- f eature
correspondence. Thi s i dea resembl es the basi c pri nci pl e
of the al i gnment al gori thm[ 18, 41] , i n whi ch a smal l set
of poi nts i s used to compute the obj ect pose, whi l e a
l arger set of poi nts i s used to veri f y thi s pose.

It shoul dbe noted that the general 
owof the scheme
and, i n parti cul ar, the i denti �cati on stage are i ndepen-
dent of the speci �c choi ce of simi l ari ty measure. As has
been noted above, the measure a�ects the di vi si on of
model l i brari es i nto cl asses and the sel ecti on of optimal
prototypes f or these cl asses. An exampl e f or sel ecti ng
the optimal prototype f or a gi ven cl ass under the mea-
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sure speci �ed i n (12) (f or ei ther l abel ed or unl abel ed f ea-
tures) i s descri bed i n Secti on 4.

Fi nal l y, al thoughthe mai n obj ecti ve of the categori za-
ti onstage i s to determi ne the cl ass i denti ty of the obj ect,
the categori zati on scheme descri bed above i s useful even
i f the obj ect' s category cannot be determi ned. Secti on
3. 3 bel ow shows that the prototype transf ormcan be
reused to al i gn the image wi th the speci �c model s. Con-
sequentl y, f ol l owi ng the categori zati on stage the cost of
compari ng the image to each of the speci �c model s i s
substanti al l y reduced si nce the di�cul t part of recover-
i ng the transf ormati on that rel ates the model s to the
image i s appl i ed onl y to the prototype obj ects. As a
resul t, i f the cl ass i denti ty of the obj ect cannot be deter-
mi nedwe sti l l need to consi der al l the speci �c model s i n
the l i brary, but the overal l cost of compari ng the mod-
el s to the image woul dbe l owbecause correspondence i s
computed once f or the whol e cl ass.

3. 3 Identi �cati on

Af ter the observed obj ect i s categori zed, the system
turns to recoveri ng i ts i ndi vi dual i denti ty. At thi s stage
the image i s matched to al l the model s i n the obj ect' s
cl ass. For each model , the systemseeks to recover the
transf ormati on that al i gns the model to the image, i f
there i s such. In previ ous schemes thi s requi red recover-
i ng the correspondence between the image and each of
the model s separatel y. In our scheme, however, thi s no
l onger i s necessary, si nce the obj ect transf ormi s deter-
mi ned di rectl y f romthe prototype transf orm. We show
i n thi s secti on that the prototype and the obj ect trans-
f orms are rel ated by a simpl e transf ormati on, whi ch can
be computed i n advance, and whi ch can i n f act be un-
done al ready i n the l i brary of stored model s. Conse-
quentl y, the prototype transf ormcan be reused i n the
i denti �cati on stage to al i gn the i ndi vi dual model s wi th
the image.

The i ni ti al stage of categori zati on recovers three
pi eces of i nf ormati on that can be used f or i denti �cati on.
The three are (i ) the obj ect cl ass, (i i ) the correspon-
dence between the prototype and the image, and (i i i )
the prototype transf orm. Thi s i nf ormati on i s used i n
the i denti �cati on stage as f ol l ows. Fi rst, si nce the ob-
j ect' s cl ass i s determi ned, onl y model s that bel ong to
thi s cl ass are consi dered. Second, usi ng the correspon-
dence between the prototype and the image establ i shed
i n the categori zati on stage, and usi ng the stored corre-
spondence betweenthe prototype and the obj ect model s,
the correspondence between the model s and the image
i s immedi atel y recovered. Fi nal l y, as i s shown bel ow,
the model transf orm, namel y, the transf ormati on that
al i gns the model wi th the image, i s recovered f romthe
prototype transf orm.

Assume we are gi ven wi th a vi ew~v of some obj ect
model M i, namel y

~v =Mi~a (15)

f or some transf ormvector ~a . When the i denti �cati on
process begi ns, i t i s sti l l unknown whi ch of the model s
M1; : : : ; Ml of the obj ect' s cl ass accounts f or the image
andwhat the transf ormvector ~a i s. The �rst task f aced

by the scheme at thi s stage i s to recover the model trans-
f orm, ~a . Thi s i s done, as i s expl ai ned bel ow, usi ng the

prototype transf orm ~b =P+~v de�ned i n (9). Once ~a i s
recovered, i t i s appl i ed to al l the model s M1; : : : ; Ml, and
the model f or whi ch a near-perf ect match i s obtai ned
determi nes the obj ect' s i denti ty.

Theorem1bel owestabl i shes that the model transf orm
~a canbe recovereddi rectl y f romthe prototype transf orm
~b byappl yi ng a l i near transf ormati onwhi chi s ref erredto
as the prot ot ype- t o-model t ransf orm. Thi s transf ormhas
two i nteresti ng properti es. Fi rst, i t i s vi ew- i ndependent;
namel y, f or any gi venvi ewof the obj ect, the same trans-
f ormmaps the prototype transf ormthat corresponds to
thi s vi ewto the correct model transf orm. The prototype-
to-model transf ormtheref ore can be computed i n ad-
vance and stored i n the l i brary of model s. Second, the
prototype-to-model transf ormcanbe used to recover the
model transf ormregardl ess of the qual i ty of match be-
tween the prototype and the image. In other words,
even i f the prototype al i gns poorl y wi th the image, the
transf ormati on that al i gns the model wi th the image i s
determi ned correctl y i n thi s process.

Theorem1: Given a vi ew ~v =Mi~a . Let~b =P+~v
be the prototype t ransform, that i s , t he t r ans f ormvec-
t or that bes t ali gns the prototype wi th the i mage. The
model t r ans f orm, ~a , can be r ecover ed f r omthe prototype

t rans f orm,~b , by appl yi ng a mat r i x Ai, namel y

~a =Ai~b

Ai i s r ef er r ed to as the prot ot ype- t o-model t ransf orm.

Proof: Noti ce that

~b =P+~v =P+Mi~a

Assume P +Mi i s i nverti bl e, l et

Ai =(P
+Mi)

�1

we obtai n that
~a =Ai~b

2

Corol l ary 2: The prototype- t o- model t r ans f orm i s
vi ew- i ndependent .

Proof : The prototype-to-model transf orm, A i, i s i n-

dependent of both pose vectors, ~a and ~b . Changi ng the
image ~v wi l l resul t i n a newpai r of pose vectors, ~a and
~b , but simi l ar to the ol d pai r, the new pai r i s rel ated
throughthe same transf ormA i. The prototype-to-model
transf ormA i theref ore can be used to recover the obj ect
pose f or any vi ewof M i. 2

Ai exi sts i f P+Mi i s i nverti bl e. Thi s condi ti on i s
equi val ent to requi ri ng that the two col umn spaces of
P andM i wi l l not be orthogonal i n any di recti on. The
condi ti on hol ds, i n general , when the two obj ects are
f ai rl y simi l ar. Thi s i s i l l ustrated by the f ol l owi ng ex-
ampl e. Consi der the case that both col umn spaces of
P andM i are one-dimensi onal ; namel y, each represents
a l i ne through the ori gi n. The onl y case i n thi s one-
dimensi onal exampl e i n whi chA i does not exi st i s when
P and Mi are orthogonal . But these l i nes are f arthest
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apart when they are orthogonal . Consequentl y, i f the
obj ects are rel ati vel y simi l ar Ai woul d exi st.

Si nce i t depends onl y on the prototype P and the
model M i, the prototype-to-model transf ormA i can be
pre-computedand stored i n the l i brary of model s. Every
model M i 2 C i s associ ated wi th i ts own transf ormAi

that rel ates, f or every possi bl e vi ewof Mi, between the
prototype transf ormand the model transf orm. To com-
pare the image to the model M i the model transf orm
shoul d �rst be recovered. Thi s i s achi eved by appl yi ng
Ai to the prototype transf ormcomputed i n the catego-
ri zati on stage.

Al so, the prototype-to-model transf orm, A i, can be
used to al i gn the model M i wi th the prototype P i n 3D.
Denote the al i gned model by M 0

i , M
0
i model s the same

obj ect as M does, si nce thei r col umn vectors span the
same space. In addi ti on, the al i gned model M 0

i has the

property that i t i s brought bythe prototype transf orm, ~b ,
to a perf ect al i gnment wi th the image. Consequentl y, i f
the model s are al i gned i n the l i brary wi th the prototype,
the prototype transf ormcomputed i n the categori zati on
stage can be reused f or i denti �cati on wi th no further
mani pul ati ons. Thi s i s establ i shed i n Theorem3 bel ow.

Theorem3: Let M 0
i =M iAi be the model Mi al i gned

wi th the prototype P . For any vi ew~v =Mi~a , t he proto-

type t rans f ormf or thi s vi ew~b =P+~v i s i dent i cal t o the

model t r ans f ormf or thi s vi ew; that i s , ~v =M0
i
~b .

Proof : Si nce
M 0

i =M iAi

we obtai n that

M 0
i
~b =MiAi

~b =Mi~a =~v

2

Usi ng Theorem3, the i denti �cati on scheme i s sim-
pl i �ed as f ol l ows. The model s M 1; : : : ; Ml are al i gned i n
the l i brary wi th the prototype P by appl yi ng the cor-
respondi ng prototype-to-model transf orm, A 1; : : : ; Al. At

recogni ti on time, the prototype transf orm ~b =P+~v , i s
appl i ed to the al i gned model s M 0

1; : : : ; M0
l . Accordi ng to

Theorems 1 and 3, by transf ormi ng the model s by ~b the
correct model , M 0

i , woul dperf ectl y al i gnwi th the image.
In the scheme above we assumed that ful l f eature-to-

f eature correspondence i s establ i shedbetween the proto-
type and the image. Thi s assumpti on i s not mandatory.
Methods f or estimati ng the prototype transf ormusi ng
parti al correspondence or by consi deri ng other types of
f eatures (such as l i ne segments) can al so be used. Note
that i ncase the prototype transf ormcanonl y be approx-
imated, the accuracy of the model transf ormobtai ned i s
determi ned by the qual i ty of thi s approximati on and by
the condi ti on number of the prototype-to-model trans-
f ormA i. The condi ti on number of A i a�ects the match
even i f Theorem3 i s appl i ed, namel y, even i f the mod-
el s are al i gned wi th the prototype i n advance. Conse-
quentl y, the condi ti onnumber of the prototype-to-model
transf ormA i shoul d be taken i nto account when the l i -
brary i s di vi ded i nto cl asses.

Fi nal l y, the scheme can be extended to handl e cl asses
of obj ects wi th di �erent degrees of f reedom. Consi der,

f or i nstance, the case of simi l ar chai rs, some of whi chare
f ol di ng. Obvi ousl y, the f ol di ng chai rs have more degrees
of f reedomthan the regul ar, ri gi d chai rs, and theref ore
they woul d be represented i n the l i brary by wi der ma-
tri ces than the ri gi d chai rs are. As i s expl ai ned bel ow,
the chai rs can be handl ed i n a common cl ass, and the
prototype f or the cl ass woul d i tsel f be a f ol di ng chai r.

More general l y, l et M1; : : : ; Ml be a cl ass of model s of
di �erent wi dths, and denote by k 1; : : : ; kl the wi dth of
M1; : : : ; Ml respecti vel y. Let P be the prototype f or thi s
cl ass, and denote by k p the wi dth of P , we set kp to be

kp =maxf k 1; : : : ; klg (16)

In other words, we requi re the prototype to have the
same degrees of f reedomas the most 
exi bl e obj ect i n
the cl ass. We can set k p accordi ng to our goal si nce, as i t
i s shown i nSecti on 4, the prototype P i s obtai ned i n our
scheme by mani pul ati ng the obj ects i n the cl ass. The
prototype-to-model transf ormA i i s de�ned i n thi s case
by

Ai =(P
+Mi)

+ (17)

where A i i s kp� ki. It i s strai ghtf orward to extendThe-
orem1 to al so i ncl ude thi s case. Consequentl y, f or any
vi ewof M i, the model transf orm~a canbe recovered f rom

i ts correspondi ng prototype transf orm ~b by appl yi ng the

prototype-to-model transf ormA i to ~b . Note that si nce
kp � ki the prototype can appear i n poses that do not
match any possi bl e model pose (and theref ore i n noi se-
l ess condi ti ons they are impossi bl e to obtai n). In case
the obj ect i s observed f romsuch a vi ew, A i woul d map
thi s unmatchedprototype transf ormto the model trans-
f ormthat corresponds to the nearest matchedprototype
transf orm. By setti ng k p to be as l arge as the maximum
of k1; : : : ; kl we avoi d cases where there exi st vi ews of the
obj ect that cannot be accounted f or by the prototype.
Model transf orms that correspond to such vi ews cannot
be recovered f romprototype transf orms.

3. 4 Summary

We presented i n thi s secti ona scheme for recogni zi ng 3D
obj ects f romsi ngl e 2D vi ews that proceeds i n two stages,
categori zati on and i denti �cati on. In the categori zati on
stage the image i s compared agai nst the stored proto-
types. For every prototype, the correspondence between
the image and the prototype i s recovered, and the near-
est vi ewof the prototype i s constructed. The simi l ari ty
between thi s vi ewand the image i s eval uated, and, i f the
two are f ound simi l ar, the cl ass i denti ty of the obj ect i s
determi ned. In the i denti �cati on stage the observed ob-
j ect i s compared agai nst the model s of i ts cl ass. Si nce
the prototype andthe model s were brought i n the l i brary
i nto al i gnment, the same transf ormati on that al i gns the
prototype to the image al so al i gns the obj ect model to
the image. The prototype transf ormtheref ore i s appl i ed
to the model s, andthe obtai nedvi ews are comparedwi th
the image. The vi ewthat i s f ound to be i denti cal up to
noi se and occl usi on to the image determi nes the i ndi vi d-
ual i denti ty of the obj ect.

The presented scheme i s based on several key pri nci -
pal s. Recogni ti on i s di vi ded i nto two sub-processes, cat-
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egori zati on and i denti �cati on. In both processes mod-
el s are al i gned wi th the image, and the i denti ty of the
obj ect i s determi ned by a 2D compari son; 3D recon-
structi on of the observed obj ect f romthe image i s not
perf ormed. The di�cul t component of the al i gnment
approach, namel y, the recovery of correspondence and
obj ect pose, i s perf ormed onl y once f or each cl ass; the
prototype transf ormi s reused i n the i denti �cati on stage
to al i gn the image wi th the i ndi vi dual model s.

4 Constructing optimal prototypes

In the scheme above we assumed that the cl asses i n the
l i brary of model s are represented by prototype obj ects.
Si nce categori zati on i s achi eved by matchi ng the im-
age to prototype obj ects, the questi on of howto sel ect
the best prototype shoul d be addressed. In thi s secti on
we present an al gori thmfor constructi ng optimal proto-
types.

Gi ven a cl ass of obj ects, the optimal prototype f or
thi s cl ass i s the obj ect that resembl es the obj ects of the
cl ass the most. Under our f ormul ati on, such an obj ect
woul d share as many f eatures as possi bl e wi th the ob-
j ects of i ts cl ass, the posi ti on of these f eatures on the
prototype woul d be as cl ose as possi bl e to thei r posi ti on
on the obj ects, and the prototype-to-model transf orm
for these obj ects woul d be as stabl e as possi bl e. Bel ow
we showthat the optimal prototype can e�ecti vel y be
computed usi ng pri nci pal component anal ysi s; that i s,
by computi ng the domi nant ei genvectors f or some ma-
tri x determi ned by the model s of the cl ass.

Pri nci pal component anal ysi s of ten i s used i n cl as-
si �cati on probl ems to construct cl asses and prototypes
[ 11] . In exi sti ng appl i cati ons, an obj ect i s representedby
a poi nt i n some hi ghdimensi onal space, where eachcom-
ponent of thi s poi nt contai ns an i nvari ant attri bute of the
obj ect. Ahyperpl ane i n that space represents a cl ass of
obj ects. The goal of the pri nci pal component anal ysi s
i s, gi ven a set of poi nts (obj ects), to recover the cl ass
that these poi nts i nduce. Our case i s somewhat di �er-
ent. In our case an obj ect i s representedby a conti nuous
l i near space rather than by a poi nt. Whereas the use
of hyperpl anes i n other schemes of ten i s arbi trary and
made primari l y f or conveni ence, thei r use i n our scheme
i s appropri ate f ol l owi ng the l i near combi nati on scheme
[ 42] (see Secti on 3. 1).

The di �erences outl i ned above al so impl y di �erences
i n the proof that pri nci pl e component anal ysi s appl i es
to our case. We showbel owthat the optimal prototype
can be computed by pri nci pal component anal ysi s. The
tradi ti onal proof needs to be extended si nce i n our case
obj ects are representedby conti nuous spaces rather than
by di screte poi nts.

The prototype constructed i n thi s process i s a 3D ob-
j ect obtai ned by mani pul ati ng the obj ects i n i ts cl ass.
To al l owthe constructi on, i t seems as i f the obj ects i n
the cl ass shoul d �rst be brought i nto al i gnment. In par-
ti cul ar, i f the obj ects are representedby vi ewer-centered
model s (that i s, by sets of thei r vi ews, see Secti on 3. 1 f or
detai l s), the di �erent obj ects woul d then have to be rep-
resented by images taken f romsimi l ar vi ewpoi nts. Nev-
erthel ess, the process presented bel owdoes not requi re

an i ni ti al al i gnment of the obj ects. The same prototype
i s obtai ned i n thi s process evenwhen the obj ects are not
al i gned

We nowturn to constructi ng the optimal prototype.
Fi rst, we de�ne an obj ecti ve functi on. Gi ven a proto-
type P and an obj ect model M i, we de�ne the simi l ari ty
between P andM i as f ol l ows. Let ~vi be a vi ewof M i,
we measure the simi l ari ty between the prototype P and
the vi ew~vi usi ng (12). Then, we sumthe measure over
al l possi bl e vi ews of Mi. Assumi ng wi thout l oss of gen-
eral i ty that k ~vik =1, (14) can be rewri tten as

D̂(P ; ~vi) =k (P P+ � I )~vik (18)

Wi thout l oss of general i ty, we can assume that the
constructed prototype, P , i s composed of orthonormal
col umns. Note that an overdetermi ned matri x P wi th
orthonormal col umns sati s�es P + =P T . We can there-
f ore rewri te (18) as

D̂(P ; ~vi) =k (P PT � I )~vik (19)

The di stance betweenP and the model M i i s nowgi ven

by summi ng D̂(P ; ~vi) over al l uni t- l ength (to el imi nate
scal i ng e�ects) vi ews of Mi, namel y

D̂(P ; Mi) =

Z
k~v ik =1

k (P PT � I )~vik (20)

To obtai n the obj ecti ve functi on, we sumthese di stances
over al l model s

E(P ) =

lX
i=1

Z
k ~vik =1

k (P PT � I )~vik (21)

The obj ect P that mi nimi zes thi s f uncti on i s de�ned to
be the optimal prototype.

Note that (21) i s not the onl y possi bl e obj ecti ve func-
ti on f or thi s purpose. An al ternati ve \worst case" ap-
proach i s to measure the di stance betweenthe prototype
to the f arthest model i n the cl ass (rather than summi ng
thi s di stance over al l model s). Except f or bei ng di�cul t
to compute, thi s measure al so i s sensi ti ve to \outl i er"
model s.

The prototype that mi nimi zes (21) canbe constructed
i n a process that i ncl udes the f ol l owi ng steps.

1. To simpl i f y the process we assume the col umn vec-
tors of each of the model matri ces M i, (1� i � l),
are orthonormal . (In case they are not, we �rst ap-
pl yaGramschmi dt process to them. Sucha process
obvi ousl y does not al ter the space of vi ews impl i ed
by the model s. )

2. Bui l d the n � n symmetri c matri x

F =

lX
i=1

MiM
T
i

3. Fi nd the k domi nant ei genvectors of F . The opti -
mal matri x P i s constructed f romthese ei genvec-
tors.
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Note that, i ngeneral , we are tryi ng to construct a pro-
totype obj ect that woul d bel ong to the gi ven cl ass. Thi s
condi ti on determi nes the choi ce of wi dth k f or the pro-
totype. If al l the model s share the same wi dth then the
prototype woul d assume thi s wi dth. In the ri gi d case,
f or exampl e, k =4 (see Secti on 3. 1). As menti oned i n
Secti on 3. 3 above, i n case the obj ects have di �erent de-
grees of f reedom, k i s set to be the maximumof k 1; : : : ; kl

where k 1; : : : ; kl are the wi dths of M 1; : : : ; Ml respecti vel y.
In case more than k l arge ei genval ues are obtai ned, one
may i gnore these gui del i ne rul es and construct a proto-
type that has hi gher degrees of f reedomthan the obj ects
i n the cl ass (see f or exampl e [ 31] ).

Theorem4 bel owestabl i shes that the al gori thmabove
produces the optimal prototype. We consi der here the
case that al l the obj ects share simi l ar degrees of f reedom.
The same procedure canbe appl i edwi th sl i ght modi �ca-
ti ons to i ncl ude the case of obj ects wi th di �erent degrees
of f reedom.

Theorem4: Let M 1, M2, . . . , Ml be a set of model s
bel ongi ng to some cl as s C . As sume every model Mi i s
r epr es ent ed by an n �k mat r i x wi th or thonormal col umn
vector s . The prototype P that mi ni mi zes the t erm

E (P ) =

lX
i=1

Z
k ~vik =1

k (P PT � I )~vik

where the i nt egrat i on i s done over al l t he uni t - l ength
vi ews ~vi of each model Mi, i s composed of the k ei gen-
vect or s of the mat r i x

F =

lX
i=1

MiM
T
i

that cor r espond to i t s k l ar ges t ei genval ues .

Proof : Let P be composed of the k domi nant ei gen-
vectors of F . Accordi ng to regressi on pri nci pl es P min-
imi zes the term

lX
i=1

kX
j=1

k (P PT � I ) ~mijk

where ~mij i s the j' th col umn vector of M i. In other
words, consi der ~mij as a poi nt i nR

n. The space spanned
by the col umn vectors of P i s the nearest k -dimensi onal
hyperpl ane to these poi nts, ~mij . The rest of thi s proof
extends the cl aimf romthe di screte sumover the col umn
vectors of Mi to the conti nuous i ntegral over al l vi ews
spannedbythese vectors. Accordi ng to our assumpti ons,
each matri x M i contai ns an orthonormal set of col umn
vectors. Repl aci ng these vectors by another orthonormal
basi s f or Mi wi l l not change the matri x P ; that i s, P i s
i ndependent of the choi ce of orthonormal basi s f or the
model s. Thi s i s i l l ustrated by the f ol l owi ng deri vati on.
To obtai n a neworthonormal basi s f or the col umn space
of Mi we can appl y a k � k rotati on matri x R to M i

(namel y, M iR). P i s the best vector space f or the new
set as wel l , si nce

MiR(MiR)
T =M iRR

TMT
i =M iI MT

i =M iM
T
i

F theref ore i s constant f or anychoi ce of orthonormal vec-
tors f or M1; : : : ; Mn, andso i ts domi nant ei genvectors rep-
resent the best vector space f or f or any orthonormal rep-
resentati on of the obj ects. Consequentl y, P minimi zes
the obj ecti ve functi on regardl ess of choi ce of basi s f or
the model s, and theref ore i t al so mi nimi zes the requi red
term

E (P ) =

lX
i=1

Z
k ~vik =1

k (P PT � I )~vik

2

To summari ze, we showed that gi ven a cl ass of obj ect
model s, the optimal prototype f or thi s cl ass i s gi ven by
the domi nant ei genvectors of the matri xF , whi ch i s con-
structed f romthe obj ect model s. Note that i n provi ng
Theorem4 we showed that the prototype i s i ndependent
of choi ce of basi s f or the model s. Thi s impl i es that, i n
order to construct the prototype, the obj ect model s M 1,
. . . , Ml do not need to �rst be brought i nto al i gnment.
The process above guarantees to output the same pro-
totype obj ect even i f the model s are not al i gned.

5 Relevance to humanvision

The recogni ti on by prototypes scheme uses the general
shape of obj ects as the cue f or recogni zi ng them. As was
al ready menti oned, cl asses i n our scheme contai nobj ects
wi th f ai rl y simi l ar shapes. In contrast, the human vi -
sual systemrecogni zes obj ects usi ng both shape cues as
wel l as many other cues, such as col or, texture, moti on,
and context, and obj ects are categori zed i n thei r basi c
l evel of abstracti on [ 33] . Onl y l i ttl e i s currentl y known
about the underl yi ng processes f or recogni ti on used by
the vi sual system. Fromwhat i s known, i n spi te of the
di �erences poi nted above, the recogni ti on by prototypes
scheme seems to be consi stent i n several key i ssues wi th
psychol ogi cal and physi ol ogi cal �ndi ngs. In thi s secti on
we bri e
y revi ewthese �ndi ngs.

The scheme presented i n thi s paper promotes the no-
ti on that categori zati on and i denti �cati on are perf ormed
usi ng simi l ar tool s. In both cases vi ewvari ati ons �rst
are compensated f or, and then a vi ewof ei ther the hy-
pothesi zed prototype or obj ect model i s compared wi th
the image. Thi s i s i n contrast to methods (such as part
decomposi ti on and functi onal descri pti on) that i n gen-
eral handl e ei ther categori zati on or i denti �cati on, but
do not extend to deal wi th both probl ems. The avai l -
abl e studi es i n thi s case are i nconcl usi ve. Some evi dence
seemto i ndi cate that the twoprocesses are handl edsepa-
ratel y bythe vi sual system. Agnosti c andprosopagnosti c
pati ents of ten demonstrate degraded i denti �cati on abi l i -
ti es, whereas thei r perf ormance i ncategori zati onremai ns
i ntact. Doubl e di ssoci ati on between the two processes,
however, has not been f ound, andso the assumpti onthat
the twoprocesses are handl edseparatel y i n the brai n has
not been establ i shed. In f act, both cel l s that respond
to general f aces as wel l as cel l s that respond to speci �c
f aces where f ound l yi ng si de by si de wi thi n the same
brai n area, STS, of the macaque monkey [ 29] . The vul -
nerabi l i ty of the i denti �cati on process to brai n l essi ons
canbe expl ai nedby that the process requi res a rel ati vel y
l arge memory to encode the detai l ed shapes of obj ects as
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wel l as sophi sti cated image processi ng mechani sms to re-
cover a detai l ed descri pti on of the observed obj ect f rom
the image (see e. g. , [ 19] ).

Another i dea proposed here i s that categori zati on i n-
vol ves two stages: a stage of compensati ng f or vi ewvari -
ati ons f ol l owed by a stage of 2D compari son to account
f or shape di �erences. A decoupl i ng of vi ew vari ati on
and semanti c categori zati on was suggested by Li ssauer
[ 24] . Warri ngton and Tayl or [ 44, 45] f ound that pa-
ti ents that su�er f roml essi ons i n the posteri or l obe of
the ri ght hemi sphere demonstrate di�cul ti es i n catego-
ri zi ng obj ects f romunconventi onal vi ews, whereas thei r
perf ormance i n categori zati on of obj ects f romconven-
ti onal vi ews remai ns i ntact. Addi ti onal evi dence f or the
e�ect of vi ewvari ati ons on categori zati on perf ormance
were f ound f or heal thy subj ects. Subj ects that are asked
to name obj ects respond sl ower when the obj ects ap-
pear i n unconventi onal vi ews [ 28] . Al so, mental rotati on
e�ects, namel y, response time that grows l i nearl y wi th
the ti l t of the obj ect, were observed i n nami ng tasks of
natural obj ects [ 21] .

Fi nal l y, the process of categori zati on presented here
i s achi eved by compari ng the image to prototype ob-
j ects, and these prototype obj ects can be constructed by
mani pul ati ng the f ami l i ar obj ects of the cl ass. Recent
studi es i ndi cate that response time i n nami ng tasks i s
typi cal l y shorter and error rates are l ower when the ob-
served obj ect i s simi l ar to the prototype [ 5] . Simi l arl y,
shorter reacti ontime i s obtai nedwhensubj ects are asked
to answer questi ons of the type \does the obj ect X be-
l ong to the cl ass Y?" [ 34] . Other studi es reported that
chi l dren l earn good exampl es of cl asses bef ore they l earn
poor ones [ 1, 32] and that subj ects recal l havi ng seen
the prototype or average con�gurati on of studi ed f ace
images even i f thi s con�gurati on was not studi ed [ 8] .

To summari ze, al though the presented scheme gen-
eral l y does not recogni ze obj ects i n thei r basi c l evel of
abstracti on, i t i s consi stent wi thpsychol ogi cal andphys-
i ol ogi cal �ndi ngs i n several key i ssues i ncl udi ng a si ngl e
approach f or the two sub-probl ems of recogni ti on, cat-
egori zati on and i denti �cati on, vi ewdependency of the
two sub-processes, and the rol e of prototypes i n catego-
ri zati on. The �ndi ngs di scussed here obvi ousl y are i n-
concl usi ve, si nce psychol ogi cal and physi ol ogi cal studi es
i ncl udi ng the ones di scussed here have more than one
possi bl e i nterpretati on.

6 Implementation

To test the i deas presented i n the paper, we have impl e-
mented the scheme and appl i ed i t to several obj ects. In
our impl ementati on, the l i brary of model s i ncl uded two
cl asses. The �rst (Fi gure 2) contai ned two f our- l egged
chai rs (denoted by Aand B), and the second (Fi gure 3)
i ncl uded two car model s, a VWand a Saab.

To demonstrate categori zati on, we used chai r Aas a
prototype andmatched i t to an image of chai r B. Corre-
spondences between the prototype and the image were
pi cked manual l y, and, usi ng these correspondences, the
prototype transf ormwas recovered and appl i ed to the
prototype. The resul ts of matchi ng the transf ormedpro-
totype wi ththe image are seen i nFi gure 4. It canbe seen

that the transf ormed prototype (mi ddl e �gure) assumed
the same ori entati on as the observed obj ect (l ef t �gure),
and that the matchbetween the two i s good consi deri ng
that the obj ects have di �erent shapes. Note that i n thi s
impl ementati on we al l owed the obj ects to undergo gen-
eral a�ne transf ormati ons i n 3D, i ncl udi ng stretch and
shear, and so the match between the prototype and the
image was better than i f onl y ri gi d transf ormati ons were
al l owed. Addi ti onal exampl es usi ng chai r Band the two
cars as the prototypes are shown i n Fi gures 5-7.

InFi gures 8-9 we tri ed to matchthe prototypes to the
images wi thwrong correspondences. The resul ts of these
matches were si gni �cantl y worse than when the correct
matches were used. Thi s i s consi stent wi th the i dea di s-
cussed i n Secti on 3. 2 that the qual i ty of the match can
be usedas the obj ecti ve functi on f or resol vi ng the correct
correspondence.

Fi gure 10 shows the resul ts of matchi ng a prototype
f our- l egged chai r to a si ngl e- l egged o�ce chai r. It can
be seen that the upper porti ons of the chai rs match rel -
ati vel y wel l , whi l e the l egs of the chai rs do not �nd ap-
propri ate matches.

Fi gure 11 shows the resul t of matchi ng a prototype
chai r to an image of a Saab car. As an anecdotal ex-
ampl e, we matched the hol e bel owthe back of the chai r
to the wi ndshi el d of the car and the seat to the hood.
In general , whatever correspondence i s used, the two ob-
j ects woul d match poorl y rel ati ve to matchi ng the pro-
totypes to obj ects of thei r cl ass.

Fi gures 12-13 demonstrate the i denti �cati onstage. In
the l i brary we �rst al i gned the model f or chai r Awi th
the prototype chai r (chai r B) usi ng the prototype-to-
model transf orm. Then, an image of chai r Awas cate-
gori zed (Fi gure 5) bymatchi ng i t to the prototype chai r,
and the prototype transf ormwas computed. In the next
step, the prototype transf ormwas appl i ed to the speci �c
model of chai r A. The resul t of thi s appl i cati on i s seen
i n Fi gure 12. It can be seen that a near-perf ect al i gn-
ment was achi eved i n thi s process. Asimi l ar process was
appl i ed to the VWcar i n Fi gure 13 usi ng the Saab car
as the prototype. (The resul t of the correspondi ng cat-
egori zati on stage i s shown i n Fi gure 6. ) These �gures
demonstrate that al though a perf ect match between the
prototype and the image coul d not be obtai ned, the pro-
totype transf ormcan sti l l be used to al i gn the observed
obj ect wi th i ts speci �c model .

7 Summary

We i ntroduced i n thi s paper a recogni ti on scheme that
proceeds i n two stages: categori zati onand i denti �cati on.
Categori zati on i s achi eved by al i gni ng the image to pro-
totype obj ects. For every prototype, the nearest proto-
type vi ew i s recovered, and the simi l ari ty between thi s
vi ew and the image i s eval uated. The prototype that
most resembl es the observed obj ect determi nes i ts cl ass
i denti ty. Li kewi se, i denti �cati on i s achi eved by al i gn-
i ng the observed obj ect to the i ndi vi dual model s of i ts
cl ass. At thi s stage the prototype transf ormcomputed
i n the categori zati on stage i s reused to al i gn the model s
wi th the image. The model that matches the observed
obj ect determi nes i ts speci �c i denti ty. In addi ti on, we
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Fi gure 2: Pictures of two chairs used as models. We refer to these chairs byA(left) andB(right). Models for the two chairs
were constructed fomsingle images using symmetry [31].

Fi gure 3: Pictures of two cars used as models. Left: a VWmodel . Right: a Saab model . Models for the two cars were
borrowed from[42] .

Fi gure 4: Matching a prototype chair (chai r A) to an image of chai r B. This �gure, as wel l as the rest of the �gures, contain
three pictures. Left: the image to be recognized. Middle: the appearance of the prototype fol lowing the appl ication of the
prototype transform. Right: an overlay of the left and the middle pictures.
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Fi gure 5: Matching a prototype chair (chai r B) to an image of chai r A.

Fi gure 6: Matching a prototype car (Saab) to an image of a VWcar.

Fi gure 7: Matching a prototype car (VW) to an image of a Saab car.
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Fi gure 8: Matching a prototype chair (chai r B) to an image of chai r Awithwrong correspondence.

Fi gure 9: Matching a prototype car (Saab) to an image of a VWcar withwrong correspondence.

Fi gure 10: Matching a four-legged chair to an image of an o�ce chair.
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Fi gure 11: Matching a prototype to a chair (chai r A) to an image of a Saab car.

Fi gure 12: Matching a model of chai r Ato an image of the same chair using the prototype transformcomputed in the
categorization stage.

Fi gure 13: Matching a model of a VWcar to an image of the same car using the prototype transformcomputed in the
categorization stage.
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presentedanal gori thmfor constructi ng the optimal pro-
totypes and di scussed the rel evance of the scheme to hu-
man recogni ti on.

An important i ssue conveyed by our scheme i s that
categori zati on can be used to f aci l i tate the i denti �cati on
of obj ects. We showed that by �rst categori zi ng the ob-
j ect, the di�cul t stages of the al i gnment process, namel y,
the recovery of the obj ect pose and the correspondence
betweenthe image andthe model , canbe perf ormedonl y
once per cl ass. Consequentl y, i denti �cati on i s reduced i n
thi s scheme i nto a seri es of simpl e templ ate compari sons.

The scheme presented i n thi s paper di �ers f romex-
i sti ng categori zati on schemes i n two important aspects.
The exi sti ng schemes (e. g. , [ 4] ) �rst attempt to recover
the part structure (geons) of the obj ect f romthe image
al one. Thi s structure i s assumed to be almost i nvari -
ant both to rotati on of the obj ect and across obj ects of
the same cl ass. In contrast, our scheme does not at-
tempt to recover any 3D i nf ormati on f romthe image
al one. Moreover, i t separates the two e�ects that deter-
mi ne the obj ect' s appearance: vi ewvari ati on e�ects and
def ormati ons due to cl ass vari abi l i ty. Vi ewvari ati ons are
compensated f or by recoveri ng the vi ewof the prototype
that most resembl es the image, and the amount of de-
f ormati on that separates the prototype f romthe speci �c
obj ect i s eval uated by assessi ng the di �erence (i n 2D)
between the nearest prototype vi ewand the image.

Open probl ems f or f uture research i ncl ude sol vi ng the
correspondence betweenprototypes and images, combi n-
i ng the scheme wi th exi sti ng i ndexi ng approaches, de�n-
i ng e�ecti ve measures to eval uate the qual i tyof matches,
andextendi ng the systemto i ncorporate addi ti onal cues,
such as col or and texture.
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