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LINEARLY UNRECOGNIZABLE PATTERNS

Imiroduetion. The central theme of this study s the classification of
certain  geometrical properties gocording to the tvpe of computation
necessary to determine whether a given figure has them. Consider, for
example, the following algorithm to determine whether a figure X is
corwex. For each pair of points (p,g} we defing the function

dlX) =1 if (pE X and g € X and midpoint {p, g) & X)
= [} otherwise,

Then X is convex if and only if no ¢, (X) = 1 for any pair of points (p,g).

This shows, in & sense we shall presently define more precisely, that
the “global™ property of convexity can be determined by a simple compu-
tation from the “local” properties ¢o." Thus, if $umelX) means that
“X I8 convex,” we have

Bl A ) == 2 ol X) < 1
g

Mow we generalize this. We say that a property & s of order k if k is the
emallest integer for which there exiate a family 4 of predicates each of
which depends only on a subset of k& points of the figure X, and real
numbers o, associated with each member ¢ of % such that

$iX) == (Eﬂ_ﬁx; :a-n)

In this sense, we can assert that the order of ¢omwe ¢ af mosi 3. The de-
termination of the orders of simple geometrical properties turns out to
be far from trivial and presents many surprises. In fact, the greater part
of the following analvsis seems to be needed to prove that connecledness

" Thhis work was supported in part by Project MAC, and M.LT. ressarch project sponsared
by the Advamced Resesrch Projects Agency, Department of Diefense, under Ofice of Maval
HResearch controcts Nonr-d102{01) and {(0E}.

*We identify “property” {or “predicate”} with the characteristic function of the set of
chjecis that have the property.
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is not of any finite order, i.e.,
There is no k for which connectedness is of order k.

This remains true if we relax the definitions, as we shall, to make the
sums finite by considering the plane as a fine-grained infinite chess-board,
considering its squares to be points, and allowing only figures which contain
ench square entirely or not at all—that iz, we will consider a discrete
model of geometry.

Apart from the purely mathematical interest of the results that come
from it, we consider the concept of finite order worthy of study for a number
of reasons connected with the theories of computation and of pattern
recognition. We shall briefly outline some of these reascns.

Motivation of This Study.

la} Local vs. global geometric properties. In problems of geometric patiern
recognition, one is led to ask: to what extent can one use “local” propertivs—
evidence obtained from looking at small portions of an object—as a basis
for judgements about the “global™ character of the object. For example,
one can distinguish “line” drawings from other pictures on the hasis of the
existence of no interior points in the drawing—and this can be determined
by a simple combination of evidence obtained from examining arbitrary
small neighborhoods. On the other hand, one cannot obtain “local” evidence
in favor of a drawing being “connected” —or 50 one might suspect— without
having to combine such collections of evidence by a very complicated
procedure,

Cr first attempt to study this was based on the idea of diameter-restrictod
predicates, ie., the restriction on the “local” properties is on the diameter
of the set of points on which they depend rather than the number of points.
The results of this study are summarized in §IX. However it soon became
clear that the more interesting concept is order-restriction, and that the
distinction we were seeking was not so much a question of geometry as a
fuestion about the theory of computation,

(b} Serial vs. porallel computation. What characterizes the extent Lo
which an algorithm can have an essentially serial, as opposed to paraliel,
character? That is, to what degree can a computation he sped-up by doing
several subcomputations at the same time? One would suspect, for example,
that in many successive approximation computations there is little to be
gained except, at great expense and redundancy, by parallel pProcessing.
We were led to suppose that the same is true for geometric connectedness
recognition. Une way to recognize that a set is disconnected (connected)
i& to find that there is a (no) curve dividing the set without intersecting it.
One could therefore examine in parallel all possible separating curves,
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rather than serially trace through the paths within the set. But it would
seem that the price of speeding-up the computation this way is superbly
costly, and one looks for a way Lo get theoretical estimates of what is the
exchange rate between the minimal serial and parallel amounts of compu-
tation. (The goal must be an exchange-cost curve.) One might hope that
study of a particular problem, e.g., connectedness, would vield some insight
into this general guestion of computation complexity for finite problems
comparable with, say, that achieved in the theory of complexity of the
recursive functions (Blum).

i) Theory of perceptrons and linear separability. The pattern-recognition
scheme known as the percepiron (Rosenblatt [6]) i known to be capable
of learning to make any pattern discrimination which is within the scope
of its potential ability—that is, if there is a set of parameter values that
will suffice, it will find them. Thus, a good deal is known about this system's
learning ability, and therefore one is particularly interested to know what
is the scope of potential ability. Curiously enough, there seems to be nothing
in the large perceptron literature on this question, and the present paper
seems to be the first to link the linear-separation problem with the geometric-
property problem.

The perceptron (and its derivatives) are of considerable interest mathe-
matically because they are perhaps the simplest nontrivial parallel
machines. One therefore ought to understand them thoroughly—as a sort
of “linear case™—if one is to get any satisfactory theory of “higher-order”
parallel computation schemes.

id) Mathematical aspects. Linear separation computations have con-
siderable mathematical significance in themselves. For example, il we
ask for & maximum likelihood decision process based on Bayesian use of
the results of statistically independent experiments, one obtaing (Minsky
and Selfridge [8]) a linear separation procedure. For another example, the
generalization (in §1) of Boolean disjunctive normal form appears to yield
surprising and froitful results, Finally, the combination of group theory and
linear inequalities seems to promise some new combinatorial technigues.

L. Theory of linear Boolean separation functions. In this section we shall
confine ourselves to the analysis of the linear representation of predicates
defined on an abstract set K, without any additional mathematical structure.
The theorems proved here will be applied in later sections to sets with
geometrical or topological stroctures, When necessary for truth B must
be taken as finite,

Our theory deals with predicates defined on subssts of a given base
gpace which we ahall consistently dencte by K. We use the following no-
tational conventions:
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(i} Let R be an arbitrary set and % & family of subsets of K. Using
the letters X, Y. Z, ... for subsets of R it is natural to associate with 5
a predicate ¢ » (X) which iz TRUE if and only if X & F,

(i) We shall use the letters ¢ and ¢ to denote predicates defined on the
sel of subsets of K.

W shall use the notation ¢ (X) sometimes to mean the predicate whose
value for a given X is TRUE or FALSE, sometimes to mean a binary set
function whese value is 1 or 0. When we wish to employ the two senses
in the same context we adapt the notation ri.ufﬂ for the binary function
whose value is 1 if ¢ (X} is TRUE and 0 if ¢{X) is FALSE, We will usually
use this only when there is a possibility of ambiguity, &g, to distinguish
between [ 3 <5 | = 1, which is true, and 3 <[5 = 17], which is false.

(iii} Oecasionally it will be convenient in examples to use the traditional
representation of ¢(X]) as a function of # “Boolean variables” where
no=|R|. If the elements of R are x, ---,x,, it is traditional to think of a
subset X of R as an assignation of the values 1 or 0 to x; according to whether
the point x; is in X or not, Le., “z” is used ambiguously to stand for the
ith paint in the given enumeration of R, and for the set function [x,& X7,
This notation is particularly convenient when ¥ @8 represented in the
form of a standard Boolean function of two variables. Thus = Vr is a
way of writing the set function

o) = [z EX or ;& X7

{ivl We need to express the idea that a function may depend only on
a subset of the points of K. We denote by S(4) the smallest subset S of
K with the property that, for any subset X,

#lX) = (XN 8).

We call S{g) the suppor of .

(v} Let & be a set of binary set-functions on K, We say that ¢ is a linear
threshold function with respect to 4 if Lo each member ¢ of & there corresponds
a real number o, such that, for some real number 9:

XY = [ ap(X) =07,

aE*

This 15 often written more briefly as

b= [ Lap>d].

We denote by L{#} the set of functions 4 expressible in this way.
ivi) We now introduce the central concept of order. The order of ¢ is
the smallest & for which there is a 4 satisfying
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¢ = L),

== |Sig)| Sk
where | S(g)| iz the cardinality of S(a).
Functions of order 1 appear in the literature under the name of “linear
threshold functions.” It should be noted that the order of a constant
function is zero, hence the number # in the definition of Li#) can he re-

placed by 0 (or any other number) without changing the definition of
order. Note also that the definition is unchanged if we use “=," “=." or

" instead of Y > (gssuming, when necessary, that R is finite).
(vii) o is called a moask if there 158 a set A such that

sl X)=[X2AT.

We denote this function by ¢..
In point-function notation o mask is a function of the form:

oy e Ay
where { ¥;{ is the subset A of R. In particular censtant functions are masks.
Linear Representoiion.
FroroziTion. All masks are of order 1.
Proor. For each x & A define ¢.(X) as [ xS X |. Then

ba=[ L oz |A]].

In particular the functions ¢, and ¢, are of order 1. Similarly the functions
=y, xAy, x Dy are of order 1. But the “exclusive or,” x @y, and its
complement, ¥ = v, are of order 2,

ExamMrLe (i). o,V 2V x, is of order 1:

r—":l. + Xy -'FJ:'D_I-
x, Mxa A ox, is also of order 1:
[Z 4z + 227,

nn= [+ (l—5)>1] =[x -2>0] is of order 1,
Wr =[x+ 0—x)>0] =[k— 2>~ 1], which is also x, 7 2,
is of order 1.

ExaMpPLE (ii}. x; = x;, which is
nE Vo= nxn4(l-x)il—x)=0]
=[2r =% = 2> =17
is of order 2. (Proof that it i3 not order 1 iz in §11.)
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FxamrLE (iii). Let M be an integer 0 < M < |[R|. Then the “counting
fnmcLion™

X =[] X| = M,

which recognizes when X contains exactly M points, is of order 2.

Proor. Consider the representation

SHA) =[EM - Dt (= 2 Fxx 2 M.
allv 1=F]
lur any figure X there will be | X| terms x, with value 1, and | X| (| X]| = 1)/2
terms x.%; with value 1. Then the predicate is equal to
XD =TEM 1 - [ X — | X (X -1 41— M= 0]

and the only linteger) value of |X| for which this is true s | X| = M.

Mote that the linear form for the counting function does not contain
it explicitly. Hence it works as well for an infinite space R, QE.D.

FxamPLE (iv). The functions [ | X| 2 M 7| and [[|X| = M| are of order
I because they are represented by [ Xxz M7 and [ Tx = M.

EXAMPLE (v). We can obtain an arbitrary funetion FUIX|} of the area
of a figure from the predicates used in (iv) above by writing

[
.I’Ia"l'}-.lr{ﬂ'}+:£.:i.ﬁk3 = k=10 T|X]| = &7].

The order of a function can be determined by examining its representa-
lion as a linear threshold with respect to sets of masks, To prove this we
first show

Tueorem (PosITIVE NORMAL FORM THEOREM). Every ¢ is a linear threshold
function with respect to the set of oll masks.

Froor. The well-known disjunctive-normal-form theorem for Boolearn
functions tells us that any Boolean funciion ¥{%y, -+, %) can be written
in the form (DNF)

X)) = Vuix

el
whare
'ﬂ".[x} =JIIJ}'.I.2‘--|}II"

where for each { and j, ¥, =z, or ¥y = E.
We can write this in linear form as:

X )= >0
H=t}

because, for any X, at most one term of the DNF is nonzero, Hence, we can
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replace logical “ V" by arithmetic “+." Furthermore, since numerically
%, = 1 — x;, each ¢, can be written in the form

$ilA) =z, c--x (1 - L)l —x ),
supposing that the negative terms are at the right. Multiplving this out,
we obtain an expression of the form

wilX) =382,

where Z; is of the form

Tig rom H Ly v Xy, with !ﬁu . ".--'Iln'; - |£||||;|, ”'rj:-l-

But such Z; are masks, so that ¢ iz a linear combination of masks It
follows immediately thet 3 . ;¢ is itsslf & linear combination of masks

'P = E{IEEI

where each a; is an integer and each Z; a mask. Q.E.D.

HeMaRE. The above construction shows not only that any Boolean
function is “linear” in the set of masks in the “§ = [~ Do =0 |7 sense,
but is also linear in & stronger “§ = ¥ ¢, sense. It is interesting that
this form is unique, and is therefore entitled to be called a “normal form.™
We call it a “positive normal form.” To see the uniqueness, suppose that

o= Eﬂlzd - Eﬁiri
and consider the difference

¢=raZi—-VRZ)= 2o — 8 2 -2 i

Now ¢(X) must be identically zero. To see this, consider first any set
& of one element x;, Then

#X) =Sl x)) =y xi= ey 1= 0
80 iy = (. Next, consider any two-element X = [xx;]; then
oz, x)) = LIPS R o (PNE TR ok JPRES
= Yy 1= 0
so all two-element v, ;s are zero. Similarly, by induction, all the +'s

can be seen to vanish,
The proof of the positive normal form theorem implies also the

THECREM. ¢ is of order k iff k is the smallest number for which there exist
a set & of masks salisfyving
sED=> |S(p)| =k
and
v Lig).
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ExaMrLE (vi). A “Boolean form™ has order no higher than the degree in
its disjunctive normal form. Thus

PIETE R R ST D I EE LN
so that the negations can be removed without raising order. This particular
order-3 form appears later in a perceptron that recognizes convex figures.

Using this result we develop some more examples of the use of the concept
of order.

THEOREM. If ¢, has order ), and ¢; has order Oy, then ¢, ® ¥y and
¥y = ¢y hawe order = 0, 4 0,

Proor. The idea is to multiply together the positive mask representa-
tions [(Z,9 — 80 (Z:¢ — #) > 07| to get a positive form of order = O, 4 Oy,
{Uge =" for = and * <™ for & .) This may not work in some cases where
Ly=1#8 or E;= 8. In such cases, it is always possible to replace 8, and
iy by slightly different values, algebraically independent of the coefficients
of X; and E, so that the predicates are unchanged but exact equality
never holds,

Application.

ExamrLe (vil). Since ¢"(X)=[[|X|zcM | =[|X|=M|7], we
conclude that ¢ has order = 2, the result of Example (iii).

Question. What can be said about the orders of [ ¥,/ | and [ ¢,V ¢ )7
The answer to this question may be surprizing, in view of the simple result
of the previous theorem: it is shown in §V that for any order n, there
pxists & pair of predicates ¢, and ¢, both of order 1 for which (§, A ¢)
and (¢, V' ¢3) have order > n, In fact suppose that B = A B where
A, B, and C are large disjoint subsets of K. Then ¢, = |X M A| = | XM O]
and d:=[ |[X M B| > | X C|7] esch have order 1 because they are
represented by

[ x— 2 x>0 and [ x- X x>0

HEA el gER GEC
but, as shown in §V, (¢, A+ and (¢, ¢) have high orders.

I1. Group theory of linear inequalities. In this section we consider linear
threshold functions that are invariant under groups of permutations of
the points of the base-space K. The purpose of this, realized finally in
§¥, Is to establish & connection between the geometry of B and the
guestion of when a geometric predicate can be a linear threshold function.

Ag an introduction to the methods introdueced in this section we first
consider a simple, almost trivial example. Suppose we wish to prove that
the function x,x, V ¥, %; is net of order 1. To do so we might try to deduce
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a contradiction from the hypothesis that numbers «, & and # can be found
for which

i1) vl 2) = xx, Ve = ax, + dx, =8 7).
We could proceed directly by writing down the conditions on o and g
=10, f=0=0>4
=1 x=0=x34
=0 X=1==g=4,
n=1 m=le=satg>y

In this simple case it is eagy enough to deduce the contradiction.

But arguments of this sort are hard to generalize to more complex situa-
trons involving many variables. On the other hand the following argument,
though it may be considered more complicated in itaelf, leads to elegant
generalizations, First observe that the value of ¢ is invariant under
permutation of x; and x., that is,

¥lxy xg) = iz, )
Thus
oty + fxg = 8,
aXy 4+ 01 = §;
vields
(e + 83 /2) 2y + (o + 3} /2 x> 8

by adding the inequalities.
Similarly

aX + 0% 56,
oty + A5, S §
Vields
(e 4 81/2) 2 + (o 4 8)/2) %, = 8,
It follows that if we write v for (= + §) /%, then
Wl o) = [ya +y1:>67;

i.e., we ¢can assume that the coefficients of x and x, in the linear repre-
sentation of ¢ are equal. It follows that

WX =[5|X]|>6] or []X|—a>07
(if we assume that the space X has only the two points %, and xo).
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Now consider three values of X,
Xy= A, | Xol =0, 4| X|-#=0,
K=z, [ X =1, %|X|—-8=0,
Xy=fan2:], | Xyl =2, ¥|X|-0=0.

Since X, and X; safisfy ¢, and X, does not, the first-degree polyromial
| X| — #in | X| would have o change direction twice, from positive to negatine
and back to positive as | X| increases from 0 fo 2. This is clearly impossibla.
Thus we learn something abou! ¢ by averaging it over the permutations that
leave it invariont. The method is similar to that used in Haar measure
theory, In fact, for order 1, it is the same method,

The generalization of this procedure involves consideration of Eroups of
permutations on the set H and functions ¢ invariant under these Eroups
of permutations. In anticipation of application to geometrical problems,
we recall the mathematical viewpoint from which every interesting geo-
metrical property is an invariant of some natural transformation Eroup.

Let 7 be a group of permutations of R; g G and X C K, and define

Xe= glyly=xg xEX|,
pUX) = geiX,),
F=ga = g ldge @iy = af.
Thus we define an equivalence relation of ¢'s with respect to a group G.

THE GRoUP INvARIiANCE THEOREM. Lot
(i} 7 b @ finfe group of permulations of R;
(il & be a set of predicates on R closed under G, {e, s E 4, g S G == g* = @
(iiiy ¢ be in L{¢) and invariont under G.
Then there exists a linear representation of ¢,
v=[ L .0 >0

pryt
for which the coefficients g, depend only on the G-equivalence class of ¢, ie.,
pmg ' =g =g, .
Proor. Divide ¢ into equivalence classes by the relation =g
#=0,0 - UE,

Now let ¢ =[ 3} ,coo,#(X) > 07 be any linear representation of ¢ and
choose X such that ¢(X) e, ? ,cea,o(X) =0
Sinee ¢(X) = ¢(X,), it follows that for each g= G,
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Eﬂi¢t-x‘-] = E'ﬂ"d"[-x}}'l}1
L= L=t

Since the sum of positive quantities is positive we can sum all such equations:
2 2 aet(X) >0

FEU 454

Since &= L}, &, the expression on the left can he written:

S =35 ¥ aet

pEl i=1 #Ew iml gl s
Hence

ﬁ b (E-r.-n‘{.*:]) = 0.

b T #y N EEU
Mow ohserve that the set

b= |egle Ed] = |plec | =4
because any g just permutes members of an equivalence class, Then also,
o= dyp Tt
Hence for any g
2oaggt= T oaet= 3 e

oy "E"EI_I' L]

Sao
S Ee'=E Royae= T (o)

T = #E A
Since as g runs over 7, ¢ “covers” &g, then Zlemu-j has the same

value for all equivalent ¢'s, ie, if ¢ €4, 3 ,cpa,1 depends only on i
Therefore we can denote E,Eﬂn,,-J by & obtaining:

k
2 X EelX)=0
i1 g ¥

ar
2B X) > 0,

where Eig) denotes “the eguivalence class containing ¢,"

A similar argument shows that if F a,¢(X) <0, then 2B @ X)
<0 Thus ¢=[ 3 ae=0] = ¥ fppe>07]. We shall most often
use this theorem in the following form:

CoroLLARY 1. Any function ¢, of order k has a linear representation

¥ - I_gﬂw O
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where & ix e gel of masks of degrees =2 k and o, = o, wherseer Sig) can be
transformed indo S(g°) by an element of (.

Proor, The corollary follows immediately from the theorem and the
observation that, for masks, ¢, =g &5 if and only if A = B, for some g&= 0.

CoroLtary 2. Let =@ 1) --- 1%, be the decomposition of ¢ inio
equivalence classes by the relafion =g Then if ¢ (2 tn L{¥) and & {5 closed
under G,  can be wrilten in the form

W= rE‘thitx} -‘-"’ﬂ-l
where NAX) = ||o|¢ =@ ¢(X) ||, te, NAX) iz the number of ¢ of the
i-th bype, equivalent under the group, that "fit"” the argument X.
ProoF. ¢ can be represented as

P = F‘%n.w ]
=Y 2 aye>0]

TS

=[Za L ¢>0] =[TaNiX) > 0.

CoroLiary 3. (THE TrivianiTy oF INvaRIANT PrEDICATES oF ORDER 1).
Let G be any tronsifive grogp of permulolions on B (bronsiiie means: for
every pair o, & | there is a g & (5 such that pg = g). Then the only firsi-order
predicates invariant under G are of the forms:

X)=[]X|>m],
(X =[|X| <m|, forsomem.

ProoF. Since the group is transitive all the one-point predicates ¢,
are equivalent. T'hus we can assume that

ar

LX) = [ 2 pexad > 8] lor with some other inequality sign)

ie, the coefficient o is independent of p, Bul 2 cxadn > # can be
transformed into ¥ - x4, > 8/a (for & > 0; for o = 0 a similar argument
proves the corresponding assertion). But 3 ,-xé;, = | X|. Thus order-1
invariant predicates can do nothing more than define a count on the
cardinality or "area™ of figures, In fact, an order-1 predicate is a measure,
and the order-1 invariant predicate is the Haar measure.

I11. Applications of the group-invariance theorem.
The Parity Function. In this section we develop in some detail the analysis
of the particular predicate e defined by

YranlX) = [ X] is 0dd].
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Uur interest in ¢p is threefold: it is interesting in itself: it will be used
for the analysis of other more important functions; and, especially, it

tlustrates our mathematical methods and the kind of question they enable
us to discuss,

THEOREM. Y. 15 of order |R|.

That is, to compute ypan requires at least one predicate whose support
covers the whole space H!
Proor. Let G be the group of all permutations of R, Clearly gpup is
invariant under 7,
Now suppose that ypwn= [ 3o > 0] where the ¢ are masks with
| 5ta)| = K and the o, depend only on the equivalence classes defined by = .
Since masks with the same support are identical,
o= gy = | Sled]| = | Sle)].
Thus
K
¥ean = [ 2. (ﬂ,. 2 dr) =0
fmi HEH
where #; is the set of masks whose supports contain exactly j elements.
We now calculate for an arbitrary subset X of R,
CAX) = T (X).
$EH
Since ¢ (X) is 1 if S{a) C X and 0 otherwise, C;(X) is the number of sub-
sets of X with j elements, ie.,

o = (141
)
which is o polynomial of degree § in | X|.
It follows that
K
Vean = 2o, O, (X)

J=i
is & polynomial of degree K in | X/, say PUIX]).
MNow consider a sequence

A=X,CX,C - CXg=R
of |R| + 1 nested subsets of R, and the segquence of values
Pl Xg|} =0, P(|X,|) =1, POXN) =0, P X 5] ).

This implies that P{| X |} changes direction | R| times as | X| increases from
Ute | R[. But since P is a polynomial of degree K, it follows that K — | R|.
QED,
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From this we obtain the

TreoREM. If ¢ppe Lid) and if ¢ contains only mosks, then & contains
all the masks,

Proor. Suppese, if possible, that Jpum e Lid), that & contains only
masks, and the mask whose support is A does not belong to 4.

Let fpan = [ 2 .cea, 8 > 07, Define, for any ¢, ¢*X) = X A
Clearly §£an, the parity function for subsets of A, is of order |A| by the
previous theorem,

Now consider ¢ for ¢ € &, If Sig) C A, clearly " = ¢. If Sig) is not
a subset of A, ¢* is identically zero since

S TA=8@ TXNA==sXMA)=0=>4"X)=0.

It follows that either S{g") is a proper subset of A or ¢* is identically
zerc, Let 4% be the set of masks in % whose supports are subsets of A.
Then ¢ius = [ 2 sceas s > 0], But for all ¢ = %, |Sig)]| < |A]. It would
follow that the order of ¢fu is less than |A|, which is a contradiction.
Thus the hypotheses are impossible and the thecrem follows. Q.E.D.

CoRoLLARY 1. If fpun © Li®), then & must contain at least one & for
which
| S(e)| = | K.

The following theorem, also immediate from the above is of interest to
students of threshold logic:

CoroLLARY 2. Let & be the set of all ¢ for proper subsets A of R. Then
Wran 6F Li®).

The following theorem gives a hint that cerlain functions that might

be recognizable, in principle, by a very large percepiron, might not actually
be realizable in practice because of huge coefficients.

Coejficients of the Parity Function. Suppose that we have a [ 2 a¢, > 0]
that recognizes Parity (| X| ) with maske, Let us suppose that the recognition
is reliable, e.g., that 3 a8, > 2 for odd parity, and 2 a# <0 for even
parity. If we apply the full permutation group, we obtain the same reliahle
discrimination with a set of “average coefficients” & all equal for ¢'s of
the same order. Then we obtain the inequalities

n:}E

ag+ 2o, <0} or E(':) a; > 2, if nis odd,
as+ Bag 4 3a, > 2 ) ! <0, if n is even.
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Subtracting successive inequalities, define

i3 (1) e-2()

o B[ (1) = (2) T s (7)o
£ ()
so that for all g,

(=10, >2 or [(=1)"D,-2] =0

Using these inequalities, we will obtain a bound on the coefficients ba].
We will sum the inequalities with certain positive weights; choose any
M =0, and consider

?;(':J) [~ 10— 2]= 0.
Then
$ (.ﬂ:f) (= 1D = 2:5;(":{) = gMe1
The left-hand side is
£ 5 () () - B 5 v () (¥)

Pl hmi) k=0 (=i
M . it M!
%%‘ W au (.&![i—ﬁ}!) (uw_nr)
e M! M — &)
EE L an (k[{M —'1]_:) ({i—m:w—m)

o

2

b=}

M M Mg (M — k)
=E]“tr1( )‘—”‘E ;)E—ll‘

L

k S T =k

=) au (:"f) (= 141 — 1™+

= I:-I'j.|l.,.|{— 1}“
&0 we have the

THEGREM, For each M,
{_ 1]'”“'.!{” - 2“1-.‘.
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Thess values hold for the average, so if the coefficients of each type are
nol equal, some must be even larger! This shows that it s impractical
to use mask-like #'s to recognize parity-like functions: even if one could
afford the huge number of ¢'s, one would have also to cope with huge
ranges of their coefficients!

ReMmarik. This has a practically fatal effect on the corresponding learning
machines, At least 2'% instances of just the maximal pattern is reguired
to “learn' the largest coefficient; actually the situation is far worse because
of the unfaverable interactions with lower order coefficients, It follows,
moreover that the information capacity necessary to store the set |a;}
of coefficients iz greater than that neesded to atore the entire set of patterns
recognized by fpur—that i, the even subsste of K. For, any uniform
representation of the os must allow | R| bits for each, and since there
are 27 coefficients the total number of bits required is | R| - 2'%, On the
other hand there are 2/ -7 even subsets of K, each representable by an
| R| -bit sequence, so that | K| - 2% ~' bits would suffice to represent the
subsets.

It should aleo be noted that pa 15 not very exceptional in this regard
hecause the positive normal form theorem tells us that all possible galfi
Boolean functions can be so encoded as linear threshold functions in the
get of all masks. Then, on the average, specification of the coefficients of
each requires 2'% bits.

Another predicate of great interest s associated with the geometric
property of “connectedness:™ Tts application and interpretation is deferred
to §V; the basic theorem is proved now.

The "One-in-a-box" Theorem,

THEOREM, Let Ay, ---, A, be digjoint subsetz of K and define the predicale
$lX) = IV IMIXNA| =00

i.e., there is at least one point of X in eoch A, Then if for all i, | A = 4m?,
the order of ¢ s = m.

CoroLLary. If B= A, AL)--- 1A, the order of ¢ I3 al least the
order of (| K| /40"

Froor. For each i = 1,---,m let {5; be the group of permutations of
H which permutes the elements of A, but do not affect the elements of the
complement of A,, Let & be the group generated by all elements of the
(7. Clearly ¢ is invariant with respect to 5. Let ¢ be the set of masks of
degree K or less. T'o determine the equivalence class of any ¢ & 4 consider
the ordered set of occupancy numbers

HEIT TV NER
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Then ¢, = ;¢ if, for each i, |Slp) MA|| = |S(9a) A Let &, 89, -, 0y
be the eguivalence classes,

Now consider an arbitrary set X and an equivalence class #. We wish
to caleulate the number N,(X) of members of 4, satisfied by X, ie.,

NiX) = |{slec e A\ Sw) CX||.
A simple combinatorial argument shows that

| X Ma )( | X M A ) ( | XMl )

NAX) =
i (FSidl]r"la‘-JI [-S1e) 1 Ay | Seh 171 .A wl

where

(:r} _¥y—1) - (y=n+1)

R n!

and ¢ is an arbitrary member of ;. Since the numbers | S{g) A;| depend
only on the classes ¢; and add up to not more than K, it follows that Ni(X)
can be written as a polynomial of degree K or loss in the numbers x, = | X ) 4

Nﬂ:x} = -P;{:j: =" -F't-l}'

Now let ¢ = [ 3 a,¢ > 07] be a representation of ¢ as a linear threshold
function in the set of masks of degree less than or equal to K. By the
argument which we have already used several times we can sssume that
o, depends only on the equivalence class of ¢ and write

M &
LowlX) =38 F siX) =3 5 N(X)

=l gy Je=1
A
- EIIE.I F:I.':':]l e -rxh]
1=

which, as a sum of polynomials of degree at moat K, is itself such a poly.
nomial. Thus we can conclude that there exigts g polynomial of degree
at most K,

Qlx,, -+ x.)
with the property that
FIX) = [ @y, oo x0) = 0 with x, = | X M A4,
e, that for all {, 0 = 3, = 4m°
Wxy o ma) >0 (Yidix = 0).
In @iz, -+~ 1,) make the formal substitution,
xo= (t— (2i = 1))"
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Then &ix,, -+, 1.} becomes a polynomial of degree at most 2K in £ Now
let ¢ take on the values £ = 0,1, .- 2m. By property (¢) § must be positive
for even | and negative or zero for odd ¢. By counting the number of changes
of gign it is clear that 2K = 2m ie., K =z m. This completes the proof.

IV. The and/or theorem. We have already remarked that if § = A B
I C the predicate

#lX) = [|XMA4| = | X007 s of order 1,
and stated without proof that

$X) =T |XNA|>|XNC AXNB] > XN

i not of bounded order as |R| becomes large. We shall now prove this
assertion. We can assume without any loss of generality that |A| = | H]
= |C| and our formal statement is that if ¢,(X) iz the predicate of the
stated form for | K| = 3k, then the order of ¢, — = as k— =, The proof is
similar to that used for the parity theorem. We shall assume that the order
of (¢ i bounded by N for all & and derive the contradiction by showing
that the associated polynomials would have to satisfy inconsistent condi-
tions. The first step is to set up the associated polynomials for a fixed k.
We do this by choosing the group which permutes within the sets A, B,
€. The equivalence classes of masks are then characterized by three numbers,
e, A&, | B Sie)| and | O15(8)|. The number NX) of masks
in this equivalence class satisfied by a given set X is

lANX| | B X| | O X |
mx::( .
(X) I-*lr“lﬁs‘{ﬂl) X (mmsw) “(wﬁsw)

If |S(g)| = N this is clearly a polynomial of degree at most N in the
three numbers

z=|AMX|, y=|BNX|, z=|CNX].
The group invariance theorem savs that if

Tt ]
when & is the set of masks with |S(g)| = N, then

IF'i[-l.":] L |_ E.ﬂ.'Nit_X} Ix f.'-[

where | runs over the set of equivalence classes of ¢. But o NAX) is
a polynomial of degree at most N in x, v and 2. Call it Pyix,¥,z2).

Now, by definition, for pessible values of 2, ¥, 7 (ie., nonnegative integers
= kb, Pylx,y,2) > 0if and only if £ > z and ¥ > 2. We shall ghow, through
a series of lemmas, that this cannot be true for all k. The technical details
of these lemmas are not essential for the subsequent sections.
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Lemma 1. Let Piiz,v,2) be an infinite sequence of polynomials of fived
degree n, with the property that for all positive integers x, v, z less than k,

xxzamd v=z== Pz z =0
IZzoor vE = Pz y.2 =0,

LA

Then there exists a nonzero polynomial Pix, v, z) of the same degree n with
the property that the implications (A) hold for all positive integral values
of %, ¥, 2. This follows from the following compactness argument: Write
Pulx,y.2) = 2 Cyimglx, ¥, 2)
i=
where m,(x,¥y,2) i an enumeration of the monomials in variables x, ¥
and z. We can assume 3 Cf; = 1 since the hypotheses remain true if P, is
divided by 3 Ci,. Now the bounded sequence ©,,Cyp, -, Copyee-
must contain an infinite convergent subsequence S, of the integers for which

| Cos|h = 8, | converges to a limit, say C,.

Now consider | Cis]k< S,|. There must be an infinite subsequence of
&y, say 55, on which this converges to a limit, say C,. Continuing in this
way we find a subsequence 5 = 5, of the integers and a set of numbers
Cy«-- C, such that ||k 8| converges to C; for all i =r. But then,
for k= 5, Pylx,y.2) converges to the polynomial

Pix,y,2) = ¥ C.m;(z,%,2) forall x, v,z

iml
To see that Plx,¥,z} has the required properties, choose any positive
INtegers Iy, ¥ &. For valoes of & amaller than the largest of these numbers,
nothing can be said about Pﬂlp,.]-'hi'q.]- But for all suﬁnient]:,‘ J.EJ.'EE k,
Fol%s ¥o, 20} must be nonnegative if %> 2 and »; > 2 (and nonpositive
ifxy < 2y 0F ¥y < 2). It follows immediately that Plx,, ¥, 2) is nonnegative
(nonpositive) under the same conditions. To see that P is nonzero note
that 2 cf =1,
Lemma 2. If a polynomial fla,8) satisfies the following conditions for all
infegral vafuez of o and §, hen o @5 denticolly zero:

(B a0 and §=0 == flg, @ =0,
(i) a=0or #50=flod =0

ProoF. Suppose that & polynomial of degree N, filo,d), satisfies the
conditions (B) and (C) and is not identically zero. Without loss of generality
we can suppose that

fla, ) = a®g(8) + ria, 8
where g(d) is not identically zero and rie, 8 has degree less than & in a.
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For any 8 for which g{g8) = 0, there 12 an o, > 0 such that

g’ g 18Y| = |Plag, )],

Thus flay, 5) has the same sign as o g(8), ie.. as gld) =ince of is positive.
It follpws from (B} and (C) that

A=0==g(@=0,
A< 0=gl@ =0

(The conditions (I} hold for all g0 if g(8) = 0 by preceding argument,;
if g(ay = 0, tautologously.) We now derive a contradiction by considering
separately two cases:

{abl N even, Since gig) is not identically zero, there is some g > 0 for
which gig) =0. By (D), gig) > 0. Thus o"g(8,) =0 so that for ||
sufficiently large

)

a8 + Fle, 8 > 0

i.e., fla, 80 > 0. But we are free to choose a negative value of a, e, we
can find o, fy such that

ag = 0 and  fleg, 8 >0

which contradicts (C).

(b} N odd. Choose §; <0 for which gig;) = 0; then g(5) < 0, by (IJ).
Choose negative o, as before. Then alg(8) > 0 and flop, 80 = 0, again
contradicting (C). Q.E.D.

Lesmsa 3. MNo nonzere polvnomial Plx, v, z) can =zatisfy the following
conditions for all positive integral valuwes of x, ¥, 22
x>z and ¥>z=s Plxvzz0,
Ez or yEe== Plyyz =0,
Proor, Suppose that Pix,¥.z) has these properties. Define &, 8,z
= Plz+a, 2+ 8, 2). Let M be the highest power of z in & so that
Qer, 8,2) = 2fla, §) + Ria,d,2)

where R iz of degree less than M in 2.
Now choose any o, and # for which flo,, 8, = 0. For sufficiently large
z, say 2
(a] z4 ag> 0 and 2+ § = 0,
(bh |z floe, Bod | = | R log Ao, 2ad |
It follows that
floeg, b 2 0 = Qlag, Bu. 20 2 0,

== Plag+ a0, 20+ p20) 2 0.
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Thus
a0 and Sx0= 4oy, >z, and 3+ 5 >3

= P2+ ap 2o+ Bpedo) 2 0

= flag B) = 0

and similarly ap, <0 or # < 0 == flay,f) =0. But this is true for all
gy Bp. Thus by the previous lemma, fle,8) = 0. It follows that Pix,y,2)
s of degree zero in 2, which is only possible if it is identically zero. Q.E.I,

This concludes the proof of the AND-OR theorem. It is clear that the
regson the theorem is true has to do with the algebraic geometry of the
“oecupancy’’ polynomials. If it were not for the constraints concerning
integer values of the varnables, the theorem would be an immediate con-
sequence of Bezout's theoram.

V. The “order-limited™ perceptron.

The Order of Some (eometrical Predicotes. Now we consider the problem
of computing the order of a number of interesting geometrical predicates.
As a first step, we have to provide the underlying space R with the topologi-
cal and metric properties necessary for defining geometrical figures; this
wits nol necessary in the case of predicates like Parity amd others related
to counting, for these are not reslly geometric in character.

The simplest procedure thal is rigorous enough wet not too mathe-
matically fussy seems to be to divide the Euclidean plane, E°, into sguares
as an infinite chess board. The set [ is then taken as the set of squares, A
figure X of E? is then identified with that set of elements of H—i.e., that
collection of squares—that contain al least one point of X. Thus to any
subset X of E corresponds the subset X of B defined by

X={:eR|sNX=4).

MNow, although X and X are logically distinel no serious confusion can
arise if we identify them, and we shall do a0 from now on. Thus we refer
tor certain subsets of B as “circles,” “triangles,” etc., meaning that they
can be obtained from real circles and triangles by the map X —X. Of
course, this means that near the “limits of resolution” one beging to obtain
apparent errors of classification because of the finite "mesh™ of K. Thus
a small circle

TTTT

will not look very round.
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When it is necessary to distinguish between £ and F we will say that
two figures X, X" of E* are in the same R-tolerance class if X = X', In
thie we follow the general mathematical approach proposed by E. C. Zeeman
for trﬁating this kind of problem. To avoid inessential questions of how
the group-invariance theorem applies to infinite groups, assume below
when necessary that f has the toroidal topology.

We begin by listing some geometric predicates of rather small order.

(a) k=1. When we say “geometric property” we mean something that
is &t least invariant under tranglation, usually also invariant under rotation,
and often invariant under dilatation. The first two invariances combine
to define the “congruence” group of transformations and all three the
“similarity™ group, For & = 1, just the translation group suffices for the
Group Invariance Theorem to tell us that all coefficients are equal, hence
the only patterns that can be of order | are those defined by a single cut
in the cardinality or area of the set:

=[|X|=AT or ¢=[|X| <A

Mode: IT translation invarianee is nol required, then order-1 can computs
other properties, i.e., concerning moments about parficulor points or axes,
However these are not “geometric.”

(b} &= E. For k= 2 things are more complicated. As shown in §1 it
is possible to make s double cut in the ares of the set, hence we can do the
counting trick, and recognize those fgures whosse areas are

v=T4, < |F| <A,

{In fact, in general we can always find a function of order & that recognizes
the sets szatisfied by any & inequalities concerning their cardinality.}] MNow
consider only the group of transglations and masks of order 2. Then two
masks X % and x{x; are equivalent if and enly if the difference wclors

x — % and 1 — 1

are equal. Then, with respect to the tranglation group, o fgure is completely
characterized (up to k= 2) by its “difference-vector spectrum,” defined
as the sequence of the numbers of pairs of points separated by each possible
directed distance. The two figures:




128 MARVIM MIMSKY AMND SEYMOUR PAPERT

have the same difference-vector spectra, hence no order-2 predicate can
make a classification which is both translation invariant and separates
these two figures, Similarly,

Z Z

e
N

NWAVNAY ™ %‘*ﬁ%ﬁ“//f@
N\

)

%N\

are indistinguishable, while

Z\
/

/)

L~ .l .'.._,- - .I'I.d
ZNNEN

N

N

have different difference-vector spectra.

If we add the requirement of invariance under rotation, the last pair
above becomes indistinguishable, for the spectra now relevant classify
together all differences of the same length, whatever their orientation.’
An interesting pair of figures rotationally distinet, but still indistinguishable,
for & =2, is the pair

2 SEs

which have the same direction-independent distance:between - point-pair
slatistice. There is an interesting theoretical direction here, but we will
not stop to look into it. Many interesting proposals for pattern recognition
machines are related (o the theory of these geometric spectra. The classic
paper of Bledsoe and Browning |1] is related to this, as is the work on
“integral geometry"' of Movikoff [4].

fch k=3, As k increases, the class of realizable discriminations grows,

I

I ninte that we did not allow reflections, yet these reflectionally cpposite ligures are now
confumed! One should be coutiouws about using “intuition” here. The thesry of rotaticnal
invarianee requires careful atiention to the effect of the discrete retinal approximatian,
bt con presumably be mode consistent by application of Zeeman's methods; for the dilata.
tin “group,” there are zerious diflicoliies
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and cur detsiled understanding wanes, It is interesting to discover that
the predicate

#1X) = [ X isasingle, solid, convex figure |
iz of order =3, as noted in the Introduction, because
$oomvex(X) = [ 2 [e€ X and b€ X and midpoint (a,b) ¢ X7 <17

mlad

ie of order 3. Presumably this predicate cannot be realized with order 2.
It is not difficult to show that the set of solid rectangles (with axiz parallel
1o the mesh of K) can be recognized by a predicate of order 3. This is true
also for the set of hollow rectangles (with borders one square thick), It
is much more difficult to show, but true, that the set of hollow sguares has
order three! Intuitively one might suppose that at least order 4 is reqguired
to insure equality of side lengths,

Another example of a predicate that can be realized with & = 3, for
any ®, ia

[ the points of X are collinear, and broken into
not more than n segments |.

{d} & =4, Using the fact that any three points determine a circle, we
can make & perceptron with masks of order k = 4 for the following predicates:

w(X) = [ X isthe perimeter of a complete circle | .
Froor.' Define, for all concyelic quadruples of points in K a, b, ¢, d
tua(X) = [2aE X and b X and e X and dg X 7]

and then realize § as

= |_1'"_'__d¢.,|..-=: 1.

Many other curious and interesting predicates can be shown by similar
arguments to have small orders, One should be careful not to conclude
that this means that there are practical conseguences of this, unless one
iz prepared to face the fact that

{a) large numbers of ¢'s are required, of the order of B*°" for the examples
given above,

{b) the threshold conditions are sharp, s0 that engineering considerations
may cause dificulties in realizing the linear summation, especially if there
i any problem of noise, Even with simple square-rool noise, for k=3
or larger, the noise grows [aster than the retinal size.

¥ An alternative method is to integrate the curvature of line elements. This lends to inter-

ssting questione about the precksion of glebal Tonetkons that can be approzimatsd by sum-
mation of local elements with a given precision. Curvature reguires order 4, in a sense. The
predicate defiped here sdmits & few uninteresting exceplions,
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tch a very slight change in the pattern-definition destroys the recog-
nizahility.
Furthermore, in most cases there will be more efficient machines, for the
aame amount of hardware, to realize these rather simply-defined patterns.
Low-order recognition has often the character of a “trick,” and one cannot
generalize freely. The AND-OR order theorem tells us that some simple
relations between simple properties of figures can be prohibitively hard
to recognize,

VI. Connectivity: A peometric property with unbounded order, We define
eonnectedness s follows:

Two points of B are adjocent if they are sgquares (in the map F— F)
with a common edge. A figure is connected if, given any two points P, P,
of the figure, we can find a path through adjacent squares from P, to P

TueoreM. The predicate
¥iX) = [ X is connected )
has arbitrarily large orders as | R| grows in size.

Froor. Suppose that (X) could have order < m. Consider an array of
(2m + 1) % 4m® adjacent squares of B arranged in 2m + 1 rows of 4m’
squares each. Let Oy be the set of points shaded in the diangram bhelow;

X R
row By E@'n w*IE Ly

NN

[ ] "

e o
e

row Hy fy

N NN

Le., the array points whose row indices are odd, and let 7, be the remaining
squares of the array. Let % be the family of figures obtained from the
figure G, by adding subsets of G,. It is clear that if Fe ¥t is of the form
b/ F,, where F, C G,. Now F will be connected if and only if itz F, con-
tains at least one square from each even row; that ig, if the set F, satisfies the
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“one-in-a-box"” condition {see end of §3), The theorem then follows from
the One-in-a-Box Theorem.

To see the details of how the One-in-a-Box Theorem is applied, if it is not
already clear, congider the figures of family % as a subset of all possible
figurez on F. Clearly, if we had an order-k predicate that could recognize
connectivity on K, we could have one that worked en % namely the same
predicate with constant zero inputs to all variables not in the small array.
And since all peints of the odd rows have alwavs value 1 for figures in 5
this in turn means that we could have an order-k predicate to decide the
ane-in-a-box property on set ; namely the same predicate further re-
stricted (o having constant one inputs to the points in . Thus each Boolean
function of the original predicate is replaced by the function obtained by
fixing some of its variables to zero and one; this operation can never increase
the order of a function. But since this last predicate cannotl exist, neither
van the first.

An Example., Consider the sgpecial case for £ =2, and the equivalent
one-in-a-box problem for a G-space of the form

NN

‘ -

o o

ZNZN

n which m < 3 and there are just 4 squares in each row. Now consider
a ¢ of degree 2 we will show that it cannot characterize the connectedness
of pictures of this kind, Suppose that ¢ = [ ¥ as > 6| and consider the
equivalent form, symmetrized under the full group of permutations that
interchange the rows end permute within rows.” Then there are just three
equivalence-classes of masks of degree = 2, namely:

Ei.ngjlﬁ WEHLE'- ﬁ'll = X,
point-pairs:  ¢f' = 5z, (x, and z, in same row),

point-pairs: Y = x,x; (x; and a in different rows);

H i -
Mute that this is oot the same Erovp ussd in proving the general theoram,
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hence any order-2 predicate must have the form
(1) ¥=ea NUX) + o NUX) + a2 NHX) =0

where N', N*, and " are the numbers of point seta of the respective types
im the figure X.

Mow consider the two Hgures:

o

=

SEN

JI.'L - "Ti
In each case one counts:

N'=6 N'=8 Ni=g

hence the form (1) has the same value for both figures, But X, is connected
while X, is not! Note that here m = 3 so0 that we obtain a contradiction
with |A4;| =4, while the general proof reguired |A;| = 4m*= 36. It is
known also that if & = &, we can get a similar result with | A;| = 18,

The case of k=2, m=3, |A;] =3 is of order 2, since one can in fact
cxpress the connectivity predicate for that space as

po= [ NUX)+ NB®(X) — 2NX) = 4.

Cut-wise Connectivity. It should be observed that the proof of the previous
theorem applies only to a property of connectivity in its classical sense
but to the stronger predicate defined by:

A figure X is “cutwise disconnected” if there is a straight line [ such that:

F does not intersect L and does nof lie entirely io one side of L.

T'he general connectivity definition would have “curve” for L instesd of

“etraight line,” and one would expect that this would require a higher
order for its realization,
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Helations Helween Percepirons, The study of the order of predicates is
often facilitated by the reduction of & given predicate to another simpler
one, Although we do not have a satisfactory theory of any class of reduc-
tions, or even o clear encugh insight into the nature of the relations which
might play a role analogous to “homomorphism,” “gquotient” and so on
in more developed areas of mathematics, the following examples are waeful
in particular applications and indicate an interesting area for future research.

{a) Let us say that a perceptron system, P, is defined by the basic set
R and a set ¢ of predicates on subsets of K. A second perceptron system,
P, is o subperceptron system of P if the basic set R s a subset of B and
if ita set of predicates ¢ ig that obtained by relativising the members of
¥ to f°, Le., all predicates ¢ = ¢ satisfy

XiTR =i g (X)) =(X) for some =4

and all predicates ¢ satisfying this condition are in 4. Clearly the order
of any predicate of the form ¢ for P’ is at most that of ¢ for P

i{b) lsomorphism must be given the following natural sense: Let P be
defined by K and & and P by B and ¢°. Then an isomorphism, [, is an
igomorphic map f: B— R of the sets B with the property that for each
@i @ there is exactly ome ¢ & sabislving ¢{z] = ' (f(z}) (where [f(x)
~lpER|IgE R fla) = p ).

[¢] P is obtained from P by a cellapsing Epfmtmnf if f iz & map from
points of K to disjoint sets of K, ie.,

pER == fip) CR,
p#q==fiplfla) = A

A predicate ¢' on H” iz obtained from a predicate ¢ on K by the collapsing
map [ if ¢ (X') = @ (f(X)), for x° C R

TueorEMm (Covvapsing Tueorem). If [ 2 a collopsing map from R fo
R and ¢ is obtoined from a predicate ¢ by f. then the order of ¢ is not greater
than that of §.

Proov. Let ¢ = [ 3 ,a,¢ > 0| where & is the set of masks of degres
less tham k& on K. Mow for any X R°,

X = (LX)
1) = Tagalfix)) =07,
L]
We next observe that (1) remains true if & is replaced by the set & of
masks ¢ for which sia) C (R, for of
glad L AETY,  0AX D =0 Torall X' R
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MNow for 4 £ ¢ we have

sie) CLI| fipd|pE R,
in fact
ela) C LAY Flp) Msle) = al.
Thus,
X el flp)risle) = A
= JIX" )Y 2 LAR | Fipd msied = 4] Dsie)

bey XD p|fipdmisie) = A} == fIX7) Dsia) == #(f(X°)). On the other
hand, if ¢(fiX’)}, ie., fIX") S2is), it follows that

flp)Msig) w A =2 pE X

since f{ p) (1 flg) = Aforp » g. Thuself(x')) = [ X | p| fip) Msie) =47,
In other words ¢{fix')) is & mask on B with support

Pl e riaie) = Al
But since the sets of the form f{ p) are disjoint, for different p, it follows that

[ el fiplmisla) = al| = |sia)| < &

Going back to Equation (1) we see, then, that ¢ is represented as a linear
function of masks of degree less than k. Q.E.D.

Huffman's Construction for ¢_... We shall illustrate the application of
the preceding concept by giving an alternative proof that .. has no finite
order, based on a congtruction suggested to us by [ Huffman.

The intuitive idea is to construct a switching network which will be
connected if an even number of its n switches are in the “on” peasition,
Thus the connectedness problem is reduced to the parity problem. The
network is shown in the diagram for n = 3.

X, %, e
o - X £y X3 B
x5 i 3
bra— Xy I, Fa— —s.]

The interpretation of the symbols x. and T, is as follows: when %; 15 in the
“on” position contact is made whenever x, appears, and broken whenever
x, appears; when x, is in the “of" position contact is made where I, appears
and broken where 1; appears. It is easy to see that the whole net is con-
nected in the electrical and topological sense if the number of switches
in the “on" position iz 0 or 2. The generalization to n is obvious:
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la) List the terms in the classical normal form for ¢p considered as
a point function, which in the case & ewn can be written:

VorrlE o %) = BR BV GEE T, 5 Voo Vi

(b} Translate this Boolean expression into a switching net by interpreting
conjunction as series coupling and disjunction as parallel coupling.

l¢) Construct a perceptron which “looks at"” the position of the switches.

The reductive argument, in intuitive form, is as follows: the Huffman
switching net can be regarded as defining a class % of geometric figures
which are connected or not depending on the parity of a certain set, the
set switches in “on” position. We thus see how a perceptron for ¢, on one
sot, B, can be used as a perceptron for Jp.w on a second set K. Az & per-
ceptron for gpug, it must be of order at least | R'|. Thus the order of Yoon
must be of order | R*|. We shall use the collapsing theorem to formalize
this argument, But before doing so we note that & certain price has heen
paid for its intuitive simplicity: the set B is much bigger than the set R,
in fact | K| must be of the order of magnitude of 2/ sc that the best result
to be obtained from the construction is that the order of ¥, must increase
with | R| like log| R|. This gives a weaker bound, log|R| compared with
| B|'"7, if we wish to estimate the order.

Connectivity on @ Toroida! Space |R|. Our earliest attempts to prove
thist Yoomeees has unbounded order led to the following curicus result: The
predicate §ome 0N an 28 ¥ 6 torsidally connected space | R| has order
& n. The proof is by construction: consider the space

M I (===
N i Wjaﬁ',
EH!!| Mﬁ*‘m "_“_Jir
—1 b I||!!: _.l'r{[_

in which the edges ¢,¢ and [, f are identified. Consider the family of subsets
of B that satisfy the conditions:

(i) All the shaded points belong to each X & 5

{ity For each X & % and each i, either both points marked a*' or both
points 5" are in ¥, but no other combination: are allowed.
Then it can be seen, for each X & 5 that X is either one connected figure
or X divides into two separate connected fgures. Which case actually
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occurs depends only on the parity of |{ije"' & X ||. Then using the Caol-
lapsing Theorem and the order (¢pap) = | K| theorem, we find that .,
has order | R|/12.

The idea of this proof came from the attempt to reduce conmectivity to
parily directly by representing the switching diagram:

B R =T
~_ N
b— 1_'_"""-,_ __| ¥
“'I.IFI- "dml. I'IIJJ'!l"

If an even number of switches are in the “'down’ position then a is connected
toa” and b to b, If the mumber of down switches is odd, a is connected Lo
b and a” to b, This diagram can be drawn in the plane by bringing the
vertical connections around the end; then one finds that the predicate
| @ is connected to @' has for order some constant multiple of | B|. 1f we
put the toroidal topology on R, the order becomes = constant times | K| ;
this is also true for a 3-dimensional nontoroidal K. Because of these results,
we conclude that the order ~ |R|"? obtained for e i8 too low.

ADDED IN prROOF: We have since shown that the order is at least ~ | |12
in the plane

Some Gther Geometrical Predicates. A number of other important geometric
predicates that almoest certainly have unbounded orders are:
1. Symmetry: [ X is a symmetric about some line in the plane.]"
Z, "Twing": [ X consists of two disjoint congruent subfigures, ]
3. Concentricity: [ X contains an interior hole.]
Curiously enough, the predicate

["X has a single connected comparent | W ["X contains a hole ]

hes order 2. This can be shown by a construction using the Euler relation,
(Holes = 1 + Edges — Vertices — Faces), even though each separately has
unbounded order.

VIL. Conmectivity and serial computation. It seems intuitively elear that
the reason that the abstract quality of connectivity cannot be captured
by a machine of finite order iz that it has an inherently serial character:
one cannot conclude that a figure is connected by any simple order-

But, if & particuiar axis line iz chosen in advencs, then only order 2 is requined !
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independent combination of simple tests. The same is true for the much
simpler property of parity. In the case of parity, there is a stark contrast
between our “worst possible” result for finite-order machines (8111} and
the following “best possible” result for the serial computation of parity.
Laet xy, x5, - -, x, be any enumeration of the points of K and consider the
following algorithm for determining the parity of | X|s

START: setitod
EVEN: addltoi

Ifi = | R| thenSTOF; parity is EVEN

If 2; = 0, go to EVEN; otherwise go to ODD:
QDI gdd 1 too

Ifi = | R| then STOP; parity is ODD

If x; = 0, go to ODD; otherwise go to EVEN:

where “go to o™ means continue the algorithm at the instruction whose
NAMe s o.

Now this program is “minimal” in two respects: first in the number of
compulation-steps per point, but more significant, in the fact that the
PrOgram requires no temporary storage-place for partial information ac-
cumulated during the computation, other than that required for the
enumeration variable 1. {(In a sense, the process requires one binary-digit
of current information, but this can be sbsorbed |as above] into the
algorithm-structure,)

This suggests that it might be illuminating to ask for connectivity:
how much storage is required by the best serial algorithm? The ANSWET, A8
shown below, is that it requires no more than about 2 times that for storing
the enumeration variable alone! To study this problem it seems that the
Turing machine framework is the simplest and most natural, because of
its simple uniform way of handling information storage.

A Serial Algorithm for Connectivity. Connectivity of a geometric figure
X is characterized by the fact that between any path (p,gl of points of
X there is a path that lies entirely in X. An equivalent definition, using
the enumeration x,, -+, x5 of the points of K is: X is connected if and
only if for each point x; after the first peint in X, there is a path to some
%;in X for which i > j. (Proof: by recursion, then, each point of X is con-
nected to the first point in X.) Using this definition of connectivity we can
deseribe a beautiful algorithm to test whether X is connected. We will con-
sider only figures that are “reasonably regular”—to be precise, we supposs
that X is bounded by a number of oriented, simple, closed curves so that
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for each point %, on & boundary there s defined a unique “next point”
x;- on that boundary., We choose x- 1o be the boundary point (o the lefl of
x; when facing the complement of X. We will also assume that points x,
and x,,, that are consecufioe in the enumeration are odjocent in K. Finally,
we will assume that X does not touch the edges of the space K,

START: Set i to0 and go to SEARCH

SEARCH: Add1tod Ifi = | B[, Stop and print “X s NULL"
If x; = X then go to SCAN, otherwise go to SEARCH.

SCAN: Add Lo i 1T = | R|, Stop and print “X (s connected.”
Ifx, =X orx & X goto SCAN, otherwise
Set ) tof and go to TRACE,
TRACE:  Setjtoj”
Ifj = 1, Stop and print ** X (s disconnected.”
1fj = i, go to TRACE.
If 7 = i, go to SCAN.

Notice that at any point in the computation, it is necessary to kesp track
of the indexes of just the two points x, and x,.

Analysie, SEARCH simply finds the first point of X in the enumeration
of K. Once such a point of X is found, SCAN searches through all of R,
eventually testing every point of X. The current point, z;, of SCAN =
tested as follows: T £, s not in X, then no test iz necessary and SCAN goes
on to X, . 1f the previeus peint x,_; was in X (and, by induction, is presumed
to have passed the test) then x;, if in X, is connected to x,_; by adjacency,
Finally, if ;= X and £_, & X, then x; s on a boundary curve B, TRACE
circumnavigates this boundary curve. Mow if B is a boundary curve it is
wither (1) an exterior boundary of a previcusly encountered component
of X, in which case some point of B must have heen encountered before
or (i} B iz an interior boundary curve, in which case a point of B must
have been encountered before reaching z,_, which iz fnside B or (iu) B is
the exterior boundary curve of a never-before-encountered component of
X, the only case in which TRACE will return to x; without meeting an x,
for which § < i, Thus SCAN will run up to { = | K| if and only if X has a
single nonempty connected component.

Mote that we can eowrd the number of components of X by introducing
K, initially zero, and adding 1 to K each time TRACE reaches the { =
exit. Wote also that the algorithm is quite efficient; the only points examined
more than once are some of the boundary peints, and none of them is
examined more than three times (see figure below],
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= y

ey Boundary points read
by TRACE

ot Boundary points read
by SCAN

The Turing Machine Version of the Connectivity Algorithm. It is convenient
to assume that K is a 2% % 2" square array. Let 1, ---, %52 be an enumera-
tion of the points of K in the order

1 241 --- (2"=1)2"+1
2 42 ... 2T-12"42

2o2.2" ... 0. 2E

This choice of dimension and enumeration makes available a simple way
to represent the situation to a Turing machine. The Turing machine must
be able to apecify a point x, of B, find whether &= X, and in case 1, 15 &
boundary point of X, find the index ;* of the “left neighbor” of x. The
Turing Machine tape will have the form

al semas J’_ seme e |Jd| com- e | K

where - - r - - denotes an interval of n blank squares. Then the intervals
to the right of I, and [, can hold the x and ¥ coordinates of a point of K.
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We will suppose that the Turing machine is coupled with the outside
world, i.e., the figure X, through an “oracle” that works as follows: certain
internal states of the machine have the property that when entered, the
resulting next state depends on whether the coordinates in the ! {or J)
intervals designate a point in X. It can be verified, though the details
are tedious, that all the operstions described in the algorithm can be
performed by a fixed Turing machine that uses no tape squares other than
those in - - - -" intervals. For example, "i = | R|™ if and only if there
are all zeros in the - - n - "5 following I, and [,. “Add | to " is equivalent
to: “start at oJ, and move left, changing 1's to 0's until a 0 is encountered
and changed to 1 or until I, is met. The only nentrivial operation is com-
puting ;* given j. But this requires only examining the neighbors of x;,
and that is done by adding + 1 to the J, and J, coordinates, and consulting
the oracle,

Since the Turing machine can keep track of which “- - n . -™ interval
it is in, we really need only one symbol for punctuation, so the Turing
machine can be a 3-symbol machine. By using a block encoding, one can
use a Z-gymbol machine, and, omitting details, we obtain the result:

THEOREM. For any « there is a 2-symbol Turing machine that can verify
the connectivity of a figure X on any recangular array R, wsing less than
(2 + ¢} logg| R| squares of tape.

For convexity there is a similar procedure that makes three tests:
i. X is not disconnected by any vertical line that does not intersect X,
ii. The intersection of X with any vertical line is 8 connected segment.
iii. The outer boundary of X does not change the =ign of its curvature.
A detailed construction shows that each test requires only one index
point, so that

TueEoREM. For any « there is a 2-symbol Turing machine that can verify
the convexity of a figure X on any rectangular array R, using less than
(1 + ¢} loge| B squares of tope.

This last result is certainly minimal since logy R squares are needed just
to indicate a point of K, and all points must be examined. We are quite
sure that the connectivity algorithm is minimal, also, in its use of tape,
but we have no proof. In fact, we do not know any method, in general,
to show that an algorithm is minimal in storage, except when information-
theoretic arguments can be used, Incidentally, it is not hard to show that
[1X] is prime | requires no more than (2 + «) logy| B| squares (and pre-
sumably needs more than (2 — ) log,| R ).

We do not definitely know any geometric predicates that require higher
orders of storage, but we suspect that in an appropriate sense, the topological
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equivalence of two figures (e.g., two components of X) requires something
more like |R| than like log| B| squares. There are, of course, recursive
function-theoretic predicates that require arbitrarily high, indeed non-
computable, orders of storage, but none of these is known to have straight-
torward geometric interpretations.

VIIIL. Multi-layer percepirons. We have found a number of limitations
of perceptrons, as defined above, and we have suggested that these may
point toward as yet unknown theorems about parallel machines in general.
On the other hand one suspects that some, at least, of the results above
are not 80 general, and might not survive minor relaxations of the definitions.
One direction of generalization that seems important is that of relaxing
the constraint that the ¢'s be simply weighted and added. We have not
found any particularly enlightening generalization on the lowest level— B,
of replacing addition by an arbitrary commutative operation. An easier
direction is to consider compositions of perceptrons. The remainder of
this section explores some kinds of composite perceptrons. Unfortunately
we do not understand them very well, so this section is more comcerned
with problem-posing than with problem-solving.

Gamba Mochines, Consider functions of the form

r;.ﬂfl_ ‘?u”:, e ﬂ'_l:—| = I'_i.

This form was proposed and realized in & series of machines built by A,
Gamba [2]. It is essentially an order-1 composition of order-1 perceptrons,
and is of interest to us for 8 number of reasons:

(i} The parity problem is solved neatly hy

I'ihll"l"ﬁ.",x.-:-i‘lbﬂ"l-

Thus enly [R| functions are needed, each itself of order 1 in the |x}. In
fact, any predicate f(|X|) that depends only en the area |X| can be
realized, as

| B]
fUX]) = flo) + EF 2xm i G+1) = FU.

The problem that led to our formulation of the AND-OR theorem also
is solved neatly:

r EI—I%:EI}H‘T+|_EJ:—ZI}!}-I =27

e A 8 =S
ig 1 if and only if |XMA|>|XNC| and [ XM B| = | XA |. This
might suggest that this class of machines might transcend the other kinds
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of limitations we have found for machines of finite-order.’

We are quite certain that this impression is misleading; that the deeper
Beometric properties are still outside the reach of this kind of “2-layer™
perceptron. The inclusion of AND and OR iz due to the Z-layer construction;
any Boolean function is obtainable, in such a manner, through its normal
form, but for most functions there will still he too many terms for practical
interest. The [ | XM A| > | XM C| 7] type of predicates are within reach
because they are simple area functions and hence fit precizely the inner 3 ay
first-order predicate forms. In fact, any class % of figures can be recognized
by a Gamba-machine because

I_E I"Z-qulxlj =07
i X ¥ =X

realizes it. But, this general form requires a special “Gamba-mask” for
each X & . Although the above examples show that in special cases
more economical representations are possible, this is not true in general
(s one can see by considering the number 2 of possible functions). In
particular we conjecture, for example, that for the Connectivity Predicate,
the machine would require a number of masks of an order approaching
the number of simple-closed-curves in K. Even for convexity, we doubt
that that predicate can be realized with gignificantly fewer than the number
of #'s needed for the order-3 1-layer machine.

(ii) In spite of its apparent simplicity, analyais of the geometric predicate
problem for Gamba machines appears to require methods quite different
from those we have used, First, because of the arbitrary order-1' predicate
permitted in the inner sum, the notion of order does not seem to apply,
and theorems must concern restrictions on the numbers of terms. Heeond,
we have not found a way to carry the group-averaging methods into the
mner a; coefficients, g0 that we cannot use the techniquea that come from
the group-invariance theorem. It is difficult to see how to analyse other
multi-layer and composite perceptrons until this simple case is better
understood. How much weaker are the machines with ay >0 or those
with all # = 0" We have no characterization of what they can do.

{iii} The Gamba-machine is of considerable practical interest because
of the possibility of realizing the inner, and even the outer, sums by in-
expensive, highly parallel optical methods. Using coherent light and properly

"Note that the Gamba-machine can hove order as large as | K|, in the {z;]. If the inner
predicate threshold were removed then, because

ZaZen= % (Ssm)

ek would have merely sm order-1 function in the [}
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prepared photographic transparencies, one can realize each inner sum {even
with complex coeflicients!) with a picture p; whose density at point , is .
By shrewd optics, one can even do this (with fised p,) for all translations
of the source pattern X. Because of these technological possibilities it is
impartant to have n better theory; we expect that the result will be favorahle
e problems like recognition of printed characters, but still very poor for
the maore abstract properties like detection of connectivity, symmetry,
topological equivalence, and the like,

IX. The diameter-limited perceptron. In this section we discuss the power
and limitations of the “diameter-limited” perceptrons: those in which
each ¢ can see only a circumseribed portion of the retina K.

We consider a machine that sums the weighted evidence about a picture
obtained by experiments #, each of which report on the state of affairs
within a circumscribed region r; of diemeter less than or equal to some length
D). That i, Diameter (S{g)) < D. We will suppose that 7 is uniform over
the ¢°¢ of the machine (each actual region that affects a ¢, can be smaller,
but not larger). We suppose also that in a practical sense [ is small com-
pared with the full dimensions of the space R. That is, ) should be small
enough that none of the #'s can see the whole of an interesting figure (or
else we would not have an effective limited-diameter sitwation, and there
would be ne interesting theory) but I should be large encugh that a ¢, has
@ chance to detect an interesting “local feature” of the figure.

We will consider first some things that a diameter-limited perceplron
can recognize, and then some of the things it cannot.

la} Blank picture, or black picture. A dismeter-limited perceptron can
tell when a picture is entirely hlack, or entirely white: suppose that the
set of ¢.'s is chosen to cover the retina in regions, that may overlap, and
that we define ¢, to be zero when all the points it can see are white, other-
wise its value is 1. Then 3 ¢, = 0 if the picture has one or more black points,
and not il the picture is blank. Similarly, we could define the ¢'s to be 1
when they see any white point, 0 otherwise, thus distinguishing the all-
black picture from all oihers.

For later examples, it s important here to notice why these patierns
can be recognized: it is not that any ¢-unit can really say that there is
strong evidence that the figure is all-white (although it has a slight cor-
relation with this); but any ¢ can definitely say that it has conclusive
evidence that the picture is not all white. Some interesting patterns have
thiz character; that one can reject all pictures not in the class becanse each
must have, somewhere or other, a local feature that is definitive and can
be detected by what happens within a region of diameter [0,

{b) Area cuts, We can distinguish, for any number 5, the class of figures
whose area is greater than 5. To do this we define a ¢; for each point to
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be 1 if that point is black, (0 otherwise. Then 2 x> 8 is a recognizer for
the class in question. {One can do slightly better: if the ¢'s look at regions
of area A, then one can recognize this pattern by using only of the order
of (RlogA)/A units.)

le) MNonintersecting lines, One can say that a pattern is composed of
nenintersecting lines if, in each small region, the pattern is composed of
separate line-segments, or blank. Then, if we make each ¢ have value zero
when this condition is met, unity when it is not, then 2o¢ = 0 will reject
all figures not in the class.

ld) Triangles. We can make a diameter-limited perceptron recognize
the figures consisting of exactly one triangle (either solid or outline) by
the following trick: We use two kinds of #'s: the first has weight + 1 if
its field contains a vertex (two line segments meeting at an angle), other-
wise its value is zero. The second kind, ¢", has value zero if its field is
blank, or contains a line segment, solid black area, of a vertex, but has
value + 1 if the field contains anything else, including the end of a line
segment. Provide enough of these ¢'s g0 that the entire retina is eovered,
in nonoverlapping fashion, by both types. Finally assign weight 1 to the
first type and a very large positive weight W to those of the second type.

Then

El;ﬁ. - H"IE 'F'i‘ < 4
will be a specific recognizer for triangles. (But also the null-picture is
accepted.) Similarly, by requiring that the first kind of unit recognize right-
angle vertices, the machine can be made to recognize the class of rectangles
(setting the threshold to be < 5).

Note that this does not generalize to a very wide clazs of geometric
recognition abilities. The triangle and rectangle cases are rather peculiar;
the triangle because it is the simplest figure that has true vertices. The
rectangle can be recognized because it has four equal angles; the system
cannot be specialized to recognize, for example, exactly the squares. It
5 interesting, in view of the limitations we will establish ghortly, to see
why these patterns can be recognized by the diameter-limited machine:
a rectangle is the only figure that has four or fewer right angles and no
free line ends, ete.

le) Absolute template-matching, Suppose that one wents the machine Lo
recognize exactly a certain figure X, and no other. Then the diameter-
limited rmachine can be made to do this by partitioning the retina into
regions, and in each region a ¢-function has a value 0 if that part of the
reting iz exactly matched to the corresponding part of X,, otherwise the
value iz 1. Then

Lol

if and only if the picture is exactly X,.
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Note, however, that this scheme works just on a particular ohject in a
particular position. It cannot be generalized to recognize a particular object
in any position {or even, in general, in two positions). In fact we show
in the next section that even the simplest possible figure, namely one that
congists of just one point, cannot be recognized independently of position!

(f) Convexity, The remarks in §5, Example ¢, footnote apply to the
diameter-limited case.

Limitations of Diameter-limited Pereepiron. Now we consider some of
the basic limitations of the diameter-limited perceptron, by exhibiting and
analysing some patterns thev cannot recognize,

(g} The figure containing one single black point. This is the fundamental
counter-example. We want a machine

Eﬂ:ﬁﬂ =

to accept figures with area 1, but reject figures with area 0 or area ETEALET
than 1. Clearly this can he defined by two area cuts {i.e., area > 0 AND

area < 2), but it cannot be realized by a linear threshold funetion with
the area-restriction,

T'o see that this cannot be done, suppose that f#:f. o] and & have been
selected. Present first the blank picture, Xy Then, defining fIX) = 5 a8,ix)
we have j{X,) < 5. Now present a figure, X, containing only one peint, x,.
We must then have

LX) 2 6.

The change in the sum must be due to a change in the values of some of
the ¢'s. In fact, it must be due to changes only in ¢'s for which x & Sigl,
gince nothing else in the picture has changed. In any case,

(1} FIXD) — FlX) = 0.

Now choose another point x, which is farther than D) away from x,. Then
ne Flg) can contain both £, and 1. For the figure X containing only x,
we must also have

(2 AX) =F a2 0.

MNow consider the figure X, tontaining both x; and x,, The addition, to
Xy, of the point 1, can affect only ¢'s for which & S(g), and these are
changed exactly as they are changed when the all-blank picture X, is
thanged to the picture X,. Therefore

M) = fIX3) + [FIX) - X))
and by (1) and (2},
flX) =6,
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but we require that
flXy) =0

REmank. Of course, this is the same phenomenon noted in the introdue-
tion to §11.

(h] Area segments. The diameter-limited perceptron cannot recognize
the class of figures whose arens A lie between two bounds 4, = A = A,

FrooF. This follows from the method of (a) above, which is a special
case of this, with A, = 1 and A; = 1. But using the method of §I, Example
iwviil, thiz recognition is possible with order 2 il the diameter-limitation
i5 Telaxed.

(i) Connectedness, The diameter-limited perceptron cannot decide when
the picture is a single, connected whaole, as distinguished from two or more
disconnected pieces.

Froor, Consider the four pictures

| =
|-\, - o |.a-\. . T

I 5 P P P i i oy ol ey
LS § I b
I | 1 I || d 1 1y B0 s 1 1 1 - |
_r e — . _
| i
R ITY Bra i (i N U I
LI p i ] J W Loy L [ PR
L q v 5 W f W g - | i . [
-
e i
Xoa Ko Ky £

and suppose that the diameter I is of the order indicated by the dotted
circle. Mow figures Xy and X, are connected, but X, and X,, are dis
connected. Suppose that there were a set of ¢'s and «'s and @ such that

lE-":'l"l't.lx.lill:l E ﬂ.
lZ'l:'lﬁl'l:-lx--lu:l E E-I

st that these four figures were correctly separated. Bui then, just as in
the previous argument we would have for all g,

Bl Xyl = X ) + 2 Xy) — (X
because the two changing regions are more than ) apart, hence
il X)) 2048 —6=0
contradicting the separation reguirement.

anﬁixﬂ} < i, E“Eﬁj{x"} o f
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