
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1414 April 1993

Exploiting the Parallelism Exposed by
Partial Evaluation

Andrew A. Berlin and Rajeev J. Surati

Abstract

We describe an approach to parallel compilation that seeks to harness the vast amount
of �ne-grain parallelism that is exposed through partial evaluation of numerically-
intensive scienti�c programs. We have constructed a compiler for the Supercomputer
Toolkit parallel processor that uses partial evaluation to break down data abstractions
and program structure, producing huge basic blocks that contain large amounts of
�ne-grain parallelism. We show that this �ne-grain parallelism can be e�ectively uti-
lized even on coarse-grain parallel architectures by selectively grouping operations
together so as to adjust the parallelism grain-size to match the inter-processor com-
munication capabilities of the target architecture.

Copyright c
 Massachusetts Institute of Technology, 1993

This report describes research done at the Arti�cial Intelligence Laboratory of the Massachusetts Institute of Technol-
ogy.Support for this research is provided in part by the Advanced Research Projects Agency of the Department of Defense
under O�ce of Naval Research contract N00014-92-J-4097 and by the National Science Foundation under grant number
MIP-9001651. Andrew Berlin's work was supported in part by an IBM Graduate Fellowship in Computer Science.

1 Introduction

One of the major obstacles to compiling parallel pro-
grams is the question of how to automatically identify
and exploit the underlying parallelism inherent in a pro-
gram. We have implemented a compiler for parallel
programs that uses novel techniques to detect and ef-
fectively utilize the �ne-grained parallelism that is in-
herent in many numerically-intensive scienti�c computa-
tions. Our approach di�ers from the current fashion in
parallel compilation, in that rather than relying on the
structure of the program to detect locality and paral-
lelism, we use partial evaluation[5] to remove most loops
and high-level data structure manipulations, producing
a low-level program that exposes all of the parallelism
inherent in the underlying numerical computation. We
then use an operation-aggregating-technique to increase
the grain-size of this parallelism to match the communi-
cation characteristics of the target parallel architecture.
This approach, which was used to implement the com-
piler for the Supercomputer Toolkit parallel computer[1],
has proven highly e�ective for an important class of
numerically-oriented scienti�c problems.

Our approach to compilation is speci�cally tailored
to produce e�cient statically scheduled code for par-
allel architectures which su�er from serious inter-
processor communication latency and bandwidth limi-
tations. For instance, on the eight processor Supercom-
puter Toolkit system in operation at M.I.T., six cycles1

are required before a value computed by one processor is
available for use by another, while bandwidth limitations
allow only one value out of every eight values produced
to be transmitted among the processors. Despite these
limitations, code produced by our compiler for an im-
portant astrophysics application2 runs 6.2 times faster
on our eight-processor system than does near-optimal
code produced for a uniprocessor system.3

Interprocessor communication latency and bandwidth
limitations pose severe obstacles to the e�ective use of
multiple processors. High communication latency re-
quires that there be enough parallelism available to al-
low each processor to continue to initiate operations even
while waiting for results produced elsewhere to arrive.4

Limited communication bandwidth severely restricts the

1A \cycle" corresponds to the time required to perform a

oating-point multiplication or addition operation.

2Stormer integration of the 9-body gravitational attrac-
tion problem

3The code produced for the uniprocessor was also partially
evaluated, to ensure that the factor of 6.2 speedup is entirely
due to parallel execution.

4[5] (page 35) describes how the e�ect that interprocessor
communication latency has on available parallelism is similar
to that of increasing the length of an individual processor's
pipeline. In order to continue to initiate instructions on a
heavily pipelined processor, there must be operations avail-
able that do not depend on results that have not yet emerged
from the processor pipeline. Similarly, in order to continue to
initiate instructions on a parallel machine that su�ers from
high communication latency, there must be operations avail-
able that do not depend on results that have not yet been
received.

parallelism grain-size that may be utilized by requir-
ing that most values used by a processor be produced
on that processor, rather than being received from an-
other processor. We overcome these obstacles by com-
bining partial evaluation, which exposes large amounts
of extremely �ne-grained parallelism, with an operation-
aggregating-technique that increases the grain-size of
the operations being scheduled for parallel execution to
match the communication capabilities of the target ar-
chitecture.

2 Our Approach

We use partial evaluation to eliminate the barriers to
parallel execution imposed by the data representations
and control structure of a high-level program. Par-
tial evaluation is particularly e�ective on numerically-
oriented scienti�c programs since these programs tend
to be mostly data-independent, meaning that they con-
tain large regions in which the operations to be per-
formed do not depend on the numerical values of the
data being manipulated.5 As a result of this data-
independence, partial evaluation is able to perform in
advance, at compile time, most data structure refer-
ences, procedure calls, and conditional branches related
to data structure size, leaving only the underlying nu-
merical computations to be performed at run time. The
underlying numerical computations form huge sequences
of purely numerical code, known as basic blocks. Of-
ten, these basic blocks contain several thousand instruc-
tions. The order in which basic blocks are invoked is
determined by data-dependent conditional branches and
looping constructs.
We schedule the partially-evaluated program for par-

allel execution primarily by performing the operations
within an individual basic block in parallel. This is prac-
tical only because the basic blocks produced by partial
evaluation are so large. Were it not for partial evalua-
tion, the basic blocks would be two orders of magnitude
smaller, requiring the use of techniques such as software
pipelining and trace scheduling, that seek to overlap the
execution of multiple basic blocks. Executing a huge ba-
sic block in parallel is very attractive since it is clear
at compile time which operations need to be performed,
which results they depend on, and how much computa-
tion each instruction will require, ensuring the e�ective-
ness of static scheduling techniques. In contrast, par-
allelizing a program by executing multiple basic blocks
simultaneously requires guessing the direction that con-
ditional branches will take, how many times a particular
basic block may be executed, and how large the data
structures will be.
Our approach of combining partial evaluation with

parallelism grain size selection was used to implement
the compiler for the Supercomputer Toolkit parallel
processor.6[1] The Toolkit compiler operates in four ma-

5For instance, matrix multiplication performs the same set
of operations, regardless of the particular numerical values of
the matrix elements.

6See Appendix for a brief overview of the architecture of
the Supercomputer Toolkit parallel processor"

1

Code

Parallel
Object

Instruction

Scheduler

Scheduler

Source
Scheme Partial

Evaluator

Region

Divider

Region

Figure 1: Four phase compilation process that produces par-
allel object code from Scheme source code.

jor phases, as shown in Figure 1. The �rst phase per-
forms partial evaluation, followed by traditional com-
piler optimizations, such as constant folding and dead-
code elimination. The second phase analyzes locality
constraints within each basic block, locating operations
that depend so closely on one another that it is clearly
desirable that they be computed on the same processor.
Closely related operations are grouped together to form
a higher grain-size instruction, known as a region. The
third compilation phase uses heuristic scheduling tech-
niques to assign each region to a processor. The �nal
phase schedules the individual operations for execution
within each processor, accounting for pipelining, mem-
ory access restrictions, register allocation, and �nal allo-
cation of the inter-processor communication pathways.

3 The Partial Evaluator

Partial evaluation converts a high-level, abstractly writ-
ten, general purpose program into a low-level program
that is specialized for the particular application at hand.
For instance, a program that computes force interactions
among a system of N particles might be specialized to
compute the gravitational interactions among 5 plan-
ets of our particular solar system. This specialization
is achieved by performing in advance, at compile time,
all operations that do not depend explicitly on the ac-
tual numerical values of the data. Many data structure
references, procedure calls, conditional branches, table
lookups, loop iterations, and even some numerical oper-
ations may be performed in advance, at compile time,
leaving only the underlying numerical operations to be
performed at run time.
The Toolkit compiler performs partial evaluation us-

ing the symbolic execution technique described in [4].
The partial evaluator takes as input the program to be
compiled, as well as the input data structures associated
with a particular application. Some numerical values
within the input data structures will not be available at
compile time; these missing numerical values are rep-

HIGH-LEVEL PROGRAM:

(define (square x) (* x x))

(define (sum-of-squares L)

(apply + (map square L)))

(define input-data

(list

(make-placeholder

'floating-point) ;;placeholder #1

(make-placeholder

'floating-point) ;;placeholder #2

3.14))

(partial-evaluate (sum-of-squares input-data))

PARTIALLY-EVALUATED PROGRAM:

(INPUT 1) ;;numerical value for placeholder #1

(INPUT 2) ;;numerical value for placeholder #2

(ASSIGN 3

(floating-point-multiply (FETCH 1) (FETCH 1)))

(ASSIGN 4

(floating-point-multiply (FETCH 2) (FETCH 2)))

(ASSIGN 5

(floating-point-add (FETCH 3) (FETCH 4) 9.8596))

(RESULT 5)

Figure 2: Partial evaluation of the sum-of-squares pro-
gram, for an application where the input is known to be
a list of three
oating-point numbers, the last of which
is always 3.14. Notice how the squaring of 3.14 to pro-
duce 9.8596 took place at compile time, and how all list-
manipulation operations have been eliminated.

resented by a data structure known as a placeholder.
The data-independent portions of the program are ex-
ecuted symbolically at compile time, allowing all oper-
ations that do not depend on missing numerical values
to be performed in advance, leaving only the lowest-level
numerical operations to be performed at runtime. This
process is illustrated in Figure 2, which shows the result
of partially evaluating a simple sum-of-squares program.
Although partial evaluation is highly e�ective on the

data-independent portions of a program, data-dependent
conditional branches pose a serious obstacle. Data-
dependent conditional branches interrupt the
ow of
compile time execution, since it will not be known until
runtime which branch of the conditional should be exe-
cuted. Fortunately, most numerical programs consist of
large sequences of data-independent code, separated by
occasional data-dependent conditional branches.7 We
partially evaluate each data-independent segment of a

7Some typical uses of data-dependent branches in scien-
ti�c programs are to check for convergence, or to examine the
accumulated error when varying the step-size of a numerical
integrator. These uses usually occur after a long sequence of
data-independent code. Indeed, the only signi�cant excep-
tion to this usage pattern that we have encountered is when

2

program, leaving intact the data-dependent branches
that glue the data-independent segments together.8 In
this way, each data-independent program segment is con-
verted into a sequence of purely numerical operations,
forming a huge basic block that contains a large amount
of �ne-grain parallelism.

4 Exposing Fine-Grain Parallelism

Each basic block produced by partial evaluation may
be represented as a data-independent (static) data-
ow
graph whose operators are all low-level numerical opera-
tions. Previous work has shown that this graph contains
large amounts of low-level parallelism. For instance, as
illustrated in Figure 3, a parallelism pro�le analysis of
the 9-body gravitational attraction problem9 indicates
that partial evaluation exposed so much low-level paral-
lelism that in theory, parallel execution could speed up
the computation by a factor of 69 times faster than a
uniprocessor execution.
Achieving the theoretical speedup factor of 69 for the

9-body problem would require using 516 non-pipelined
processors capable of instantaneous communication with
one another. In practice, much of the available paral-
lelism must be used to keep processor pipelines full, and
it does take time (latency) to communicate between pro-
cessors. As the latency of inter-processor communication
increases, the maximum possible speedup decreases, as
some of the parallelism must be used to keep each pro-
cessor busy while awaiting the arrival of results from
neighboring processors. Communication bandwidth lim-
itations further restrict how parallelism may be used by
requiring that most values used by a processor actually
be produced by that processor.

a matrix solver examines the numerical values of the ma-
trix elements in order to choose the best elements to use as
pivots. [3] describes additional techniques for partially eval-
uating data-dependent branches, such as generating di�erent
compiled code for each possible branch direction, and then
choosing at run-time which set of code to execute. Although
techniques of this sort can not overcome large-scale control

ow changes, they have proven quite e�ective for dealing with
localized branches such as those associated with the selection
operators MIN, MAX, and ABS, as well as with piecewise de-
�ned equations.

8The partial-evaluation phase of our compiler is currently
not very well automated, requiring that the programmer pro-
vide the compiler with a set of input data structures for each
data-independent code sequence, as if the data-independent
sequences are seperate programs being glued together by the
data-dependent conditional branches. This manual interface
to the partial evaluator is somewhat of an implementation
quirk; there is no reason that it could not be more automated.
Indeed, several Supercomputer Toolkit users have built code
generation systems on top of our compiler that automati-
cally generate complete programs, including data-dependent
conditionals, invoking the partial evaluator to optimize the
data-independent portions of the program. Recent work by
Weise, Ruf, and Katz[19, 20, 13] describes additional tech-
niques for automating the partial-evaluation process across
data-dependent branches.

9Speci�cally, one time-step of a 12th-order Stormer in-
tegration of the gravity-induced motion of a 9-body solar
system.

|
0

|
2

|
4

|
6

|
8

|
10

|
12

|
14

|
16

|
18

|
20

|
22

|
24

|
26

|
28

|
30

|
32

|
34

|0
|60

|120

|180

|240

|300

|360

|420

|480

|540

 Operation Level Parallelism Profile Storint9b

 Cycles

 P
ro

ce
ss

o
rs

Figure 3: Parallelismpro�le of the 9-body problem. This
graph represents all of the parallelism available in the
problem, taking into account the varying latency of nu-
merical operations.

5 Grain Size vs. Bandwidth

We have found that bandwidth limitations make it im-
practical to use critical path based scheduling techniques
to spread �ne-grain parallelism across multiple proces-
sors. In the latency-limited case investigated by Berlin
and Weise [5], it is feasible to schedule a �ne-grain op-
eration for parallel execution whenever there is su�-
cient time for the operands to arrive at the processor
doing the computing, and for the result to be trans-
mitted to its consumers. Hence it is practical to assign
non-critical-path operations to any available processor.
Bandwidth limitations destroy this option by limiting
the number of values that may be transmitted between
processors, thereby forcing operations that could oth-
erwise have been computed elsewhere to be computed
on the processor that is the ultimate consumer of their
results. Indeed, on the Supercomputer Toolkit archi-
tecture, which su�ers from both latency and bandwidth
limitations, heuristic techniques similar to those used by
Berlin and Weise achieved a dismal speedup factor of
only 2.5 using 8 processors. One possible solution to the
bandwidth problem is to modify the critical-path based
scheduling approach to make a much more careful and
computationally-expensive decision regarding which re-
sults may be transmitted between processors, and which
processor a particular result should be computed in. Al-
though this modi�cation could be achieved by adding a
backtracking heuristic that searched for di�erent ways
of assigning each �ne-grain instruction to a processor,10

10Indeed, one possibility would be to design the backtrack-
3

this optimization based approach seems computationally
prohibitive for use on the huge basic blocks produced by
partial evaluation.

6 Adjusting the Grain Size

Rather than extending the critical-path based approach
to handle bandwidth limitations by searching for a glob-
ally acceptable �ne-grain scheduling solution, we seek to
hide the bandwidth limitation by increasing the grain-
size of the operations being scheduled. Prior to initiat-
ing critical-path based scheduling, we perform a local-
ity analysis that groups together operations that depend
so closely on one other that it would not be practical
to place them in di�erent processors. Each group of
closely interdependent operations forms a larger grain-
size instruction, which we refer to as a region.11 Some
regions will be large, while others may be as small as
one �ne-grain instruction. In essence, grouping opera-
tions together to form a region is a way of simplifying
the scheduling process by deciding in advance that cer-
tain opportunities for parallel execution will be ignored
due to limited communication capabilities.
Since all operations within a region are guaranteed to

be scheduled onto the same processor, the maximum re-
gion size must be chosen to match the communication
capabilities of the target architecture. For instance, if
regions are permitted to grow too large, a single region
might encompass the entire data-
ow graph, forcing the
entire computation to be performed on a single proces-
sor! Although strict limits are therefore placed on the
maximumsize of a region, regions need not be of uniform
size. Indeed, some regions will be large, corresponding
to localized computation of intermediate results, while
other regions will be quite small, corresponding to results
that are used globally throughout the computation.
We have experimented with several di�erent heuristics

for grouping operations into regions. The optimal strat-
egy for grouping instructions into regions varies with the
application and with the communication limitations of
the target architecture. However, we have found that
even a relatively simple grain-size adjustment strategy
dramatically improves the performance of the scheduling
process. For instance, as illustrated in Figure 4, when a
value is used by only one instruction, the producer and
consumer of that value may be grouped together to form
a region, thereby ensuring that the scheduler will not
place the producer and consumer on di�erent processors
in an attempt to use spare cycles wherever they hap-
pened to be available. Provided that the maximum re-
gion size is chosen appropriately,12 grouping operations

ing heuristic based on a simulated annealing search of the
scheduling con�guration space.

11The name region was chosen because we think of the
grain-size adjustment technique as identifying "regions" of
locality within the data-
ow graph. The process of grain-size
adjustment is closely related to the problem of graph multi-
section, although our region-�nder is somewhat more partic-
ular about the properties (shape, size, and connectivity) of
each "region" sub-graph than are typical graph multisection
algorithms.

12The region size must be chosen such that the compu-

1

R2

R1

D

CBA

/

_

5

11
+

1*

*

Figure 4: A Simple Region Forming Heuristic. A
region is formed by grouping together operations that
have a simple producer/consumer relationship. This pro-
cess is invoked repeatedly, with the region growing in size
as additional producers are added. The region-growing
process terminates when no suitable producers remain,
or when the maximum region size is reached. A pro-
ducer is considered suitable to be included in a region if
it produces its result solely for use by that region. (The
numbers shown within each node re
ect the computa-
tional latency of the operation.)

together based on locality prevents the scheduler from
making gratuitous use of the communication channels,
forcing it to focus on scheduling options that make more
e�ective use of the limited communication bandwidth.
An important aspect of grain-size adjustment is that

the grain-size is not increased uniformly. As shown in
Figure 5, some regions are much larger than others. In-
deed, it is important not to forcibly group non-localized
operations into regions simply to increase the grain-size.
For example, it is likely that the result produced by an
instruction that has many consumers will be transmitted
amongst the processors, since it would not be practical
to place all of the consumers on the result-producing pro-
cessor. In this case, creating a large region by grouping
together the producer with only some of the consumers
would increase the grain-size, but would not reduce inter-
processor communication, since the result would need to
be transmitted anyway. In other words, it only makes
sense to limit the scheduler's options by grouping opera-
tions together when doing so will reduce inter-processor
communication.

7 Parallel Scheduling

Exploiting locality by grouping operations into regions
forces closely-related operations to occur on the same

tational latency of the operations grouped together is well-
matched to the communication bandwidth limitations of the
architecture. If the regions are made too large, communi-
cation bandwidth will be underutilized since the operations
within a region do not transmit their results.

4

9-Body Program Region Latencies

Region Size Number of Regions
1 108
2 28
3 28
5 56
6 1
7 8
14 36
41 24
43 3

Figure 5: The numerical operations in the 9-body pro-
gram were divided into regions based on locality. This
table shows how region size can vary depending on the lo-
cality structure of the computation. Region size is mea-
sured by as measured by computational latency (cycles).
The program was divided into 292 regions, with an av-
erage region size of 7.56 cycles.

processor. Although this reduces inter-processor com-
munication requirements, it also eliminates many op-
portunities for parallel execution. Figure 6 shows the
parallelism remaining in the 9-body problem after oper-
ations have been grouped into regions. Comparison with
Figure 3 shows that increasing the grain-size eliminated
about half of the opportunities for parallel execution.
The challenge facing the parallel scheduler is to make ef-
fective use of the limited parallelism that remains, while
taking into consideration such factors as communication
latency, memory tra�c, pipeline delays, and allocation
of resources such as processor buses and inter-processor
communication channels.
The Supercomputer Toolkit compiler schedules oper-

ations for parallel execution in two phases. The �rst
phase, known as the region-level scheduler, is primar-
ily concerned with coarse-grain assignment of regions to
processors, generating a rough outline of what the �nal
programwill look like. The region-level scheduler assigns
each region to a processor; determines the source, des-
tinations, and approximate time of transmission of each
inter-processor message; and determines the preferred
order of execution of the regions assigned to each pro-
cessor. The region-level scheduler takes into account the
latency of numerical operations, the inter-processor com-
munication capabilities of the target architecture, the
structure (critical path) of the computation, and which
data values each processor will store in its memory. How-
ever, the region-level scheduler does not concern itself
with �ner-grain details such as the pipeline structure of
the processors, the detailed allocation of each communi-
cation channel, or the ordering of individual operations
within a processor. At the coarse grain-size associated
with the scheduling of regions, a straightforward set of
critical-path based scheduling heuristics13 have proven

13The heuristics used by the region-level scheduler are
closely related to list-scheduling [8]. A detailed discussion of
the heuristics used by the region-level scheduler is presented
in [22].

|
0

|
4

|
8

|
12

|
16

|
20

|
24

|
28

|
32

|
36

|
40

|
44

|
48

|
52

|
56

|
60

|
64

|
68

|0

|20

|40

|60

|80

|100

|120

|140

 Heuristic Limited(no size limit imposed) Parallelism Profile storint9b

 Cycles

 P
ro

ce
ss

o
rs

Figure 6: Parallelism pro�le of the 9-body problem after
operations have been grouped together to form regions.
Comparison with Figure 3 clearly shows that increasing
the grain-size signi�cantly reduced the opportunities for
parallel execution. In particular, the maximum speedup
factor dropped from 98 times faster to only 49 times
faster than a single processor.

5

quite e�ective. For the 9-body problem example, the
computational load was spread so evenly that the varia-
tion in utilization e�ciency among the 8 processors was
only 1%.
The �nal phase of the compilation process is

instruction-level scheduling. The region-level scheduler
provides the instruction-level scheduler with a set of op-
erations to execute on each processor, along with a set
of preferences regarding the order in which those oper-
ations should be computed, and a list of results that
need to be transmitted among the processors. The
instruction-level derives low-level pipelined instructions
for each processor, chooses the exact time and commu-
nication channel for each inter-processor transmission,
and determines where values will be stored within each
processor. The instruction-level scheduler chooses the
�nal ordering of the operations within each processor,
taking into account processor pipelining, register allo-
cation, memory access restrictions, and availability of
interprocessor-communication channels. Whenever pos-
sible, the order of operations is chosen so as to match the
preferences of the region-level scheduling phase. How-
ever, the instruction-level scheduler is free to reorder op-
erations as needed, intertwining operations without re-
gard to which coarse-grain region they were originally a
member of.
The instruction-level scheduler begins by performing a

data-use analysis to determine which instructions share
data values and should therefore be placed near each
other for register allocation purposes. The scheduler
combines the data-use information with the instruction-
ordering preferences provided by the region-level sched-
uler to produce a scheduling priority for each instruction.
The scheduling process is performed one cycle at a time,
performing scheduling of a cycle on all processors be-
fore moving on to the next cycle. Instructions compete
for resources based on their scheduling priority; in each
cycle, the highest-priority operation whose data and pro-
cessor resources are available will be scheduled. Due to
this competition for data and resources, operations may
be scheduled out of order if their resources happen to
be available, in order to keep the processor busy. In-
deed, when the performance of the instruction-scheduler
is measured independently of the region-scheduler, by
generating code for a single VLIW processor, utilization
e�ciencies in excess of 99.7% are routinely achieved, rep-
resenting nearly optimal code.
An aspect of the scheduler that has proven to be

particularly important is the retroactive scheduling of
memory references. Although computation instructions
(such as + or �) are scheduled on a cycle-by-cycle basis,
memory LOAD instructions are scheduled retroactively,
wherever they happen to �t in. For instance, when a
computation instruction requires that a value be loaded
into a register from memory, the actual memory access
operation14 is scheduled in the past for the earliest mo-

14On the toolkit architecture, two memory operations may
occur in parallel with computation and address-generation
operations. This ensures that retroactively scheduled mem-
ory accesses will not interfere with computations from previ-
ous cycles that have already been scheduled.

ment at which both a register and a memory-bus cycle
are available; the memory operation may occur 50 or
even 100 instructions earlier than the computation in-
struction. Since on the Supercomputer Toolkit, mem-
ory operations must compete for bus access with inter-
processor messages, retroactive scheduling of memory
references helped to avoid interference between memory
and communication tra�c.

8 Performance Measurements

The Supercomputer Toolkit and its associated compiler
have been used for a wide variety of applications, rang-
ing from computation of human genetic pedigrees to the
simulation of electrical circuits. The applications that
have generated the most interest from the scienti�c com-
munity involve various integrations of the N-body grav-
itational attraction problem.15 Parallelization of these
integrations has been previously studied by Miller[15],
who parallelized the program by using futures to man-
ually specify how parallel execution should be attained.
Miller shows how one can re-write the N-body program
so as to eliminate sequential data structure accesses to
provide more e�ective parallel execution, manually per-
forming some of the optimizations that partial evaluation
provides automatically. Others have developed special-
purpose hardware that parallelizes the 9-body problem
by dedicating one processor to each planet.[2] Previous
work in partial evaluation [3, 4, 5] has shown that the
9-body problem contains large amounts of �ne-grain par-
allelism,making it plausible that more subtle paralleliza-
tions are possible without the need to dedicate one pro-
cessor to each planet.
We have measured the e�ectiveness of coupling partial

evaluation with grain-size adjustment to generate code
for the Supercomputer Toolkit parallel computer, an ar-
chitecture that su�ers from serious interprocessor com-
munication latency and bandwidth limitations. Figure 7
shows the parallel speedups achieved by our compiler for
several di�erent N-body interaction applications. Fig-
ure 9 focuses on the 9-body program (ST9) discussed ear-
lier in this paper, illustrating how the parallel speedup
varies with the number of processors used. Note that
as the number of processors increases beyond 10, the
speedup curves level o�. A more detailed analysis has
revealed that this is due to the saturation of the inter-
processor communicationpathways, as illustrated in Fig-
ure 10.

9 Related Work

The use of partial evaluation to expose parallelismmakes
our approach to parallel compilation fundamentally dif-
ferent from the approaches taken by other compilers.
Traditionally, compilers have maintained the data struc-
tures and control structure of the original program. For
example, if the original program represented an object
as a doubly-linked list of numbers, the compiled program
would as well. Only through partial evaluation can the

15For instance, [23] describes results obtained using the
Supercomputer Toolkit that prove that the solar system is
chaotic.

6

Program Single Processor Eight Processors Speedup
cycles cycles

ST6 5811 954 6.1
ST9 11042 1785 6.2
ST12 18588 3095 6.0
RK9 6329 1228 5.2

Figure 7: Speedups of various applications running on 8
processors. Four di�erent computations have been com-
piled in order to measure the performance of the com-
piler: a 6 particle stormer integration(ST6), a 9 particle
stormer integration(ST9), a 12 particle stormer integra-
tion(ST12), and a 9 particle fourth-order Runge Kutta
integration. Speedup is the single processor execution
time of the computation divided by the total execution
time on the multiprocessor.

|
0

|
30

|
60

|
90

|
120

|
150

|
180

|
210

|
240

|
270

|
300

|
330

|0

|1

|2

|3

|4

|5

|6

|7

|8

 Processor Utilization per Cycle for Storint9b

 Cycle

 P
ro

ce
ss

o
rs

Figure 8: The result of scheduling the 9-body problem
onto 8 Supercomputer Toolkit processors. Comparison
with with the region-level parallelism pro�le (�gure 6)
illustrates how the scheduler spread the course-grain par-
allelism across the processors. A total of 340 cycles are
required to complete the computation. On average, 6.5
of the 8 processors are utilized during each cycle.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 Ideal Linear

ST9

PROCESSORS

S
P

E
E

D
U

P

SPEEDUP VS PROCESSORS
N-body Stormer Integrator

Figure 9: Speedup graph of Stormer integrations. Am-
ple speedups are available to keep the 8-processor Su-
percomputer Toolkit busy, However, the incremental im-
provement of using more than 10 processors is relatively
small.

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of Processors

0

10

20

30

40

50

60

70

80

90

100
P

er
ce

n
ta

g
e

U
ti

li
za

ti
o

n
 o

f
B

o
th

 B
u

ss
es

Total Bus Utilization vs Processors

Figure 10: Utilization of the inter-processor communi-
cation pathways. The communication system becomes
saturated at around 10 processors. This accounts for
the lack of incremental improvement available from us-
ing more than 10 processors that was seen in Figure 9.

data structures used by the programmer to think about
the problem be removed, leaving the compiler free to
optimize the underlying numerical computation, unhin-
dered by sequentially-accessed data structures and pro-
cedure calls.
Many compilers for high-performance architectures

use program transformations to exploit low-level paral-
lelism. For instance, compilers for vector machines un-
roll loops to help �ll vector registers.[18] Other paral-
lelization techniques include trace-scheduling, software
pipelining, vectorizing, as well as static and dynamic
scheduling of data-
ow graphs.

9.1 Trace Scheduling

Compilers that exploit �ne-grain parallelism often em-
ploy trace-scheduling techniques [9] to guess which way a
branch will go, allowing computations beyond the branch
to occur in parallel with those that precede the branch.
Our approach di�ers in that we use partial evaluation to
take advantage of information about the speci�c applica-
tion at hand, allowing us to totally eliminate many data-
independent branches, producing basic blocks on the
order of several thousands of instructions, rather than
the 10-30 instructions typically encountered by trace-
scheduling based compilers. An interesting direction for
future work would be to add trace-scheduling to our ap-
proach, to optimize across the data-dependent branches
that occur at basic block boundaries.
Most trace-scheduling based compilers use a variant

of List-scheduling[8] to parallelize operations within an

individual basic block. Although list-scheduling using
critical-path based heuristics is very e�ective when the
grain-size of the instructions is well-matched to the inter-
processor communication bandwidth, we have found
that in the case of limited bandwidth, a grain-size ad-
justment phase is required to make the list-scheduling
approach e�ective.

9.2 Software Pipelining

Software Pipelining [11] optimizes a particular �xed size
loop structure such that several iterations of the loop
are started on di�erent processors at constant intervals
of time. This increases the throughput of the compu-
tation. The e�ectiveness of software pipelining will be
determined by whether the grain-size of the parallelism
expressed in the looping structure employed by the pro-
grammer matches the architecture: software pipelining
can not parallelize a computation that has its parallelism
hidden behind inherently sequential data references and
spread across multiple loops. The partial-evaluation ap-
proach on such a loop structure would result in the loop
being completely unrolled with all of the sequential data
structure references removed and all of the �ne grain
parallelism in the loop's computation exposed and avail-
able for parallelization. In some applications, especially
those involving partial di�erential equations, fully un-
rolling loops may generate prohibitively large programs.
In these situations, partial evaluation could be used to
optimize the innermost loops of a computation, with
techniques such as software pipelining used to handle
the outer loops.

9.3 Vectorizing

Vectorizing is a commonly used optimization for vec-
tor supercomputers, executing operations on each vec-
tor element in parallel. This technique is highly e�ec-
tive provided that the computation is composed primar-
ily of readily identi�able vector operations (such as ma-
trix multiplication). Most vectorizing compilers gener-
ate vector code from a scalar speci�cation by recogniz-
ing certain standard looping constructs. However, if the
source program lacks the necessary vector-accessing loop
structure, the programs do very poorly. For computa-
tions that are mostly data-independent, the combina-
tion of partial evaluation with static scheduling tech-
niques has the potential to be vastly more e�ective than
vectorization. Whereas a vectorizing compiler will of-
ten fail simply because the computation's structure does
not lend itself to a vector-oriented representation, the
partial-evaluation/static scheduling approach can often
succeed by making use of very �ne-grained parallelism.
On the other hand, for computations that are highly
data-dependent, or which have a highly irregular struc-
ture that makes unrolling loops infeasible, vectorizing
remains an important option.

9.4 Iterative Restructuring

Iterative restructuring represents the manual approach
to parallelization. Programmer's write and rewrite their
code until the parallelizer is able to automatically rec-
ognize and utilize the available parallelism. There are

8

many utilities for doing this, some of which are discussed
in [7]. This approach is not
exible in that whenever one
aspect of the computation is changed, one must ensure
that parallelism in the changed computation is fully ex-
pressed by the loop and data-reference structure of the
program.

9.5 Static Scheduling

Static scheduling of the �ne-grained parallelism embed-
ded in large basic blocks has also also been investigated
for use on the Oscar architecture at Waseda University in
Japan.[12]. The Oscar compiler uses a technique called
task fusion that is similar in spirit to the grain-size ad-
justment technique used on the Supercomputer Toolkit.
However, the Oscar compiler lacks a partial-evaluation
phase, leaving it to the programmer to manually gen-
erate large basic blocks. Although the manual creation
of huge basic blocks (or of automated program genera-
tors) may be practical for computations such as an FFT
that have a very regular structure, this is not a reason-
able alternative for more complex programs that require
abstraction and complex data structure representations.
For example, imagine writing out the 11,000
oating-
point operations for the Stormer integration of the So-
lar system and then suddenly realizing that you need
to change to a di�erent integration method. The man-
ual coder would grimace, whereas a programmer writing
code for a compiler that uses partial evaluation would
simply alter a high-level procedure call. It appears that
the compiler for Oscar could bene�t a great deal from
the use of partial evaluation.

10 Conclusions

Partial evaluation has an important role to play in the
parallel compilation process, especially for largely data-
independent programs such as those associated with
numerically-oriented scienti�c computations. Our ap-
proach of adjusting the grain size of the computation to
match the architecture was possible only because of par-
tial evaluation: If we had taken the more conventional
approach of using the structure of the program to detect
parallelism, we would then be stuck with the grain-size
provided us by the programmer. By breaking down the
program structure to its �nest level, and then imposing
our own program structure (regions) based on locality
of reference, we have the freedom to choose the grain-
size to match the architecture. The coupling of partial
evaluation with static scheduling techniques in the Su-
percomputer Toolkit compiler has allowed scientists to
write programs that re
ect their way of thinking about
a problem, eliminating the need to write programs in an
obscure style that makes parallelism more apparent.

11 Acknowledgements

This work is a part of the Supercomputer Toolkit project,
a joint e�ort between M.I.T. and Hewlett-Packard cor-
poration. The Toolkit project would not have been pos-
sible without continual support and encouragement from
Joel Birnbaum, Gerald Jay Sussman, and Harold Abel-
son. Willy McAllister of Hewlett-Packard supervised the

hardware design and construction of the Supercomputer
Toolkit parallel processor.
Guillermo Rozas developed the host interface software

and microcode assembler that made it possible to exe-
cute programs on the Supercomputer Toolkit hardware.
He also contributed to the design of the instruction-
scheduling techniques we describe in this paper.
Special thanks are also due to everyone who helped

to construct the Supercomputer Toolkit hardware and
software environment, especially Willy McAllister, Ger-
ald Jay Sussman, Harold Abelson, Jacob Katzenelson,
Guillermo Rozas, Henry Wu, Jack Wisdom, Dan Zuras,
Carl Heinzl, and John McGrory. Karl Hassur and Dick
Vlach did the clever mechanical design of the board and
cables. Albert Chun, David Fotland, Marlin Jones, and
John Shelton reviewed the hardware design. [4 Sam-
Sam Cox, Robert Grimes, and Bruce Weyler designed
the PC board layout. Darlene Harrell and Rosemary
Kingsley provided cheerful project coordination. Sarah
Ferguson implemented a package for adaptive-stepsize
Runge-Kutta integration that is built on top of the struc-
ture provided by our compiler.
This report describes research done at the Arti�cial In-

telligence Laboratory of the Massachusetts Institute of
Technology and at Hewlett-Packard corporation. Sup-
port for the M.I.T. laboratory's arti�cial intelligence re-
search is provided in part by the Advanced Research
Projects Agency of the Department of Defense under
O�ce of Naval Research contract N00014-92-J-4097 and
by the National Science Foundation under grant num-
ber MIP-9001651. Andrew Berlin's work was supported
in part by an IBM Graduate Fellowship in Computer
Science.

References

[1] H. Abelson, A. Berlin, J. Katzenelson, W.
McAllister, G. Rozas, G. Sussman, \The
Supercomputer Toolkit and its Applica-
tions," MIT Arti�cial Intelligence Lab-
oratory Memo 1249, Cambridge, Mas-
sachusetts.

[2] J. Applegate, M. Douglas, Y. G�ursel, P.
Hunter, C. Seitz, G.J. Sussman, \A Dig-
ital Orrery," IEEE Trans. on Computers,
Sept. 1985.

[3] A. Berlin, \A compilation strategy for nu-
merical programs based on partial evalu-
ation," MIT Arti�cial Intelligence Labo-
ratory Technical Report TR-1144, Cam-
bridge, MA., July 1989.

[4] A. Berlin, \Partial Evaluation Applied
to Numerical Computation," Proc. 1990
ACM Conference on Lisp and Functional
Programming, Nice France, June 1990.

[5] A. Berlin and D. Weise, \Compiling Scien-
ti�c Code using Partial Evaluation," IEEE
Computer December 1990.

[6] S. Borkar, R. Cohen, G. Cox, S. Glea-
son, T. Gross, H.T. Kung, M. Lam, B.

9

Moore, C. Peterson, J. Pieper, L. Rankin,
P.S. Tseng, J. Sutton, J. Urbanski, and J.
Webb, \iWarp: An Integrated Solution to
High-speed Parallel Computing," Super-
computing '88, Kissimmee, Florida, Nov.,
1988.

[7] G. Cybenko, J. Bruner, S. Ho, \Par-
allel Computing and the Perfect Bench-
marks." Center for Supercomputing Re-
search and Development Report 1191.,
November 1991

[8] J. Ellis, Bulldog: A Compiler for VLIW
Architectures, MIT Press, Cambridge,
MA, 1986.

[9] J.A. Fisher, \Trace scheduling: A Tech-
nique for Global Microcode Compaction."
IEEE Transactions on Computers, Num-
ber 7, pp.478-490. 1981.

[10] C. Heinzl, \Functional Diagnostics for the
Supercomputer Toolkit MPCU Module",
S.B. Thesis, MIT, 1990.

[11] M. Lam, \A Systolic Array Optimiz-
ing Compiler." Carnegie Mellon Com-
puter Science Department Technical Re-
port CMU-CS-87-187., May, 1987.

[12] H. Kasahara, H. Honda, and S. Narita
\Parallel Processing of Near Fine Grain
Tasks Using Static Scheduling on OS-
CAR", Supercomputing 90, pp 856-864,
1990

[13] M. Katz and D. Weise, \Towards a
New Perspective on Partial Evaluation,"
In Proceedings of the 1992 ACM SIG-
PLAN Workshop on Partial Evaluation
and Semantics-Directed Program Manipu-
lation, San Francisco, June 1992.

[14] B. Kruatrachue and T. Lewis, \Grain
Size Determination for Parallel Process-
ing", IEEE Software, Volume 5, No 1, Jan-
uary 1988

[15] J. Miller, \Multischeme: A Parallel Pro-
cessing System Based on MIT Scheme".
MIT Laboratory For Computer Science
technical report no. TR-402. September,
1987.

[16] L. Robert Morris, \Automatic generation
of time e�cient digital signal processing
software," IEEE Transactions on Acous-
tics, Speech, and Signal Processing, Vol.
ASSP-25, No. 1, pps. 74{79, February
1977.

[17] L. Nagel, SPICE2: A Computer Pro-
gram to Simulate Semiconductor Circuits,
Electronics Research Laboratory Report
No. ERL-M520, University of California,
Berkeley, May 1975.

[18] D. Padua and M. Wolfe, Advanced Com-
piler Optimizations for Supercomputers,
Communications of the ACM, Volume 29,
Number 12, December 1986.

[19] E. Ruf and D. Weise, \Avoiding Redun-
dant Specialization During Partial Eval-
uatio," In Proceedings of the 1991 ACM
SIGPLAN Symposium on Partial Evalua-
tionand Semantics-Based Program Manip-
ulation, New Haven, CN. June 1991.

[20] E. Ruf and D. Weise, \Opportunities for
Online Partial Evaluation", Technical Re-
port CSL-TR-92-516, Computer Systems
Laboratory, Stanford University, Stanford,
CA. 1992.

[21] B. Shirazi, M. Wang, and G. Pathak,
\Analysis and Evaluation of Heuristic
Methods for Static Task Scheduling.",
Journal of Parallel and Distributed Com-
puting, Volume 10, Number 3, Nov 1990.

[22] R. Surati, \A Parallelizing Compiler Based
on Partial Evaluation", S.B. Thesis, Mas-
sachusetts Institute of Technology, June
1992.

[23] G. Sussman and J. Wisdom, \Chaotic
Evolution of the Solar System",Science,
Volume 257, July 1992.

A Appendix: Architecture of the

Supercomputer Toolkit

The Supercomputer Toolkit is a MIMD computer. It
consists of eight separate VLIW(Very Long Instruction
Word) processors and a con�gurable interconnection net-
work. A detailed review of the Supercomputer Toolkit ar-
chitecture may be found in [1]. Each toolkit processor
has two bi-directional communication ports that may
be connected to form various communication topologies.
The parallelizing compiler is targeted for a con�guration
in which all of the processors are interconnected by two
independent shared communication buses. The proces-
sors operate in lock-step, synchronized by a master clock
that ensures they begin each cycle at the same moment.
Each processor has its own program-counter, allowing
independent tasks to be performed by each processor. A
single \global" condition
ag that spans the 8-processors
provides the option of having the individual processors
act together so as to emulate a ULIW (ultra-long in-
struction word) computer.

B The Toolkit Processor

Figure 11 shows the architecture of each processor. The
design is symmetric and is intended to provide the
memory bandwidth needed to take full advantage of
instruction-level parallelism. Each processor has a 64-
bit-
oating-point chip set, a �ve-port 32x64-bit register
�le, two separately addressable data memories, two in-

10

I / OI / O

ADDRESS
GEN

MEMORY
16k x 64

REGISTER FILE

32 x 64

+

ADDRESS
GEN

MEMORY

16k x 64

SEQUENCER

CONTROL STORE
16k x 168 bits

Figure 11: This is the overall architecture of a Supercom-
puter Toolkit processor node, consisting of a fast
oating-

point chip set, a 5-port register �le, two memories, two inte-

ger alu address generators, and a sequencer.

teger processors16 for memory address generation, two
I/O ports, a sequencer, and a separate instruction mem-
ory. The processor is pipelined and is thus capable of
initiating the following instructions in parallel during
each clock cycle: a left memory-I/O operation, a right
memory-I/O operation, an FALU operation,17 an FMUL
operation18, and a sequencer operation.19 The com-
piler takes full advantage of the architecture, scheduling
computation instructions in parallel with memory op-
erations or communication. The Toolkit is completely
synchronous and clocked at 12.5 Mhz. When both the
FALU and FMUL are utilized, the Toolkit is capable
of a peak rate of 200 Mega
ops, 25 on each board. The
compiler typically achieves approximately 1=2 of this ca-
pability because it does not attempt to simultaneously
utilize both the FMUL and the FALU.20

The compiler allocates two of the 32 registers for
communication purposes (data bu�ering), while 3 reg-
isters are reserved for use by the hardware itself. Thus

16Each memory address generator processor consists of an
integer processor tied closely to a local register �le.

17The FALU is capable of doing integer operations, most

oating-point operations, and many other one-cycle opera-
tions It is tagged + in �gure 11

18The FMUL is capable of doing
oating-point multiplies(1
cycle latency),
oating-point division(5 cycle latency), and

oating-point square roots(9 cycle latency) as well as many
other operations. It is tagged * in �gure 11

19The sequencer contains a small local memory for han-
dling stack operations.

20Simultaneous utilization of the FMUL and FALU is only
occasionally worthwhile for long multiply-accumulate opera-
tions. Since the FMUL and FALU share their register-�le
ports, opportunities for making simultaneous use of both
units are rare.

26 registers are available for use by scheduled compu-
tations. The
oating-point chips have a three stage
pipeline whereby the result of an operation initiated on
cycle N will be available in the output latch on cycle
1 + N + L, where L is the latency of the computation.
The result can then be moved in the register-�le during
any of the following cycles, until the result is moved into
the output latch. There are feedback (pipeline bypass)
paths in the
oating-point pipeline that allow computed
results to be fed back for use as operands in the next
cycle. The compiler takes advantage of these feedback
mechanisms to reduce register utilization,
The bus that connects the memory, I/O port, and

register-�le is a resource bottleneck, allowing either a
memory load, a memory store, an I/O transmission, or
an I/O reception to be scheduled during each cycle. This
bus appears twice in the architecture, in each of the two
independent memory/I-O subsystems.

C Interconnection Network and

Communication

The toolkit allows for
exible interconnection among the
boards through its two I/O ports. The interconnec-
tion scheme is not �xed and many con�gurations are
possible, although changing the con�guration requires
manual insertion of connectors. The compiler currently
views this network as two separate buses: a left and a
right bus. Each processor is connected to both buses
through its left and right I/O ports. This con�guration
was chosen as the one that would place the fewest local-
ity restrictions on the types of programs that could be
compiled e�ciently. However, targeting the compiler for
other con�gurations, such as a single shared bus on the
left side, with pairwise connections between processors
on the right side, may prove advantageous for certain
applications. Each transmission requires two cycles to
complete. Thus in the two shared-bus 8-processor con-
�guration, only one out of every eight results may be
transmitted. Pipeline latencies introduce a six cycle de-
lay between the time that a value produced on one pro-
cessor is available for use by the
oating-point unit of
another processor.
The hardware permits any processor to transmit a

value at any time, relying on software to allocate the
communication channels to a particular processor for any
given cycle. Once a value is transmitted, each receiving
processor must explicitly issue a \receive" instruction
one cycle after the transmission occurred. The compiler
allocates the communication pathways on a cycle by cy-
cle basis, automatically generating the appropriate send
and receive instructions.

11

