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Abstract

This paper sketches several aspects of a hypothetical cortical architecture for visual object recognition,

based on a recent computational model. The scheme relies on modules for learning from examples, such as
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biological circuitry but rather to capture a class of explanations we call Memory-Based Models (MBM)
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the sigmoidal units of some arti�cial neural networks, the units of MBMs are consistent with the usual
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example of MBM maybe realized in terms of cortical circuitry and biophysical mechanisms, consistent with

psychophysical and physiological data. A number of predictions, testable with physiological techniques,

are made.
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1 Introduction

One of the main goals of vision is object recognition. But

there may be many distinct routes to this goal and the

goal itself may come in several forms. Anyone who has

struggled to identify a particular amoeba swimming on

a microscope slide or to distinguish between novel visual

stimuli in a psychophysics laboratory might admit that

recognizing a familiar face seems an altogether di�erent

and simpler task. Recent evidence from several lines of

research strongly suggests that not all recognition tasks

are the same. Psychophysical results and computational

analyses suggest that recognition strategies may depend

on the type of both object and visual task. Symmetric

objects are better recognized from novel viewpoints than

asymmetric objects (Poggio and Vetter, 1992); when

moved to novel locations in the visual �eld, objects with

translation-invariant features are better recognized than

those without (Bricolo and B�ultho�, 1992; Nazir and

O'Regan, 1990). A typical agnosic patient can distin-

guish between a face and a car, a classi�cation task at

the basic level of recognition, but cannot recognize the

face of Marilyn Monroe, an identi�cation task at the sub-
ordinate level (Damasio and Tranel, 1990). A recently-

reported stroke patient cannot identify the orientation of

a line but can align her hand with it if she imagines post-

ing a letter through it, suggesting strongly that there are

also multiple outputs from visual recognition (Goodale,

1991).

Yet although recognition strategies diverge, recent

theories of object recognition converge on one mecha-

nism that might underlie several of the distinct stages,

as we will argue in this paper. This mechanism is a

simple one, closely related to template matching and

Nearest Neighbor techniques. It belongs to a class of ex-

planations that we call Memory-Based Models (MBMs),

which includes memory-based recognition, sparse popu-

lation coding, Generalized Radial Basis Functions net-

works, and their extension, Hyper Basis Functions net-

works (HBF) (Poggio and Girosi, 1990b) (see Figure 2.)

In MBMs, classi�cation or identi�cation of a visual stim-

ulus is accomplished by a network of units. Each unit

is broadly tuned to a particular template, so that it is

maximally excited when the stimulus exactly matches its

template but also responds proportionately less to simi-

lar stimuli. The weighted sum of activities of all the units

uniquely labels a novel stimulus. Several recent and suc-

cessful face recognition schemes for machine vision share

aspects of this framework ( Baron, 1981; Bichsel, 1991;

Brunelli and Poggio, 1992; Turk and Pentland, 1991;

Stringa, 1992a; Stringa, 1992b)

We will consider how the basic features of this class

of models might be implemented by the human visual

system. Our aim is to demonstrate that such models

conform to existing physiological data and to make fur-

ther physiological predictions. We will use as a speci�c

example of the class the RBF network. RBF networks

/footnoteWe use the term RBF here in a broad sense in-

cluding generalizations of the pure RBF scheme such as

GRB and HBF (see Poggio and Girosi 1990). have been

used successfully to solve isolated visual tasks, such as

learning to detect displacements at hyperacuity resolu-

tion (Poggio, Fahle and Edelman, 1992) or learning to

identify the gender of a face (Brunelli and Poggio, 1992).

We will discuss how the units of a RBF network might

be realized as neurons and how a similar network might

be implemented by cortical circuitry and replicated at

many levels to perform the multi-component task of vi-

sual recognition. We hope to show that MBMs are not

merely toy replicas of neural systems, but viable models

that make testable biological predictions.

The main predictions of Memory-Based Models are:

� The existence of broadly tuned neurons at all levels

of the visual pathway, tuned to single features or to

con�gurations in a multidimensional feature space.

� At least two types of plasticity in the adult brain,

corresponding to two stages of learning in per-

ceptual skills and tasks. One stage probably in-

volves changes in the tuning of individual neuron

responses; this resembles adaptation. The other

probably requires changes in cortical circuitry spe-

ci�c to the task being learned, connecting many

neurons across possibly many areas.

2 Object Recognition: Multiple Tasks,

Multiple Pathways

Recognizing an object should be di�cult because it

rarely looks the same on each sighting. Consider the

prototypical problem of recognizing a speci�c face. (We

believe that processing of faces is not qualitatively dif-

ferent from processing other 3D objects, although the

former might be streamlined by practice, and biologi-

cal evidence supports this view [Gross, 1992].) The 2D

retinal image formed by the face changes with the ob-

server's viewpoint, and with the many transformations

that the face can undergo: changes in its location, pose,

and illumination, as well as non-rigid deformations such

as the transition from a smile to a frown. A successful

recognition system must be robust under all such trans-

formations.

Here we outline an architecture for a recognition sys-

tem that contains what we believe are the rudimentary

elements of a robust system. It is best considered as a

protocol for and summary of existing programs in ma-

chine vision, but it also represents an attempt to delin-

eate the stages probably involved in visual recognition by

humans. The scheme (diagrammed in Figure 1) has dual

routes to recognition. The �rst is a streamlined route to

recognition in which the features extracted in the early

stages of image analysis are matched directly to samples

in the database. The second potential route to recogni-

tion diverges from the �rst to allow for the possibility
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that both the database models and the extracted image

features might need further processing before a match

can be found.

Our task in recognizing a face { or any other 3D object

{ consists of multiple tasks, which fall into three broad

categories that characterize both routes:

� Segmentation: Marking the boundaries of the face

in the image. This stage typically involves seg-

menting the entire image into regions likely to

correspond to di�erent materials or surfaces (and

thereby subsumes �gure-ground segmentation) and

is a prerequisite for further analysis of a marked re-

gion. Image measurements are used to convert the

retinal array of light intensities into a primal im-
age representation, by computing sparse measure-

ments on the array, such as intensity gradients, or

center-surround outputs. The result is a set of vec-

tor measurements at each of a sparse or dense set of

locations in the image. These measurements may

be global ones like average value over a whole array

of (�ltered) pixel values.

� Classi�cation, or basic-level recognition: Distin-

guishing objects that are faces from those that are

not. Parameter values estimated in the preceding

stage { e.g. the distance between eyes and mouth

{ are used in this stage for classi�cation of a set of

features { e.g. as a potential face, animal, or man-

made tool. This stage requires that the boundaries

or the location of at least potential faces be demar-

cated, and hence generally depends on the preced-

ing step of image segmentation, although it may

work without it at an added computational cost.

� Identi�cation, or subordinate-level recognition:

Matching the face to a stored memory, and thereby

labeling it. This stage requires some form of index-

ing of the database samples. Because it is compu-

tationally implausible that the recognition system

contains a stored sample of the face in each of its

possible views or expressions, or under all possi-

ble illumination conditions at all possible viewing

distances, this step in general also requires that

the face be transformed into a standard form for

matching against its stored template. Thus in par-

allel with the direct route from classi�cation to

identi�cation there may exist a second route that

we call the visualization route, which may include

an iterative sequence of transformations of both the

image-plane and the database models until it con-

verges on a match.

These stages, and some open questions on the overall

architecture, are further discussed in the Appendices.

As outlined here, the stages are distinct and could be

implemented in series within each route to recognition.

Most arti�cial face recognition systems tackle the stages

separately, being designed either to detect and localize

a face in an image cluttered with other objects (segmen-

tation and classi�cation), or to identify individual faces

presented in an expected format (database indexing and

identi�cation). Some arti�cial recognition systems have

been constructed to achieve invariant recognition un-

der isolated transformations (visualization). Examples

are systems that: recognize frontal views of faces un-

der varying illuminations ( Brunelli and Poggio, 1992);

recognize simple paper-clip-like objects independently of

viewpoint ( Poggio and Edelman, 1990); or identify sim-

ple objects solely by color under spatially varying illu-

mination ( Swain and Ballard, 1990).

Yet in biological systems, and in some arti�cial sys-

tems, the stages may act in parallel or even merge. For

example, there may be many short-cuts to recognizing a

frequently encountered object such as a face, for exam-

ple.

Finding the face might be streamlined by a quick

search at low resolution over the whole image for face-

like patterns. The search might employ simpli�ed tem-

plates of a face containing anthropometric information

(for example, a two-eyes-and-mouth mask). Once lo-

cated, salient features such as eyes can be used to demar-

cate the entire object to which they belong, eliminating

the need to segment other parts of the image. These

detectors would scan the image for the presence of these

face-speci�c features, and using them, locate the face for

further processing (translation, scaling, etc.). (Some ma-

chine vision systems already implement this idea, using

translation-invariant face-feature-detectors such as eye

detectors [Bichsel, 1991] or symmetry detectors.) Thus

segmentation may occur simultaneously with classi�ca-

tion. The existence of these face-detectors in the human

visual system might explain why we so readily perceive

faces in the simplest drawings of dots and lines, or in

symmetric patterns formed in nature (Hurlbert and Pog-

gio, 1986), and why we detect properly con�gured faces

more readily than arbitrary or inverted arrangements of

facial features (Purcell and Stewart, 1988). Indeed, we

wonder whether face recognition may have become so in-

veterate that the human brain might �rst classify image

regions into face or non-face. Notice that the process of

�nding features such as the eyes and identifying the face

are probably very similar in this view. They are both

based on a set of prototypical examples of either eyes or

views of the particular face, and they may be using a

similar machinery perhaps (RBF-like).

Recognizing an expected object might also be more

speedy and e�cient than identifying an unexpected one.

In the classi�cation stage, only those features speci�c

for the expected object class need be measured, and cor-

rect classi�cation would not require that all features be

simultaneously available. This step might therefore be

itself a form of template matching, where part-templates

may serve as well as whole-templates to locate and clas-

sify the object. In many cases the classi�cation stage
2



may lead by itself to unique recognition, especially when

situational information, such as the expectedness of the

object, restricts the relevant data base.

Yet many questions are left hanging by this sketch of

a recognition system. In biological systems, is matching

done between primal image representations, like center-

surround outputs at sparse locations, or between sets

of higher level features? Computational experiments on

face recognition suggest that the former strategy per-

forms much better. What exactly are the key features

used for identifying, localizing and normalizing an ob-

ject of a speci�c class? Is there an automatic way to

learn them? (Huber, 1985). Do biological visual sys-

tems acquire recognition features through experience (

Edelman, 1991)? Do humans use expectation to restrict

the data base for categorization? Some psychophysical

experiments suggest that we do not need higher-level

expectations to recognize objects quickly in a random

series of images, but these experiments have used famil-

iar objects such as the Ei�el Tower (M. Potter, pers.

comm.).

2.1 A Sketch of a Memory-Based Cortical

Architecture for Recognition

We suggest that most stages in face recognition, and

more generally, in object recognition, may be imple-

mented by modules with the same intrinsic structure {

a Memory Based Module (MBM). At the heart of this

structure is a set of neurons each tuned to a particular

value or con�guration along one or many feature dimen-

sions. Let us take as an example of such a structure

the Hyper Basis Functions (HBF) network. This is a

convenient choice because HBFs have been successfully

applied already to several problems in object recognition

as well as an unrestrictive, easily modi�able choice be-

cause HBFs are closely related to other approximation

and learning techniques such as multilayer perceptrons.

2.1.1 RBF Networks

HBF networks are approximation schemes based on,

but more 
exible than, Radial Basis Functions (RBF)

networks (see Figure 2; Poggio and Girosi, 1990b; Pog-

gio, 1990). The fundamental equation underlying RBF

networks states that any function f(x) may be approxi-

mated by a weighted sum of RBFs:

f(x) =

NX

i=1

cih(kx� tik)
2 + p(x): (1)

The functions h may be any of the class of RBFs,

for example, Gaussians. p(x) is a polynomial that is re-

quired by certain RBFs for the validity of the equation.

(For some RBFs, e.g. Gaussians, the addition of p(x)

is not necessary, but improves performance of the net-

work.) In an RBF network, each \unit" computes the

distance kx � tk of the input vector x from its center

t and applies the function h to the distance value, i.e.

it computes the function h(kx � tk)2. The N centers

t, corresponding to the N data points, thus behave like

templates, to which the inputs are compared for similar-

ity.

A typical and illustrative choice of RBF is the Gaus-

sian [h(kx�tk) = exp(�(kx�tk)2=2�2)]. In the limiting

case where h is a very narrow Gaussian, the network ef-

fectively becomes a look-up table, in which a unit gives

a non-zero signal only if the input exactly matches its

center t.

The simplest recognition scheme based on RBF net-

works that we consider is that suggested by Poggio and

Edelman (1990) (see �g. 7) to solve the speci�c prob-

lem of recognizing a particular 3D object from novel

views, a subordinate-level task. In the RBF version of

the network, each center stores a sample view of the ob-

ject, and acts as a unit with a Gaussian-like recognition

�eld around that view. The unit performs an operation

that could be described as \blurred" template matching.

At the output of the network the activities of the vari-

ous units are combined with appropriate weights, found

during the learning stage. An example of a recognition

�eld measured psychophysically for an asymmetric ob-

ject after training with a single view is shown in �g 5.

As predicted from the model (see Poggio and Edelman,

1990), the shape of the surface of the recognition errors

is roughly Gaussian and centered on the training view.

In this particular model, the inputs to the network

are spatial coordinates or measurements of features (e.g.

angles or lengths of segments) computed from the im-

age. In general, though, the inputs to an RBF net-

work are not restricted to spatial coordinates but could

include, for example, colours or con�gurations of seg-

ments, binocular disparities of features, or texture de-

scriptions. Certainly in any biological implementation of

such a network the inputs may include measurements or

descriptions of any attribute that the visual system may

represent. We assume that in the primate visual sys-

tem such a recognition module may use a large number

of primitive measurements as inputs, taken by di�erent

\�lters" that can be regarded as many di�erent \tem-

plates" for shape, texture, color and so forth. The only

restriction is that the features must be directly computed

from the image. Hence the inputs are viewer-centered,

not object-centered, although some, like colour, will be

viewpoint-independent. The output of the network is,

though, object-centered, provided there is a su�cient

number of centers. This generality of the network per-

mits a mix of 2D and 3D information in the inputs, and

relieves the model from the constraints of either.

This feature of the model also renders irrelevant the

question on whether object representations are 2D or

3D. The Poggio-Edelman model makes it clear that 2D-

based schemes can provide view invariance as readily

as a 3D model can, and compute 3D pose as well (see

Poggio and Edelman, 1990). So the relevant questions
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are: what is explicit in neurons? and what does it mean

for information about shape to be explicit in neurons?

In a sense, some 2D-based schemes such as the Poggio-

Edelman model may be considered as plausible neuro-

physiological implementations of 3D models.

We do not suggest that the cortical architecture for

recognition consists of a collection of such modules, one

for each recognizable object. Certainly it is more com-

plex than that cartoon, and not only because viewpoint-

invariance is not the only problem that the recognition

system must solve. For example, the cortex must also

learn to recognize objects under varying illumination

(photometric invariance) and to recognize objects at the

basic as well as subordinate level. [Preliminary results

on real objects (faces) suggest that HBF modules can es-

timate expression and direction of illumination equally

as well as pose (Brunelli, pers. comm., Beymer, pers.

comm.).] Yet each of these and other distinct tasks in

recognition may be implemented by a module broadly

similar to the Poggio-Edelman viewpoint-invariance net-

work. We might expect that the system could be de-

composed into elementary modules similar in design but

di�erent in purpose, some speci�c for individual objects

(and therefore solving a subordinate-level task), some

speci�c to an object class (solving a basic-level task),

and others designed to perform transformations or fea-

ture extractions, for example, common to several classes.

The modules may broadly be categorized as:

� Object-speci�c. A module designed to compensate

for speci�c transformations that a speci�c object

might undergo. As in the Poggio-Edelman net-

work, the module would consist of a few units, each

maximally tuned to a particular con�guration of

the object { for the face, say, a particular combina-

tion of pose and expression. A more general form

of the network may be able to recognize a few dif-

ferent faces: its hidden units would be tuned to

di�erent views but of not just one face, and there-

fore behave more like eigenfaces.

� Class-speci�c. A module that generalizes across ob-

jects of a given class. For example, the network

may be designed to extract a feature or aspect of

any of a class of objects, such as pose, color, or

distance. For example, there might be a network

designed to extract the pose of a face, and a sep-

arate network designed to extract the direction of

illumination on it. Any face fed as input to network

would elicit an estimate of its pose or illumination.

� Task-speci�c. Networks that solve tasks, such as

shape-from-shading, across classes of objects. An

example would be a generic shape-from-shading

network that takes as input brightness gradients

of image regions. It may act in the early stages

of recognition, helping to segment and classify 3D

shapes even before they are grouped and classi�ed

as objects.

The distinctions between these types of recognition

module might be blurred if, for example, the visual sys-

tem overlearns certain objects or transformations. For

example, a shape-from-shading network might develop

for a frequently-encountered type of material, or for a

speci�c class of object. Indeed, our working assump-

tion is that any apparent di�erences between recogni-

tion strategies for di�erent types of objects arise not

from fundamental di�erences in cortical mechanisms but

from imbalances in the distribution of the same basic

modules across di�erent objects and di�erent environ-

ments. Savanna Man, like us, probably had task-speci�c

modules dedicated to faces, but although we might have

shape-from-shading modules speci�c to familiar pieces

of o�ce furniture, he might not be able to recognize a

�ling cabinet at all, much less under varying illumina-

tion. This suggests a decomposition into modules that

are both task and object speci�c, which is a rather un-

conventional but plausible idea.

Transformations speci�c to a particular object may

also be generalized from transformations learned on pro-

totypes of the same class. For example, the deformation

caused by a change in pose or, for a face, a change in

expression or age, may be learned from a set of exam-

ples of the same transformation acting on prototypes

of the class. Some transformations may be generalized

across all objects sharing the same symmetries (Poggio

and Vetter, 1992).

The big question is, if the recognition system does

consist of similar modules performing interlocking tasks,

how are the modules linked, and in what hierarchy (if

it makes sense at all to talk of ordered stages)? In

constructing a practical system for face recognition, it

would make sense �rst to estimate the pose, expression,

and illumination for a generic face and then to use this

estimate to \normalize" the face and compare it to sin-

gle views in the data base (additional \search" to �ne

tune the match may be necessary). Thus the system

would �rst employ a class-speci�c module based on in-

variant properties of faces to recover, say, a generic view

{ analogous to an object-centered representation { that

could feed into face-speci�c networks for identi�cation.

The information that the system extracts in the early

stages concerning illumination, expression, context, etc.

would not be discarded. Within each stage, modules

may be further decomposed and arranged in hierarchies:

one may be speci�c for eyes, and may extract gaze angle,

a parameter that may then feed into a module concerned

with the pose of the entire face.

For face recognition, the generic view may be recov-

ered by exploiting prior information such as the approx-

imate bilateral symmetry of faces. In general a single

monocular view of a 3D object (if shading is neglected)

does not contain su�cient 3D information for recogni-

tion of novel views. Yet humans are certainly able to
4



recognize faces rotated 20-30 degrees away from frontal

after training on just one frontal view. One of us has re-

cently discussed ( Poggio, 1991) di�erent ways for solving

the following problem: from one 2D view of a 3D object
generate other views, exploiting knowledge of views of
other, \prototypical" objects of the same class. It can

be shown theoretically ( Poggio and Vetter, 1992) that

prior information on generic shape constraints does re-

duce the amount of information needed to recognize a 3D

object, since additional virtual views can be generated

from given model views by the appropriate symmetry

transformations. In particular, for bilaterally symmetric

objects, a single non-accidental \model" view is theo-

retically su�cient for recognition of novel views. Psy-

chophysical experiments ( Vetter, Poggio and B�ultho�,

1992) con�rm that humans are better in recognizing

symmetric than non-symmetric objects.

An interesting question is whether there are indeed

multiple routes to recognition. It is obvious that some

of the logically distinct steps in recognition of Figure 1

may be integrated in fewer modules, depending on the

speci�c implementation. Figure 3 shows how the same

architecture may appear if the classi�cation and the visu-

alization routes are implemented with HBF networks. In

this case, the database of face models would essentially

be embedded in the networks (see Poggio and Edelman,

1990).

There are of course several obvious alternatives to this

architecture and many possible re�nements and exten-

sions. Even if oversimpli�ed, this token architecture is

useful to generate meaningful questions. The preceding

discussion may in fact be su�cient for performing com-

putational experiments and for developing practical sys-

tems. It is also su�cient for suggesting psychophysical

experiments. It is of course not enough from the point of

view of a physiologist, yet the physiological data in the

next section provides broad support for its ingredients.

2.1.2 Physiological Support for a

Memory-Based Recognition Architecture

At least super�cially, physiological data seems to sup-

port the existence of elements of each these modules.

Perrett et.al. (Perrett et. al., 1989; Perrett et.al., 1985)

report evidence from inferotemporal cortex (IT) not only

for cells tuned to individual faces but also for face cells

tuned to intermediate views between frontal and pro�le,

units that one would expect in a class-speci�c network

designed to extract pose of faces. Such cells also sup-

port the existence of the view-centered units predicted

by the basic Poggio-Edelman recognition module. Young

and Yamane ( 1992) describe cells in anterior IT that

respond optimally to particular con�gurations of facial

features, or \physical prototypes." These may conceiv-

ably provide input to the cells described by Perrett et.

al. as \person recognition units", or to the approxi-

mately view-independent cells described by Hasselmo,

et. al. ( Hasselmo et.al., 1989) which would in turn

correspond almost exactly to the object-centred output

of the Poggio-Edelman model. Perrett et. al. (1989;

1985) also report cells that respond to a given pose of

the face regardless of illumination { even when the face

is under heavy shadow. Such cells may resemble units in

a task-speci�c network. In the superior temporal sulcus,

Hasselmo et. al. (1989) also �nd cells sensitive to head

movement or facial gesture, independent of the view or

identity of the face. Such cells would also appear to

be both class- and task-speci�c. (See Perrett and Oram,

1992) for a more detailed review of relevant physiological

data.)

Fujita and Tanaka (1992) have also reported cells in

IT that respond optimally to certain con�gurations of

color and shape. These may well represent elements of

networks that generalize across objects, classifying them

according to their geometric and material constitution.

More signi�cantly, Fujita and Tanaka (1992) report that

cells in the anterior region of IT (cytoarchitectonic area

TE) are arranged in columns, within which cells respond

to similar con�gurations of color, shape and texture.

Each con�guration may be thought of as a template,

which in turn might encode an entire object (e.g. a face)

or a part of an object (e.g. the lips). Within one col-

umn, cells may respond to slightly di�erent versions of

the template, obtained by rotations in the image-plane,

for example. Fujita and Tanaka (1992) conclude that

each of the 2000 or so columns in TE may represent one

phoneme in the language of objects, and that combi-

nations of activity across the columns are su�cient to

encode all recognizable objects.

The existence of such columns supports the notion

that the visual system may achieve invariance to image-

plane transformations of elementary features by repli-

cating the necessary feature measurements at di�erent

positions, at di�erent scales and with di�erent rotations.

In the next section we describe how key aspects of

the architecture could be implemented in terms of plau-

sible biophysical mechanisms and neurophysiological cir-

cuitries.

3 Neural modeling of memory-based

architectures for recognition

In this section we discuss in more detail the possible neu-

ral implementations of a recognition system built from

MBMs. The main questions we address are: how are

MBMs constructed when a new object or class of objects

is learned? and how might MBM units be constructed

from known biophysical mechanisms? We propose that

there are two stages of learning { supervised and unsu-

pervised { and illustrate to which elements of a memory-

based network they correspond. Where could they be

localized in terms of cortical structures? What mech-

anisms could be responsible? We discuss the memory-

based module itself and the circuitry that might underlie
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it.

3.1 The learning-from-examples module

The simple RBF version of an MBM, discussed in sec-

tion 2.1, learns to recognize an object in a straightfor-

ward way. Its centers are �xed, chosen as a subset of

the training examples. The only parameters that can

be modi�ed as the network learns to associate each view

with the correct response (\yes" or \no" to the target

object) are the coe�cients ci, the weights on the con-

nections from each center to the output.

The full HBF network permits learning mechanisms

that are more biologically plausible by allowing more

parameters to be modi�ed. HBF networks are equivalent

to the following scheme for approximating a multivariate

function:

f�(x) =

nX

�=1

c�G(k(x� t�)k
2

W ) + p(x) (2)

where the centers t� and coe�cients c� are unknown,

and are in general fewer in number than the data points

(n � N ). The norm is a weighted norm

k(x� t�)k
2

W = (x � t�)
TWTW (x� t�) (3)

where W is an unknown square matrix and the super-

script T indicates the transpose. In the simple case of

diagonal W the diagonal elements wi assign a speci�c

weight to each input coordinate, determining in fact the

units of measure and the importance of each feature

(the matrixW is especially important in cases in which

the input features are of a di�erent type and their rela-

tive importance is unknown) (Poggio and Girosi, 1990a).

During learning, not only the coe�cients c but also the

centers t�, and the elements of W are updated by in-

struction on the input-output examples. See Figure 4.

Whereas the RBF technique is similar to and similarly

limited as template matching, HBF networks perform

a generalization of template matching in an appropri-

ately linearly transformed space, with the appropriate

metric. HBF networks are therefore di�erent in both

interpretation and capabilities from \vanilla" RBF. An

RBF network can recognize an object rotated to novel

orientations only if it has centers corresponding to sam-

ple rotations of the object. HBFs, though, can perform

a variety of more sophisticated recognition tasks. For

example, HBFs can:

1. discover the Basri-Ullman result (Basri and Ull-

man, 1989; Brunelli and Poggio, unpublished). (In

its strong form (see Poggio 1991), this result states

that under orthographic projection any view of the

visible features of the 3D object may be generated

by a linear combination of 2 other views.);

2. with a non-diagonalW, recognize an object under

orthographic projection with only one center;

3. provide invariance (or near invariance under per-

spective projection) for scale, rotation and other

uniform deformations in the image plane, without

requiring that the features be invariant;

4. discover symmetry, collinearity and other \linear-

class" properties (see Poggio and Vetter, 1992).

3.1.1 Gaussian Radial Basis Functions

In the special case where the network basis functions

are Gaussian and the matrix W diagonal, its elements

wi have an appealingly obvious interpretation. A mul-

tidimensional Gaussian basis function is the product of

one-dimensional Gaussians and the scale of each is given

by the inverse of wi. For example, a 2D Gaussian radial

function centered on t can be written as:

G(kx� tk2W ) � e�kx�tk
2
W = e

�
(x�tx)

2

2�2x e
�

(y�ty )
2

2�2y ; (4)

where �x = 1=w1 and �y = 1=w2, and w1 and w2 are the

elements of the diagonal matrixW.

Thus a multidimensional center can be factored in

terms of one-dimensional centers. Each one-dimensional

center is individually tuned to its input: centers with

small wi, or large �i, are less selective and will give ap-

preciable responses to a range of values of the input fea-

ture; centers with large wi, or small �i, are more selec-

tive for their input and accordingly have greater in
u-

ence on the response of the multidimensional center. The

template represented by the multidimensional center can

be considered as a conjunction of one-dimensional tem-

plates. In this sense, a Gaussian HBF network performs

the disjunction of conjunctions: the conjunctions repre-

sented by the multidimensional centers are \or"ed in the

weighted sum of center activities that forms the output

of the network.

3.2 Expected physiological properties of MBM

units

3.2.1 The neurophysiological interpretation of

HBF centers

Our key claim is that HBF centers and tuned cortical

neurons behave alike.

A Gaussian HBF unit is maximally excited when each

component of the input exactly matches each component

of the center. Thus the unit is optimally tuned to the

stimulus value speci�ed by its center. Units with multidi-

mensional centers are tuned to complex features, formed

by the conjunction of simpler features, as described in

the previous section.

This description is very like the customary description

of cortical cells optimally tuned to a more or less complex

stimulus. So-called place coding is the simplest and most

universal example of tuning: cells with roughly Gaussian

receptive �elds have peak sensitivities to given locations

in the input space; by overlapping, the cell sensitivities
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cover all of that space. In V1 the input space may be

up to 5 dimensional, depending on whether the cell is

tuned not only to the retinal coordinates x; y but also

to stimulus orientation, motion direction and binocular

disparity. In V4 some cells respond optimally to a stim-

ulus combining the appropriate values of speed and color

(N. K. Logothetis, pers. comm.; Logothetis and Charles,

1990). Other V4 cells respond optimally to a combina-

tion of colour and shape (D. Van Essen, pers. comm.) .

In MST cells exist optimally tuned to speci�c motions in

di�erent parts of the receptive �eld and therefore to dif-

ferent motion \dimensions". Most of these cells are also

selective for stimulus contrast. In \later" areas such as

IT cells may be tuned to more complex stimuli which

can be changed in a number of \dimensions" (Desimone

et.al., 1984). Gross (1992) concludes that \ ...IT cells

tend to respond at di�erent rates to a variety of di�er-

ent stimuli." Thus it seems that multidimensional units

with Gaussian-like tuning are not only biologically plau-

sible, but ubiquitous in cortical physiology. This claim is

not meant to imply that for every feature dimension of a

multidimensionally tuned neuron, neurons feeding into

it can be found individually tuned to that dimension.

For example, for some motion-selective cells in MT the

selectivities to spatial frequency and temporal frequency

cannot be separated. Yet for these, it may be inappro-

priate to consider time and space as two independent

dimensions and more appropriate to consider velocity as

the single dimension in which the neuron is tuned. On

the other hand, it is well known that at lower levels in the

visual system there do exist cells broadly tuned individ-

ually to spatial frequency, orientation, and wavelength,

for example, and from these dimensions many complex

features can be constructed.

We also observe that not all MBMs have the same

applicability in describing properties of cortical neu-

rons. In particular, tuned neurons seem to behave more

like Gaussian HBF units than like the sigmoidal units

typically found in multilayer perceptrons (MLPs): the

tuned response function of cortical neurons resembles

exp(�(kx � tk)2=2�2 more than it does �(x _w), where

� is a sigmoidal \squashing" function and we de�ne w

as the vector of connection weights including the bias pa-

rameter �. (The typical sigmoidal response to contrast

that most neurons display may be treated as a Gaus-

sian of large �.) For example, when the stimulus to

an orientation-selective cortical neuron is changed from

its optimal value in any direction, the neuron's response

typically decreases. The activity of a Gaussian HBF unit

would also decline with any change in the stimulus away

from its optimal value t. But for the sigmoid unit cer-

tain changes away from the optimal stimulus will not

decrease its activity, for example when the input x is

multiplied by a constant � > 1.

Lastly, we observe that although the Gaussian is the

simplest and most readily interpretable RBF in physio-

logical terms, it might not ultimately provide the best

�t to all the physiological data once in. In espousing the

general theory of MBMs for cortical mechanisms of ob-

ject recognition, we do not con�ne ourselves to Gaussian

RBFs as the only model of cortical neurons, but only at

present the most plausible.

3.2.2 Centers and a fundamental property of

our sensory world

We can recognize almost any object from any of many

small subsets of its features, visual and non-visual. We

can perform many motor actions in several di�erent

ways. In most situations, our sensory and motor worlds

are redundant. In the language of the previous section

this means that instead of high-dimensional centers any

of several lower dimensional centers are often su�cient
to perform a given task. This means that the \and" of

a high-dimensional conjunction can be replaced by the

\or" of its components { a face may be recognized by its

eyebrows alone, or a mug by its colour. To recognize an

object, we may use not only templates comprising all its

features, but also subtemplates, comprising subsets of

features (and in fact exemplary sets of centers capable

of generating most eyes, say). This is similar in spirit

to the use of several small templates as well as a whole-

face template in the Brunelli-Poggio work on frontal face

recognition (Brunelli and Poggio, 1992).

Splitting the recognizable world into its additive parts

may well be preferable to reconstructing it in its full mul-

tidimensionality, because a system composed of several

independently accessible parts is inherently more robust

than a whole, simultaneously dependent on each of its

parts. The small loss in uniqueness of recognition is eas-

ily o�set by the gain against noise and occlusion. This

reduction of the recognizable world into its parts may

well be what allows us to \understand" the things that

we see (see Appendix B).

3.2.3 How many cells?

The idea of sparse population coding is consistent

with much physiological evidence, beginning even at the

retinal level where colors are coded by 3 types of pho-

toreceptors. Young and Yamane (1992) conclude from

neurophysiological recordings of IT cells broadly tuned

to physical prototypes of faces: \Rather than represent-
ing each cell as a vector in the space, the cell could be
represented as a surface raised above the feature space.
The height of the surface above each point in the feature
space would be given by the response magnitude of the
cell to the corresponding stimuli and population vectors
would be derived by summing the response weighted sur-
faces for each cell for each stimulus." MBMs also sug-

gest that the importance of the object and the exposure

to it may determine how many centers are devoted to

its recognition. Thus faces may have a more \punctate"

representation than other objects simply because more
7



centers are used. Psychophysical experiments do suggest

that an increasing number of centers is created under ex-

tended training to recognize a 3D object (B�ultho� and

Edelman, 1992).

While we would not dare to make a speci�c prediction

on the absolute number of cells used to code for a speci�c

object, computational experiments and our arguments

here suggest at least a minimum bound. Simulations by

Poggio and Edelman (1990) suggest that in an MBM

model a minimum of 10-100 units is needed to represent

all possible views of a 3D object. We think that the

primate visual system could not achieve the same rep-

resentation with fewer than on the order of 1000. This

number seems physiologically plausible, although we ex-

pect that the actual number will depend strongly on the

reliability of the neurons, training of the animal, rele-

vance of the represented object and other properties of

the implementation. Thus we envisage that training a

monkey to one view of a target object may \create" at

least on the order of 100 cells tuned to that view 1 in the

relevant cortical area, with a generalization �eld similar

to the one shown in �gure 5. Training to an additional

view may create or recruit cells tuned to that view. Over-
training a monkey on a speci�c object should result in

an over-representation in cortex of that object { more

cells than normally expected would be tuned to views of

the object. Recent results from Kobatake, et. al. (1993)

suggest that up to two orders of magnitude more cells

may be \created" in IT (or, rather, the stimulus selectiv-

ities of existing cells altered) on over-training to speci�c

objects.

Note that we do not mean to imply that only 10 -

1000 cortical cells would be active on presentation of

an object. Many more would be activated than those

that are critical for its representation. We suggest only

that the activity of approximately 100 cells should be

su�cient to discriminate between two distinct objects.

This conclusion is broadly supported by the conclusion

of Young and Yamane (1992) that the population re-

sponse of approximately 40 cells in IT is approximately

su�cient to encode a particular face, and by the related

observation of Britten, et.al. (1992) that the activity

of a small pool of weakly correlated neurons in MT is

su�cient to predict a monkey's behavioral response in a

motion detection task.

3.2.4 HBF centers and biophysical mechanisms

HowmightmultidimensionalGaussian receptive �elds

be synthesized from known receptive �elds and biophys-

ical mechanisms?

The simplest answer is that cells tuned to complex

1Probably in di�erent ways: di�erent cells may be tuned
to di�erent parts of the view and may converge to di�er-
ent \prototypes" representing that component; when we use
the term \prototype" we have in mind the \caricatures" of
Brunelli and Poggio

features are constructed from a hierarchy of simpler cells

tuned to incrementally larger conjunctions of elementary

features. This idea { a standard explanation { can im-

mediately be formalized in terms of Gaussian radial ba-

sis functions, since a multidimensionalGaussian function

can be decomposed into the product of lower dimensional

Gaussians (Marr and Poggio, 1977; Ballard, 1986; Mel,

1988; Poggio and Girosi, 1990b).

The scheme of �gure 6 is a possible example of an

implementation of Gaussian Radial Basis functions in

terms of physiologically plausible mechanisms. The �rst

step applies to situations in which the inputs are place-

coded, that is, in which the value of the input is rep-

resented by its location in a spatial array of cells { as,

for example, the image coordinates x; y are encoded by

the spatial pattern of photoreceptor activites. In this

case Gaussian radial functions in one, two and possi-

bly three dimensions can be implemented as receptive
�elds by weighted connections from the sensor arrays

(or some retinotopic array of units whose activity en-

codes the location of features). If the inputs are interval-

coded, that is, if the input value is represented by the

continuously-varying �ring rate of a single neuron, then a

one-dimensional Gaussian-like tuned cell can be created

by passing the input value through multiple sigmoidal

functions with di�erent thresholds and taking their dif-

ference.

Consider, for example, the problem of encoding

colour. At the retinal level, colour is recorded by the

triplet of activities of three types of cell: the cone-

opponent red-green (R-G) and blue-yellow (B-Y) cells

and the luminance (L) cell. An R-G cell signals increas-

ing amounts of red or decreasing amounts of green by

increasing its �ring rate. Thus it does not behave like a

Gaussian tuned cell. But at higher levels in the visual

system, there exist cells that behave very much like units

tuned to particular values in 3D colour space (Schein and

Desimone, 1990). How are these multidimensional tuned

colour cells constructed from one-dimensional rate-coded

cells? We suggest that one-dimensional Gaussian tuned

cells may be created by the above mechanism, selective

to restricted ranges of the three colour axes.

Gaussians in higher dimensions can then be synthe-

sized as products of one and two dimensional recep-

tive �elds. An important feature of this scheme is that

the multidimensional radial functions are synthesized di-

rectly by appropriately weighted connections from the

sensor arrays, without any need of an explicit computa-

tion of the norm and the exponential. From this per-

spective the computation is performed by Gaussian re-
ceptive �elds and their combination (through some ap-

proximation to multiplication), rather than by thresh-

old functions. The view is in the spirit of the key role

that the concept of receptive �eld has always played in

neurophsyiology. It predicts a sparse population coding
in terms of low-dimensional feature-like cells and mul-
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tidimensional Gaussian-like receptive �elds, somewhat

similar to template-like cells, a prediction that could be

tested experimentally on cortical cells.

The multiplication operation required by the previous

interpretation of Gaussian RBFs to perform the \con-

junction" of Gaussian receptive �elds is not too implau-

sible from a biophysical point of view. It could be per-

formed by several biophysical mechanisms (see Koch and

Poggio, 1987; Poggio, 1990). Here we mention several

possibilities:

1. inhibition of the silent type and related synaptic

and dendritic circuitry (see Poggio and Torre, 1978;

Torre and Poggio, 1978).

2. the AND-like mechanism of NMDA receptors

3. a logarithmic transformation, followed by summa-

tion, followed by exponentiation. The logarith-

mic and exponential characteristic could be imple-

mented in appropriate ranges by the sigmoid-like

pre-to-postsynaptic voltage transduction of many

synapses.

4. approximation of the multiplication by summation

and thresholding as suggested by Mel (1990).

If the �rst or second mechanism is used, the product

of �gure 6 can be performed directly on the dendritic

tree of the neuron representing the corresponding radial

function. In the case of Gaussian receptive �elds used

to synthesize Gaussian radial basis functions, the cen-

ter vector is e�ectively stored in the position of the 2D

(or 1D) receptive �elds and in their connections to the

product unit(s). This is plausible physiologically.

Linear terms (direct connections from the inputs to

the output) can be realized directly as inputs to an out-

put neuron that summates linearly its synaptic inputs.

An output nonlinearity such as a threshold or a sigmoid

or a log transformation may be advantageous for many

tasks and will not change the basic form of the model

(see Poggio and Girosi, 1989).

3.2.5 Circuits

There is at least one other way to implement HBFs

networks in terms of known properties of neurons. It

exploits the equivalence of HBFs with MLP networks

for normalized inputs (Maruyama et. al., 1992). If the

inputs are normalized (as usual for unitary input repre-

sentations), an HBF network could be implemented as

a MLP network by using threshold units. There is the

problem, though, in normalizing the inputs in a biolog-

ically plausible way. MLP networks have a straightfor-

ward implementation in terms of linear excitation and in-

hibition and of the threshold mechanism of the spike for

the sigmoidal nonlinearity. The latter could also be im-

plemented in terms of the pre-postsynaptic relationship

between presynaptic voltage and postsynaptic voltage.

In either case this implementation requires one neuron

per sigmoidal unit in the network.

Mel (1992) has simulated a speci�c biophysical hy-

pothesis about the role of cortical pyramidal cells in im-

plementing a learning scheme that is very similar to a

HBF network. Marr (1970) had proposed another simi-

lar model of how pyramidal cells in neocortex could learn

to discriminate di�erent patterns. Marr's model is, in a

sense, the look-up table limit of our HBF model.

3.3 Mechanisms for learning

Reasoning from the HBF model, we expect two mecha-

nisms for learning, probably with di�erent localizations,

one that could occur unsupervised and thus is similar to

adaptation, and one supervised and probably based on

Hebb-like mechanisms.

The �rst stage of learning would occur at the site of

the centers. Let us remember that a center represents a

neuron tuned to a particular visual stimulus, for exam-

ple, a vertically oriented light bar. The coe�cients c�
represent the synaptic weights on the connections that

the neuron makes to the output neuron that registers the

network's response. In the simple RBF scheme the only

parameters updated by learning are these coe�cients.

But in constructing the network, the centers must be set

to values equal to the input examples. Physiologically,

then, selecting the centers t� might correspond to choos-

ing or re-tuning a subset of neurons selectively respon-

sive to the range of stimulus attributes encountered in

the task. This stage would be very much like adaptation,
an adjustment to the prevailing stimulus conditions. It

could occur unsupervised, and would strictly depend only
on the stimuli, not on the task. Of course we would ex-

pect some centers to be pretuned by evolution, evn in

IT cortex.

The second stage, updating of the coe�cients c�,

could occur only supervised, since it depends on the full

input and output example pairs, or, in other words, on

the task. It could be achieved by a simple Hebb-type

rule, since the gradient descent equations for the c are (

Poggio and Girosi, 1989):

_c� = !

NX

i=1

�iG(kxi � t�k
2

W) ; (5)

with � = 1; : : : ; n and �i is the squared error between

the correct output for example i and the actual output

of the network. Thus equation 5 says that the change

in the c� should be proportional to the product of the

activity of the unit i and the output error of the net-

work. In other words, the \weights" of the c synapses

will change depending on the product of pre- and post-

synaptic activity ( Poggio and Girosi, 1989; Mel, 1988;

Mel, 1990).

In the RBF case, the centers are �xed after they are

initially selected to conform to the input examples. In

the HBF case, the centers move to optimal locations

during learning. This movement may be seen as task-

speci�c or supervised �ne-tuning of the centers' stimulus
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selectivities. It is highly unlikely that the biological vi-

sual system chooses between distinct RBF-like and HBF-

like implementations for given problems. It is possible,

though, that tuning of cell selectivities can occur in at

least two di�erent ways, corresponding to the supervised
and unsupervised stages outlined here. We might also ex-

pect that these two types of learning of \centers" could

occur on two di�erent time scales: one fast, correspond-

ing to selecting centers from a pre-existing set, and one

slow, corresponding to synthesizing new centers or re-

�ning their stimulus speci�cities. The cortical locations

of these two mechanisms, one unsupervised, the other

supervised, may be di�erent and have interesting impli-

cations on how to interpret data on transfer of learning

(see Poggio, Fahle and Edelman, 1992).

For fast, unsupervised learning, there might be a large

reservoir of centers already available, most of them with

an associated c = 0, as suggested by Mel (1990) in a

slightly di�erent context. The relevant ones would gain

a non-zero weight during the adaptive process. Alterna-

tively, the mechanism could be similar to some of the un-

supervised learning models described by Linsker (1990),

Intrator and Cooper (1991), F�oldiak (1991) and others.

Slow, supervised learning may occur by the stabiliza-

tion of electrically close synapses depending on the de-

gree to which they are co-activated (see, e.g. Mel, 1992).

In this scheme, the changes will be formation and stabi-

lization of synapses and synapse clusters (each synapse

representing a Gaussian �eld) on a cortical pyramidal

cell simply due to correlations of presynaptic activities.

We suggest that this synthesis of new centers, as would

be needed in learning to recognize unfamiliar objects,

should be slower than selecting centers from an exist-

ing pool. But some recent data on perceptual learning

(e.g. Fiorentini and Berardi, 1981; Poggio, Fahle and

Edelman, 1992; Karni and Sagi, 1990) indicates other-

wise: the fact that human observers rapidly learn en-

tirely novel visual patterns suggests that new centers

might be synthesized rapidly.

It seems reasonable to conjecture, though, that up-

dating of the elements of the W matrix may take place

on a much slower time scale.

Do the update schemes have a physiologically plau-

sible implementation? Methods like the random-step

method ( Caprile and Girosi, 1990), that do not require

calculation of derivatives, are biologically the most plau-

sible. (In a typical random-step method, network weight

changes are generated randomly under the guidance of

simple rules; for example, the rule might be to double the

size of the random change if the network performace im-

proves and to halve the size if it does not.) In the Gaus-

sian case, with basis functions synthesized through the

product of Gaussian receptive �elds, moving the centers

means establishing or erasing connections to the prod-

uct unit. A similar argument can be made also about the

learning of the matrix W. Notice that in the diagonal

Gaussian case the parameters to be changed are exactly

the � of the Gaussians, i.e., the spread of the associated

receptive �elds. Notice also that the � for all centers

on one particular dimension is the same, suggesting that

the learning of wi may involve the modi�cation of the

scale factor in the input arrays rather than a change in

the dendritic spread of the postsynaptic neurons. In all

these schemes the real problem consists in how to pro-

vide the \teacher" input.

4 Predictions and Remarks

To summarize, we highlight the main predictions made

by our interpretation of Memory-Based Models of the

brain.

Predictions:

1. Sparse population coding. The general issue of

how the nervous system represents objects and con-

cepts is of course unresolved. \Sparse" or \punc-

tate" coding theories propose that individual cells

are highly speci�c and encode individual patterns.

\Population" theories propose that distributed ac-

tivity in a large number of cells underlies percep-

tion. Models of the HBF type suggest that a small

number of cells or groups of cells (the centers), each

broadly tuned, may be su�cient to represent a 3D

object. Thus our interpretation of MBMs predicts a
\sparse population coding", partway between fully

distributed representations and grandmother neu-

rones. Speci�cally, we predict that the activity of

approximately 100 cells is su�cient to distinguish

any particular object, although many more cells

may be active at the same time.

2. Viewer-centered and object-centered cells.

Our model (see the module of Figure 7) predicts

the existence of viewer-centered cells (the centers)

and object-centered cells (the output of the net-

work). Evidence pointing in this direction in the

case of face cells in IT is already available. We

predict a similar situation for other 3D objects.

It should be noted that the module of Figure 7 is

only a small part of an overall architecture. We

predict the existence of other types of cells, such

as pose-tuned, expression-tuned and illumination-

tuned cells. Very recently N. Logothetis (pers.

comm.) has succeeded in training monkeys to

recognize the same objects used in human psy-

chophysics, and has reproduced the key results of

B�ultho� and Edelman (1992). He also succeeded in

measuring generalization �elds of the type shown in

�gure 5 after training on a single view. We believe

that such a psychophysically measured generaliza-

tion �eld corresponds to a group of cells tuned in

a Gaussian-like manner to that view. We expect

that in trained monkeys, cells exist corresponding

to the hidden units of a HBF network, speci�c for
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the training view, as well as possibly other cells re-

sponding to subparts of the view. We conjecture

(although this is not a critical prediction of the the-

ory) that the step of creating the tuned cells, i.e.

the centers, is unsupervised: in other words, that

to create the centers it would be su�cient to expose

monkeys to target views without actually training

them to respond in speci�c ways.

3. Cells tuned to full views and cells tuned

to parts. Our model implies that both high-

dimensional and low-dimensional centers should

exist for recognizable objects, corresponding to full

templates and template parts. Physiologically this

corresponds to cells that require the whole object

to respond (say a face) as well as cells that respond

also when only a part of the object is present (say,

the mouth).

4. Rapid Synaptic plasticity. We predict that the

formation of new centers and the change in synap-

tic weights may happen over short time scales (pos-

sibly minutes) and relatively early in the visual

pathway (see Poggio, Fahle and Edelman, 1992).

As we mentioned, it is likely that the formation of

new centers is unsupervised while other synaptic

changes, corresponding to the ci coe�cients, should

be supervised.

5 HBF-like modules and theories of the

brain

As theories of the brain (or of parts of it) HBFs networks

replace computation with memory. They are equivalent

to modules that work as interpolating look-up tables. In
a previous paper one of us has discussed how theories

of this type can be regarded as a modern version of the

\grandmother cell" idea (Poggio, 1990).

The proposal that much information processing in the

brain is performed through modules that are similar to

enhanced look-up tables is attractive for many reasons.

It also promises to bring closer apparently orthogonal

views, such as the immediate perception of Gibson (1979)
and the representational theory of Marr (1982), since

almost iconic \snapshots" of the world may allow the

synthesis of computational mechanisms equivalent to vi-

sion algorithms. The idea may change signi�cantly the

computational perspective on several vision tasks. As

a simple example, consider the di�erent speci�c tasks

of hyperacuity employed by psychophysicists. The pro-

posal would suggest that an appropriate module for the

task, somewhat similar to a new \routine," may be syn-

thesized by learning in the brain (see Poggio, Fahle and

Edelman, 1992).

The claim common to several network theories, such

as Multilayer Perceptrons and HBF networks, is that

the brain can be explained, at least in part, in terms of

approximation modules. In the case of HBF networks

these modules can be considered as a powerful extension

of look-up tables. MLP networks cannot be interpreted

directly as modi�ed look-up tables (they are more similar

to an extension of multidimensional Fourier series), but

the case of normalized inputs shows that they are similar

to using templates.

The HBF theory predicts that population coding

(broadly tuned neurons combined linearly) is a conse-

quence of extending a look-up table scheme { corre-

sponding to interval coding { to yield interpolation (or

more precisely approximation), that is generalization. In

other words, sparse population coding and neurons tuned
to speci�c optimal stimuli are direct and strong predic-

tions of HBF schemes. It seems that the hidden units of

HBF models bear suggestive similarities with the usual

descriptions of cortical neurons as being tuned to op-

timal multidimensional stimuli. It is of course possible

that a hierarchy of di�erent networks { for example MLP

networks { may lead to tuned cells similar to the hidden

units of HBF networks.
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A An architecture for recognition: the

classi�cation and indexing route to

recognition

Here we elaborate on the architecture for a recognition

system introduced in Section 2. Figure 1 illustrates the

main components of the architecture and its two inter-

locking routes to recognition. The �rst route, which we

call the classi�cation and indexing route, is essentially

equivalent to an earlier proposal ( Poggio and Edelman,

1990) in which a HBF network receives inputs in the

form of feature parameters and classi�es inputs as same

or di�erent from the target object. This is a streamlined

route to recognition which requires that the features ex-

tracted in the early stages of image analysis be su�cient

to enable matching with samples in the database. Its

goal may be primarily basic level recognition, but it is

also the route that might suit best the search for and

recognition of an expected object. In that case it may be

used to identify objects (at the subordinate level) whose

class membership is known in advance. It consists of 3

main stages:

1. Image measurements

The �rst step is to compute a primal image repre-
sentation, which is a set of sparse measurements on

the image, based on appropriate smoothed deriva-

tives, corresponding to center-surround and direc-

tional receptive �elds. It can be argued that the

(vector) measurements to be considered should be

multiple nonlinear functions of di�erential opera-

tors applied to the image at sparse locations (for a

discussion of linear and non-linear measurement or

\matching" primitives see Appendix in Nishihara

and Poggio, 1984). (Similar procedures may in-

volve using Gaussians of di�erent scales and orien-

tations [e.g. Marr and Poggio, 1977], Koenderink's

\jets," [Koenderink and VanDoorn, 1990], Gabor

�lters, or wavelets. A regularized gradient of the

image also works well.) We call this array of mea-

surements an M-array; in general, it is a vector-

valued array). For recognition of frontal images of

faces an M-array as small as 30�30 has been found

su�cient to encode an image of initial size 512�512

(Brunelli and Poggio, 1992).

2. Feature detection and measurements

Key features, encoded by the primal measure-

ments, are then found and localized. These fea-

tures may be speci�c for a speci�c object class {

for the expected class, if it is known in advance,

or for an alternative class considered as a potential

match. This step can be regarded as performing

a sort of template matching with several appro-

priate examples; when a face is the object of the

search, templates may include eye pairs of di�erent

size, pose, and expression. In the HBF case the

templates would e�ectively correspond to di�erent

centers, and matching would proceed in a more so-

phisticated way than direct comparison. It is clear

that this step may by itself accomplish segmenta-

tion. These features may be local or global: they

may correspond to eye corners or to mean values of

the M-array �ltered through a large set of �lters.

3. Classi�cation and indexing

Parameter values estimated by the preceding stage

for the features of interest { e.g. the distance be-

tween eyes and mouth { are used in this stage for

classi�cation and indexing in a database of known

examples. In many cases this may lead by itself

to unique recognition, especially when situational

information, such as the expectedness of a partic-

ular object, restricts the relevant data base. Clas-

si�cation could be done via a number of classical

schemes such as Nearest Neighbor or with modules

that are more biologically plausible such as HBF

networks.

Some open questions remain:

� What are the features used by the human visual

system in the feature detection stage? The \non-

local" hypothesis is that there is a large set of �lters

tuned to di�erent 2D shape features and e�ciently

doing a kind of template matching on the input.

Some functional of the correlation function is then

evaluated (such as the max of the correlation or

some robust statistics on the correlation values, see

Viola and Poggio, in preparation). The results may

become some of the components (for that partic-

ular �lter, i.e. template) of the input vector to

object-speci�c networks consisting of hidden units

each tuned to a view and an output unit which is

view-invariant. Networks of this type may also ex-

ist not only for speci�c objects but also for general

object components, perhaps similar to more precise

versions of some of Biederman's geons (Biederman,

1987). They would be synthesized by familiarity

and their output may have a varying degree of view

invariance depending on the type and number of

the tuned cells in the hidden layer. Networks of

this type, tuned to a particular shape, could easily

be combined conjunctively to represent more com-

plex shapes (but still exploiting the fundamental

property of additivity). This general \non-local"

scheme avoids the correspondence problem since

the components of the input vectors are statistics

taken over the whole image, rather than individual

pixel values or feature locations. It may well be

that { in the absence of a serial mechanism such

as eye motions and attentional shifts { the visual

system does not have a way to keep and use spatial

relations between di�erent components or feaures

in an image and that it can only detect the likely

\presence" of, say, a few hundred features of vari-
12



ous complexity.

� The architecture has to be hierarchical, consist-

ing of a hierarchy of HBF-like networks. For in-

stance, an eye-recognizing MBM network may pro-

vide some of the inputs to a face recognition net-

work that will combine the presence (and possibly

relative position) of eyes with other face features

(remember that a MBM network can be regarded

as a disjunction of conjunctions). The inputs to the

eye-recognizing networks may be themselves pro-

vided by other RBF-like networks; this is similar

to the use in the eye-recognizing networks of inputs

that are the result of �ltering the image through of

a few basic �lters out of a large vocabulary consist-

ing of hundreds of \elementary" templates, repre-

senting a vocabulary of shapes of the type described

by Fujita and Tanaka (1992). The description of

Perrett and Oram (1992) is consistent with this

scenario. At various stages in this hierarchy more

invariances may be achieved for position, rotation,

scaling etc. in a similar way to how complex cells

are built from simple ones.

B An architecture for recognition: the

visualization route to recognition

The second potential route to recognition takes a neces-

sary detour from the �rst route to �ne-tune the matching

mechanisms. Like the classi�cation pathway it begins

with the two stages of image measurement and feature

detection, but diverges because it allows for the possi-

bility that a match between the database and measured

image features might not directly be found. Further pro-

cessing may take place on the image or on the stored

examples to bring the two into registration or to narrow

the range of the latter. The main purpose of this loop

is to correct for deformations before comparing image to

data base.

Computational arguments (Breuel, 1992) suggest that

this route should separate transformations to be applied

to the image (to correct image-plane deformations such

as image-plane translations, scaling and rotations) from

those to be applied to the database model (which may

include rotations-in-depth, illumination changes, and al-

terations in facial expression, for example). The system

may try a number of transformations in parallel and on

multiple scales of spatial resolution (see van Essen and

Anderson, this volume) until it �nds the one that suc-

ceeds. In general the whole process may be iterated sev-

eral times before it achieves a satisfactory level of con-

�dence. In the primate visual system, the likely site for

the latter transformations is cortical area IT, whereas the

former would probably take place earlier, as available re-

sults on properties of IT seems to suggest ( Gross, 1992;

Perrett et.al., 1982; Perrett and Harries, 1988; Perrett

et. al., 1989). The main steps of this hypothetical second

route to recognition are:

1. Image measurement

2. Feature detection

3. Image recti�cation

The feature detection stage provides information

about the location of key features that is used in

this stage to normalize for image-plane translation,

scaling and image-plane rotation of the input M-

array.

4. Pose estimation

3-D pose (2 parameters), illumination, and other

parameters (such as facial expression) are es-

timated from the M-array. This computation

could be performed by an MBM module that has

\learned" the appropriate estimation function from

examples of objects of the same class.

5. Visualization

The models (M-arrays in the data-base correspond-

ing to known objects) are warped in the dimensions

of pose and expression and illumination, to bring

them into register with the estimate obtained from

the input image. The transformation of the models

is performed by exploiting information speci�c to

the given object (several views per object may have

been stored in memory) or by applying a generic

transformation (e.g., for a face, from \serious" to

\smiling") learned from objects of the same class.

Several transformations may be attempted at this

stage before a good match is found in the next step.

6. Veri�cation and indexing

The recti�ed \image" is compared with the warped

data base of standard representations. Open ques-

tions remain on how the data base may be orga-

nized and what are the most e�cient means of in-

dexing it.
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Figure 1: A sketch of an architecture for recognition with two hypothetical routes to recognition. Single arrows rep-
resent the classi�cation and indexing route described in Appendix A. Double arrows represent the main visualization
route, and dashed arrows alternative pathways within it.
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Figure 2: A RBF network for the approximation of two-dimensional functions (left) and its basic \hidden" unit
(right). x and y are components of the input vector which is compared via the RBF h at each center t. Outputs of
the RBFs are weighted by the ci and summed to yield the function F evaluated at the input vector. N is the total
number of centers.
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Figure 3: A sketch of possibly the most compact (but not the only!) implementation of the proposed recognition
architecture in terms of modules of the HBF type.
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Figure 4: A network of the Hyper Basis Functions type. For object recognition the inputs could be image measurements
such as values of di�erent �lters at each of a number of locations in the image. The network is a natural extension of
the template matching scheme and contains it as a special case. The dotted lines correspond to linear and constant

terms in the expansion. The output unit may contain a sigmoidal transformation of the sum of its inputs (see Poggio
and Girosi, 1990b).

20



Figure 5: The generalization �eld associated with a single training view. Whereas it is easy to distinguish between,
say, tubular and amoeba-like 3D objects, irrespective of their orientation, the recognition error rate for speci�c objects
within each of those two categories increases sharply with misorientation relative to the familiar view. This �gure
shows that the error rate for amoeba-like objects, previously seen from a single attitude, is viewpoint-dependent.
Means of error rates of six subjects and six di�erent objects are plotted vs. rotation in depth around two orthogonal
axes (B�ultho�, Edelman and Sklar, 1991; Edelman and B�ultho�, 1992). The extent of rotation was �60� in each
direction; the center of the plot corresponds to the training attitude. Shades of gray encode recognition rates, at
increments of 5% (white is better than 90%; black is 50%). From B�ultho� and Edelman (1992a). Note that viewpoint
independence can be achieved by familiarizing the subject with a su�cient number of training views of the 3D object.
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Figure 6: A three-dimensional radial Gaussian implemented by multiplying a two-dimensional and a one-dimensional
Gaussian receptive �eld . The latter two functions are synthesized directly by appropriately weighted connections
from the sensor arrays, as neural receptive �elds are usually thought to arise. Notice that they transduce the implicit
position of stimuli in the sensor array into a number (the activity of the unit). They thus serve the dual purpose of
providing the required \number" representation from the activity of the sensor array and of computing a Gaussian
function. 2D Gaussians acting on a retinotopic map can be regarded as representing 2D \features", while the radial
basis function represents the \template" resulting from the conjunction of those lower-dimensional features. From
Poggio and Girosi (1989a).
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a. b.

Figure 7: (a) The HBF network proposed for the recognition of a 3D object from any of its perspective views ( Poggio
and Edelman, 1990). The network attempts to map any view (as de�ned in the text) into a standard view, arbitrarily

chosen. The norm of the di�erence between the output vector f and the standard view s is thresholded to yield a 0; 1

answer (instead of the standard view the output of the netwok can be directly a binary classi�cation label). The 2N
inputs accommodate the input vector v representing an arbitrary view. Each of the n radial basis functions is initially

centered on one of a subset of the M views used to synthesize the system (n � M). During training each of the M
inputs in the training set is associated with the desired output, i.e., the standard view s. Fig. (b) shows a completely
equivalent interpretation of (a) for the special case of Gaussian radial basis functions. Gaussian functions can be
synthesized by multiplying the outputs of two-dimensional Gaussian receptive �elds, that \look" at the retinotopic
map of the object point features. The solid circles in the image plane represent the 2D Gaussians associated with the
�rst radial basis function, which represents the �rst view of the object. The dotted circles represent the 2D receptive
�elds that synthesize the Gaussian radial function associated with another view. The 2D Gaussian receptive �elds
transduce values of features, represented implicitly as activity in a retinotopic array, and their product \computes" the
radial function without the need of calculating norms and exponentials explicitly. From Poggio and Girosi (1990c).
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