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Abstract

The forces of contact during manipulation convey substantial information about the state of the manipula-
tion. Textures, slip, impacts, grasping, and other contact conditions produce force and position signatures
that can be used for identifying the state of contact. This paper address the fundamental problems of
interpreting the force signals without any additional context on the state of manipulation. Techniques
based on forms of the generalized sequential likelihood ratio test are used to segment individual strain
signals into statistically equivalent pieces. The results of the segmentation are designed to be used in a
higher level procedure which will interpret the results within a manipulation context. We report on our
experimental development of the segmentation algorithm and on its results for detecting and labelling
impacts, slip, changes in texture, and condition. The sequential likelihood ratio test is reviewed and some
of its special cases and optimal properties are discussed. Finally, we conclude by discussing extensions to
the techniques and lessons for sensor design.
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1 Introduction

A tremendous amount of information is available in the
contact forces of manipulation. Figure 1 shows a spec-
trogram of an impact event. The impact results in an
increase in energy at all frequencies locally around the
event, and a persistent residual vibration at the sensor's
natural frequency. This signal, like all contact force sig-
nals, can be broken into regions that are similar. We
term the di�erent regions contact states and the transi-
tions between regions contact events.
During a manipulation task like grasping, pushing, or

typing, numerous such events occur. One approach to
robot programming, for any of these tasks, is to write a
program component that detects and labels each event
and a component which generates an appropriate action
based on the sensed event. The two components must
mesh because each provides a decision or knowledge con-
text for the other. The current action selects possible
interpretations of sensor signals, and the changes in sen-
sor signals guide the choice of new actions. In general,
most robot programming has used an action centered
paradigm. That is the programmer �rst determines the
sequence of actions that should be performed and then
determines how to use the available sensors to guide the
actions. The guarded move is the typical sensing/action
strategy that results. Brock [8] provides a recent study
and review of this approach.
This paper is based on a sensing centered program-

ming paradigm. In this approach, the properties char-
acteristic of the sensor signals alone are determined and
then an event detector for changes in those properties
is designed. Ideally these properties are not biased by
any particular task model and therefore are useful for all
tasks. Because the approach is sensor based, the types
of allowed contexts are controlled by the possible inter-
pretations given the sensor measurements. The actions
are then designed based on these possible contexts. This
paper discusses our work on identifying characteristic
properties of contact force signals.
In manipulation, force and position events guide the

task. This paper focuses on force signals since little work
has been done on interpreting these signals during com-
mon tasks. Earlier investigations of this problem, by
other researchers, focused primarily on designing and
proving sensor technologies tailored to di�erent contact
events. In contrast, this paper presents algorithms, de-
rived from the theory of sequential hypothesis testing,
that are designed for detecting contact events and label-
ing contact states.
Labeling is much more di�cult then detecting changes

in signal characteristics. In general, labeling requires
knowledge about the possible sources of the signals and
the source characteristics. This research looked at label-
ing some simple events without context.
To our knowledge, this is the �rst investigation of the

discrimination of contact events and the �rst application
of sequential decision theory to this problem. Although
we applied the techniques to signals from an intrinsic
contact sensor [5], the ideas can be applied to any form
of tactile sensor to enhance performance. Based on the
experimental results in this paper, we are investigating a

sensor that is a combination of the intrinsic contact sen-
sor and a piezoelectric �lm. This sensor, which is similar
in design to [12], has better dynamic characteristics and
should give better performance.
In the following sections, we �rst summarize the work

that has been done on detecting grasping events and
on human models of temporal tactile sensing. We then
briey discuss our experiments and the signal models.
Then sequential hypothesis testing is introduced and
used to derive the necessary statistical tests. Next our
algorithm is presented and related to the general theory.
We then present the experimental results of our algo-
rithm, discuss its theoretical characteristics and compare
it to other techniques. We conclude by discussing the re-
search issues in contact event perception, and our plans
for future development.

2 Previous Work

During the last decade, considerable research has been
performed on tactile sensing. Howe [13] provides the
most recent comprehensive review of current and past
research. Most of this research has focused on design-
ing surface array sensors and using these sensors for ob-
taining geometric information from static measurements.
Some research has looked at the information that can
be acquired by actively moving the contact sensor and
monitoring both the sensor and joint locations. This is
termed haptic sensing. Primarily prior haptic research
has focused on actively tracing the contours of objects
to determine geometry and critical features [7, 27]. This
work assumes that each measurement is taken with the
force sensor in a quasi-static state so that normal forces
and contact locations can be computed. All of this work
essentially treats the tactile array sensor as a primitive
form of vision.
In contrast, a more recent type of contact sensor pro-

cessing is the detection of information characteristic of
the dynamic aspects of motion [13]. Mechanical proper-
ties of objects like mass, friction, and damping can only
be determined by actively probing and manipulating the
object. Similarly, the initial contact with an object, and
slip between the sensors and environment require detect-
ing relative motion. All of these sensing modalities are
unique to contact force sensing.
A few studies have been done on this type of sens-

ing. By monitoring the acoustic emission from a metal
gripper, Dornfeld [9] was able to detect the onset of slip
for some metallic workpieces. Howe and Cutkowsky [12]
constructed an instrumented latex covered �nger. Piezo-
electric sensors are embedded in the latex cover, and a
miniature accelerometer is mounted on the inside surface
of the cover. The piezoelectric sensors are very sensitive
to strain rate. Because of the small mass of the cover,
the accelerometers are sensitive to very small forces nor-
mal to the surface of the sensor. They found that the
piezoelectric sensor was very sensitive to the changes in
tangential strain associated with slip, and that the ac-
celerometer was fairly sensitive to the vibrations normal
to the sensor associated with slip.
Bicchi [6] used a six-axis �ngertip force-torque sensor

to estimate the onset of slip (�gure 2). This sensor has a
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Figure 1: Spectrogram of an impact event. The �gure shows a contour plot of the energy in frequencies from 200-1350
Hz as a function of time. The signal was sampled at 2700 Hz. Sixty-four points windowed with a Hamming window
were used for each fast fourier transform (�t). The �t was computed for every new data point. Note the broad
frequency band that occurs at an impact and the short time scale of this event.
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Figure 2: 6-axis �ngertip force-torque sensor

Maltese-cross connecting the outer shell to the base. The
cross is instrumented with 8 strain-gauge half-bridges.
The shell has a lightly damped natural frequency of ap-
proximately 690 Hz when the base is �xed and the shell
free. In his experiments, Bicchi �rst determined a coef-
�cient of friction for the object to be grasped. Then, by
monitoring the ratio of the tangential force to the normal
force, he was able to determine when the contact state
was approaching the slip condition determined earlier.
All of these methods generally make decisions about

the contact state based on the instantaneous values of
the measured signals. In some cases, a lowpass �lter
may be introduced to reduce the \noise" in the signal.
One exception is McCarragher [20]. McCarragher ex-
amined the planar assembly process and constructed a
discrete event dynamic system controller to make deci-
sions about the current con�guration of the parts based
on the history of force measurements. He used quali-

tative reasoning on the assembly dynamics to construct
interpretations of the force signal, and a Petri net to
provide decision context.

In contrast, the contribution of this paper is to show
how the entire history of the signal can be used to make
decisions in a statistically robust way using the tech-
niques of sequential decision theory. This technique is
applicable to all of the sensors that have been investi-
gated for dynamic contact sensing. In our experiments
we have applied it to the 6-axis �ngertip force-torque
sensor.

In this paper, only the individual strain gauge sig-
nals produced by the sensor (�gure 2) are sensed. Each
signal is treated as independent in order to determine
what information can be extracted about the contact
process purely from the characteristics of the scalar sig-
nal. Without additional measurements or prior knowl-
edge, all event decisions must be based on characteristics
of the individual strain time series. We test the signal for
whiteness, changes in mean, changes in vibration level,
short discontinuities caused by impulses, and spectral
structure. The tests are formulated as hypothesis test-
ing problems based on experimental models of the signal
characteristics. Section 4 presents our experiments and
the signal models. Section 5 discusses the theory of se-
quential hypothesis testing and develops the form of the
test used in our algorithm. Section 6 shows how the
algorithm segments some contact signals and discusses
performance.
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3 Human Capabilities

Some insights on the design of robot contact sensing al-
gorithms may be gained by a study of human temporal
contact sensing. A robot sensing through an intrinsic
contact sensor or a single piezoelectric sensor is anal-
ogous to human exploration using a stick. The stick
encodes the distributed contact information into a tem-
poral force signal which is transmitted along the length
of the stick. A surprising amount of information can
be gained purely through this channel. Our goal in de-
signing intrinsic contact sensors and algorithms is to un-
derstand and at least match human performance in this
mode of exploration.
Research on human tactile perception has shown that

there are four types of mechanoreceptors [14, 16, 15]. A
fair amount is known about the frequency response of
these receptors to tightly de�ned inputs. The Merkel
disks and the Meissner corpuscles are type I popula-
tions and are near the surface and closely spaced. These
surface sensors are primarily sensitive to low frequency
information. The Merkel disks respond to static and
slow changes with a lowest threshold at about 10 Hz.
The Meissner corpuscles respond only to changing sig-
nals with a lowest threshold at about 30 Hz. Most robot
tactile arrays attempt to duplicate the spacing and ca-
pabilities of these two sensors.
The deep skin sensors, type II, are more widely spaced

with a density of 20/cm2 and a 10 mm receptive �eld.
The Pacianian corpuscles have a sensitive region from 50
to 400 Hz. The Ru�ni organs are directionally sensitive
and sense skin stretch.
Johnson [17] provides a recent comprehensive review

of the tactile sensing system and provides a working hy-
pothesis for the role played by three of the four basic
systems: the SAI, RA, and PC systems. The SAI sys-
tem is the slowly adapting type I population, ending
in the Merkel disks, and all the pathways conveying its
signals to memory and perception. Similarly, the RA
system is the rapidly adapting type I population end-
ing in the Meissner corpuscles, and the PC system is
the rapidly adapting type II population ending in the
Pacianian corpuscles.
The SAI system is thought to be responsible for en-

coding low frequency, widely separated, spatial contact
signals. Experiments with Braille and Roman letters
show that the SAI system provides an isomorphic im-
age of the contact signal. Therefore the SAI system is
thought to be responsible for directly imaging the con-
tact shape.
The encoding of texture is still being determined. It

is clear that the perception of texture requires relative
movement between the skin and the surface. For widely
spaced textures, the SAI units are able to determine the
spatial distribution. However for very �ne textures and
slip, vibration sensing seems to be critical. Both the RA
and the PC systems appear to be involved.
Recent studies have shown that slip is detected, for

textured surfaces, by these rapidly adapting �bers when
a vibration is set-up by the relative motion of a tex-
tured surface [26]. The spatial distribution of the con-
tact is of only secondary importance. Relative motion

of very small raised dots (4 �m high, 550 �m diameter
single dots, and 1 �m dots spaced at 100 �m center-to-
center) on a smooth plate produced reliable activation
of the �bers. The direction of slip is determined by the
slowly adapting �bers which measure skin stretch. This
suggests that the information about the onset of slip is
carried by the high frequency component of the contact
force, and that the direction of slip is carried by the di-
rection of skin stretch.

In addition, textured surfaces can be di�erentiated by
scanning a rigid probe across a surface. The probe en-
codes only temporal information. The induced vibration
level seems to be used for discrimination. The PC system
is the most likely candidate for the transduction system,
since it is the only system excited by the impulses that
occur during the initial placement of an object. Neuro-
physiological study of this mechanism for perception has
just begun.

In summary, the SAI, RA, and PC seem to have a
separation of function loosely based on frequency. This
separation is used in perceiving the contact state while
doingmanipulationwith a tool. The SAI system is tuned
to determine the contact distribution between the hand
and the tool. The PC system is able to detect the high
frequency events that are transmitted down the tool to
the hand and is insensitive to the shape of the tool. And
the RA system has a lower spatial sensitivity then the
SAI system but is more sensitive to vibration and so
can determine local movements between the tool and
the hand.

This work suggests that it is possible to extract infor-
mation about texture and impacts with an intrinsic con-
tact sensor. Like the PC system, the algorithms should
look for high frequency events. In addition, the low fre-
quency response from the contact sensor should be re-
lated to the neural encodings for joint torques. Finally,
results developed for the temporal response from a sin-
gle contact sensor, may be extendable to analyzing the
temporal response from a sensor array.

4 Signal Models

In order to detect and label di�erent events, models of
the di�erent signals had to be developed. We built two
pieces of experimental apparatus in order to character-
ize the response of the system to impacts, sliding across
a surface, no contact, and grasping contacts. Statisti-
cal process models were developed based on the experi-
ments. These were captured as a set of signal source hy-
potheses. The next subsection described the experiments
and the signal models, and the last subsection discusses
the collection of the models into source hypotheses.

4.1 Signal Examples and Models

We considered four basic contact signals: impacts, slip,
no contact, and grasping contacts. For each basic con-
tact, an experiment was developed to isolate that par-
ticular event. Based on these experiments, a statistical
signal model was developed by testing the description
against the data. The assumption that these signals
were basic and could be used to span the contact set
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Figure 3: Impact Test Apparatus

was tested by considering some examples of more com-
plex manipulation. This is discussed in the section 6.

4.1.1 Impact Model

To gather impact data, a solenoid released impact
hammer was placed on a knife pivot (�gure 3). The eight
strain gauge signals resulting from the hammer striking
the �ngertip sensor was recorded at 2.7 kHz. The im-
pact load could be varied by changing the initial height
of the force sensor with the micrometer. A representative
impact signal from one strain gauge and its correspond-
ing Fast Fourier Transform (FFT) is shown in �gure 4.
There are a number of important characteristics in this
signal. First, three strikes by the hammer are shown by
the three sharp rises in the �gure. Each of these strikes
is separated by approximately 150 ms. Second, each of
the sharp impact signals decays very quickly (approxi-
mately 1.5 ms). Finally, the sensor continues to ring for
an extensive period, over 0.5 sec, after the impacts (not
shown). Finally, the rapid vibration that follows each
impact events is at approximately 1000 Hz.
As an initial model of the impact process consider the

ideal model shown in �gure 5. In this model, each impact
ofM2 withM1 is an inelastic collision with coe�cient of
restitution e. The time and distance of the collision are
small compared to the travel time and distance of M2.
Under these assumptions, the process can be modeled
as a series of impulses applied to M1. Let xi be the
normalized height of M2 after collision i with x0 = 1;
!
2
0 = K1=M1 be the natural frequency of the sensor;

� = !0

p
2h=g be the natural unit of time, with h being

the true initial height of M2; ti be the time of the ith
collision with t1 = e�; z be the normalized displacement
of x1; � =M2=M1; and � the damping coe�cient which
is less than 1. The equations of motion for the model
are then:

xi+1 = e
2
xi

ti+1 = ti + 2e�
p
xi

�z + 2� _z + z =
4�(1 + e)

�

1X
j=1

�(t� tj)
p
xj

Using linearity, and the convolution properties of �, the
trajectory for M1 is

z(t) =
�(1 + e)�p

1� �2
X
tj�t

p
xj exp

��(t�tj) sin(
p
1� �2(t�tj))
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Figure 4: Representative impact signal from one strain
gauge bridge. There are 128 samples taken at 2.7 kHz.
The FFT was computed using a square window. The
signal mean has been removed from the FFT.
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Figure 5: Ideal model of the impact process. An inelastic
collision occurs at the boundary over time and distance
that are small compared to the travel time and distance
for the impacting mass.
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Figure 6: Simulation of model response using �rst 20
impacts with: e = 0:85, � = 0:1, � = 1, � = 5:5

Simulations of this model result in some of the phe-
nomena displayed in the actual data. Figure 6 shows
the sudden increase in displacement, the slow exponen-
tial decay in the signal, and the discontinuous e�ect of
secondary impacts. However, the simulation does not
display the disorder seen in the actual signal, and is a
poor match to the data. A more detailed model for this
process treats the process as an initial condition response
for a autoregressive (AR) model of unknown order. We
were able to get good �ts to each impact event with
a fourth order auto-regressive model. An impact event
lasts for about 50 samples. The �rst four values of the
impact signal were used to create the initial conditions
and the parameters of the autoregressive model were es-
timated using maximum likelihood (MLE) over the re-
maining samples.
The majority of the impact signal energy is in the

�rst four samples. The remaining energy is in the ex-
tended ringing that follows the impact event. The en-
ergy in the initial part is captured in the model by using
the �rst four values as initial conditions. The ringing
is captured by the autoregressive coe�cients. Unfortu-
nately, the MLE estimator is nonlinear and uses all of
the data. Therefore the estimates have to be generated
through numerical search which make the model imprac-
tical for real-time implementation. Instead we adopted
the simpler approach of computing a Karhunen-Lo�eve
(KL) expansion for the impact shape based on empiri-
cally segmented training data.
Seventy-two training example were generated using

the impact apparatus. The start of the impact was
found by looking for the �rst point in the signal that was
twenty or more standard deviations away from the cal-
ibrated initial conditions. Forty points were then taken
from this starting point to get seventy-two examples of
length forty. The mean was removed from each sam-
ple individually, and then each sample was normalized
to have unit energy. Normalization prevented any one
signal from dominating the result and since the test is
a ratio between di�erent hypotheses the energy is not
important. The Karhunen-Lo�eve expansion, which is an
eigenvalue expansion of the sample covariance, was then
computed. The majority of the energy was contained
in the �rst four eigenvalues; therefore, these were made
additional features for the impact model. The features
were extended beyond forty samples by adding zeros to

Sensor

Slider Shafts
Linear Slide

Sensor Mount

Cable Transmission

Drive PulleyIdler Pulley

Test
 Texture

Figure 7: Slip Test Apparatus

the end of the feature signal. The residual after �tting
the mean and four features was modeled as white normal
noise. The resulting impact model for the measurement
y(t) is

y(t) =

4X
k=1

�ksk(t) + �+ e(t) (1)

e(t) � N (0; V ): (2)

In this model, the measurement, y, is a mean � plus a
linear combination of four features sk, which are treated
as being orthogonal to �, and a normal process noise
e(t). The shape of the impact signal and its residual
vibration is captured by sk, the new mean is captured
by �. In building this model, the implicit assumption is
that the shape of the impacts is approximately the same.
This turned out to be true only in the ideal case.

4.1.2 Slip Model

Slip data was collected with the experimental appa-
ratus shown in �gure 7. The sensor was pulled along
the base with constant normal load. The load could be
changed by adding weights to the sensor mount. Pieces
of sandpaper were used to control the surface roughness.
These were placed part way along the base of the ap-
paratus. A section of the signal generated from passing
over the sandpaper is shown in �gure 8. The FFT shows
that the spectrum is essentially at out to the bandwidth
of the sensor at which point it rapidly decays. An ap-
proximate model is then given by a normal white noise
process

y(t) � N (�; V ):

This model was also con�rmed by a histogram and the
autocorrelation function.

4.1.3 No Contact Model

A sample of the strain gauge signal without any con-
tact is shown in �gure 9. Although the sensor is not
being contacted, background vibrations are picked-up
through the base. In this mode, the sensor is acting as an
accelerometer. The FFT of the signal is again fairly at,
and the autocorrelation also indicates that the signal is
approximately white. For small vibrations, quantization
noise would be the dominant error which has a uniform
distribution. However, the vibration levels are such that
a normal model is a better �t to the data as indicated
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Figure 8: Representative section of signal generated by
sliding over a piece of sandpaper. 512 samples taken
at 2.7 kHz and the corresponding FFT using a square
window. The signal is fairly at out to the bandwidth
of the sensor.

by the histogram. Therefore an appropriate model of the
signal is

y(t) � N (�0; V0):

This model is distinguished by the particular values of
�0 and V0. To recognize this model these values must be
calibrated.

4.1.4 Grasping Contact

Finally, the �ngertip sensor was grasped by hand and
forces were applied (�gure 10). A slip free grasp was
maintained by relying on human capabilities for detect-
ing slip. The FFT of the signal shows a lowpass response,
and an appropriate model is an autoregressive process

y(t) =

pX
j=1

ajy(t � j) + e(t)

e(t) � N (0; V ):

4.2 Hypothesis Models

The goal of this work is to segment any strain signal
into pieces which can be identi�ed with one of the experi-
mentally selected models. Segmentation can be achieved
by designing a decision algorithm which is tuned to our
model set. Therefore we collected the parametric models
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Figure 9: Representative rest signal from one strain
gauge bridge sampled at 2.7 kHz and the correspond-
ing FFT using a square window.
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Figure 10: Representative grasp signal. 512 samples at
2.7 kHz and the corresponding FFT using a square win-
dow. The �ngertip sensor was clamped in place and then
loads were applied by grasping and twisting the sensor
housing.
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of the signal into six basic signal sources, or hypotheses:

Null State (H0): y(t) � N (�0; V0)
New Mean (H1): y(t) � N (�; V0)
New Noise Level (H2): y(t) � N (�0; V1)
New Mean and
Noise Level (H3): y(t) � N (�1; V1)

Impact Signal (H4): y(t) =
P4

k=1 �ksk(t) + �+ e(t)
e(t) � N (0; V1)

Grasping Signal (H5): y(t) =
Pp

j=1 ajy(t � j) + e(t)

e(t) � N (0; V1):

This set of source can be viewed as asking a set of
questions about the statistics and spectral properties of
the strain signal:

1. Is the signal white or is there signi�cant correlation?

2. Has the mean of the driving noise changed?

3. Has the variance of the driving noise changed?

4. Is the mean and/or variance from the base case of
no contact?

5. Are there any impact signatures in the time series?

A segmentation and identi�cation procedure was de-
rived based on these parametric models. The procedure
is based on the generalized likelihood ratio test coupled
with the minimumdescription length principle. This ap-
proach o�ers a number of advantages over more adhoc
procedures. First, its model based. The decision proce-
dure follows directly from the models described above.
Second, it is an optimal procedure, within the context of
the models, when such a procedure exists. Lastly, it ex-
plicitly estimates the time of events, which is a property
that most �lter based approaches lack.
The next section 5 presents the theoretic basis for

our decision algorithm. It begins with a slightly more
abstract form of the problem of statistical segmenta-
tion and identi�cation in order to frame the discussion.
The implicit assumptions about the measurement pro-
cess used in the generalized likelihood ratio are then jus-
ti�ed. The test is then presented with a sequence of
examples each of which is interesting in its own. For
example, the procedure for testing for a change in mean
from a known value is the optimal guarded move sensing
strategy.
Finally section 5.4 discusses the problem of labeling

multiple parameterized models which is the problem pre-
sented by our set of hypotheses. In this case, the problem
of uniformly penalizing the free parameters arises. We
discuss the two basic approaches that have been used in
the literature and present a justi�cation for the choice
of the minimumdescription length principle (MDL). Fi-
nally, the theory section concludes by presenting the al-
gorithm in detailed form including a discussion of e�-
cient parameter estimation algorithms. Results are pre-
sented in section 6. We applied the algorithm to both the
training examples discussed above and on more general
tasks.

5 Sequential Hypothesis Testing

In order to develop algorithms for processing dynamic
contact information, we introduce a sequential hypoth-
esis testing model of the sensing process. This area has

been an active area of research in statistics and signal
processing since its initial development by Wald [28]. A
mathematical review is given by Siegmund [25]. There
have been a number of important results during the last
decade [3, 29]. These methods are relevant to any sig-
nal processing task which can be modeled as a stochas-
tic measurement process on an underlying system which
undergoes discontinuous changes. The methods are par-
ticularly useful when accurate and rapid decisions about
the time of change are required. This includes edge de-
tection, continuous speech segmentation, and dynamic
contact sensing.

The most powerful hypothesis testing procedure, i.e.
the one that uses the most prior information, is Bayesian
decision theory on a semi-Markov chain. An approach
using this model would estimate the probability of be-
ing in every node in the chain and would consider every
possible sequence of transitions on the graph to explain
the sequence of measurements. This can be computa-
tionally complex. In addition, this approach requires a
prior probability distribution for the transition probabil-
ities, the holding times, and any parameter values which
are di�cult to develop. An alternative procedure is the
sequential likelihood ratio.

In sequential hypothesis testing it is assumed that the
time for the algorithm to detect a transition is short
compared to the holding time before a second transi-
tion. Therefore it is assumed: 1) that transitions can
be detected by considering only the data, 2) that at any
time only one hypothesis needs to be assumed to be true,
and 3) only one transition from this hypothesis needs to
be considered. These assumptions make the problem
complexity at most linear in the number of samples.

The next subsection discusses the sequential hypothe-
sis testing approach in general. Then, a set of important
special cases is presented. First, the simple hypothesis
testing problem of testing between known distribution
is presented. This problem arises often in practice and
is the easiest to treat theoretically. As an example, we
show how easily contacts can be detected optimally, and
demonstrate the increase in performance over an opti-
mally designed �lter and threshold approach. Then the
procedure for two known signals in Gaussian noise is
presented. The form of the computations for this test
appears in all the more complex algorithms.

Next we consider changes between two parameterized
distributions. As a special case we consider testing for
an unknown change in mean. This problem is very im-
portant. Many problems can be reduced to this problem
by appropriate preprocessing. In addition, all estimation
procedures give rise to an asymptotically local procedure
which looks like a test for change in mean [4].

Finally, we consider the problem of multiple param-
eterized distributions. This is the form of our dynamic
sensing algorithm takes. The procedure requires a tech-
nique for uniformly penalizing the number of free pa-
rameters, and we adopt the minimumdescription length
principle. This section concludes by presenting the algo-
rithm in detail including a discussion of e�cient param-
eter and model order estimation.
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5.1 General Theory

In general, the measurement could be caused by any one
of a set of m hypotheses (states) H = fHig. Each state
provides a statistical description pi(y(k); :::; y(l)) of the
measurement process. y(l) is the �rst sensor signal gen-
erated from state i and y(k) is the last. We consider
only discrete measurements. As a series of sensor mea-
surements yn0 = fy(0); :::; y(n)g are taken, the problem is
to determine the sequence of states xn0 = fx(0); :::; x(n)g
from which the measurements were taken. Since it is as-
sumed that the time between events is su�ciently long
for an algorithm to detect the transition, the algorithm
can run forward in time, from the last detected event
and state and look only for a single transition within the
data under consideration.
Initially the algorithm is given that hypothesis Hp is

true. Then, for every time r from 0 to n the likelihood 1

that the measurements were generated by Hp from time
0 to time r�1 and then by a di�erent state Hq from time
r to n is computed. This is compared to the assumption
that all the data came from Hp. Because of the indepen-
dence assumption of state transitions and the measure-
ment densities, the likelihood of hypothesis p followed by
hypothesis q is

L(p; q; r; yn0 ) = pp(y(r � 1); :::; y(0))pq(y(n); :::; y(r));

and the likelihood that all of the measurements came
from state p is

L(p; yn0 ) = pp(y(n); :::; y(0)):

The optimal test is the likelihood ratio for the measure-
ments

L(p; q; r; yn0 )

L(p; yn0 )
=

pp(y(r � 1); :::; y(0))pq(y(n); :::; y(r))

pp(y(n); :::; y(0))
:

The decision function is the maximum of the log of this
ratio over the possible new states

DF (p; q; yn0 ) = max
r2[0;n]

log
L(p; q; r; yn0 )

L(p; yn0 )
:

The most likely new state is q̂ which equals

q̂ = arg max
q

DF (p; q; yn0 ):

This yields the test

DF (p; q̂; yn0 )

Hq̂
>

�

Hp

T
2
p :

This rule says that Hq̂ will be chosen as the new state if

DF (p; q̂; yn0 ) becomes larger than T 2
p , otherwise Hp will

be maintained as the current hypothesis. T 2
p is the de-

cision threshold and is a design parameter that controls
the essential trade-o� between the two types of errors.

1The likelihood is the conditional probability of receiv-
ing the measurements given the hypothesis. It is related to
the probability that the hypothesis is true through Bayes
rule which required a prior distribution. The likelihood is
used when the prior distributions are either unavailable, or
assumed to be noninformative.

There are two important characteristics of this test:
1) the false alarm rate, 2) the delay to detection. The
earliest time at which the decision function exceeds the
threshold, given that the system is still in state p, is
the false alarm time tf (p) = inf(n : DF (p; q̂; yn0 ) > T

2
p )

which has distribution PrFA(n; p). The probability of
no alarm at time n is PrNA(n; p) = 1 � PrFA(n; p).
The asymptotic false alarm rate is de�ned to be f(p) =

1� limk�>1
PrNA(k)

PrNA(k�1)
. This reects the rate at which

false alarms will occur over the long-term. In contrast,
the delay to detection is a transient performance mea-
sure. The delay to detection, given that a change to state
q occurred at time 0, and the decision function is on state
q, is tD(p; q) = inf(n : DF (p; q; yn0 ) > T

2
p jx(t) = Hq).

The distribution of tD(p; q) is PrD(n; p; q) and its ex-
pected value is �tD(p; q) =

P1

t=0 tPrD(t; p; q). Both
statistics are controlled by Tp which is a design param-
eter. Increasing Tp decreases the false alarm rate and
increases the time to detection. Determing both of these
relationships requires solving a �rst passage problem.
Closed form solutions to this type of problem are rare
and di�cult to derive. However, for some of the spe-
cial cases considered below approximations can be de-
termined and are presented.

5.2 Changes Between Two Known Distributions

The simplest and most important special case is detect-
ing changes between two known, conditionally indepen-
dent, probability distributions for a signal. This prob-
lem contains all of the essential features of the statistical
decision procedure. More generally, many sequential de-
cision problems can be treated by designing a pre�lter
which changes the problem into this binary testing prob-
lem.
Assume that y(t) is an independent sequence with dis-

tribution p0(y(t)) under hypothesis 0 and p1(y(t)) under
hypothesis 1. Further, assume that H0 is the initial hy-
pothesis. Because y(t) is independent, the probability

density of receiving a sequence of measurements y
j
k un-

der either hypothesis, conditioned on the value of Hi is:

p(y
j
kjHi) =

jY
t=k

pi(y(t))

The likelihood ratio between the two hypotheses is

L(0; 1; r; yn0 ) =
p(yr�10 jH0) p(y

n
r jH1)

p(yn0 jH0)
(3)

=

nY
i=r

p1(y(t))

p0(y(t))
: (4)

To simplify the calculations let 0(t) = log(p0(y(t))),
1(t) = log(p1(y(t))), �01(t) = 1(t) � 0(t), and

S
j
k(0; 1) =

Pj
t=k �01(t). Then the decision function for

a change from state 0 to state 1 is

DF (0; 1; yn0 ) = max
r2[0;n]

logL(0; 1; r; yn0 )

which results in the binary rule

DF (0; 1; yn0 )

H1

>

�

H0

T
2
: (5)
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Figure 11: Behavior of the Page-Hinkley stopping rule
to a simulated change in mean at tick 126 for a Gaus-
sian process. Signal has standard deviation of 1 before
and after the change, and mean of 1.0 after the change.
Change is detected with a threshold of 15 at tick 149.
The estimate of the time of change is the last time the
test equals zero which is at tick 128.

This is equivalent to the Page-Hinkley (PH) cumulative
sum stopping test

DF (0; 1; yn0 ) = S
n
0 (0; 1)� min

0�j�n
S
j
0(0; 1):

This test minimizes the time taken to reach decision H1

over all tests that have the same false alarm rate [25].
Further, it is easily computed recursively by

DF (0; 1; yn0 ) = max(0; DF (0; 1; yn�10 ) + �01(n)):

5.2.1 Change in Mean in Gaussian Noise

An application of the PH test to a change in mean
in Gaussian noise is shown in �gure 11. This �gure was
generated by adding a mean of 1.0 to a zero mean Gaus-
sian random sequence with variance 1. With a change
threshold of 15, the test detects the change at tick 149
for a delay of 24 ticks. The change time is estimated to
be 128. In this particular case

�01(n) =
(�1 � �0)

V
(y(n) �

�1 + �0

2
)

=
��

V
(y � ��)

where V is the variance of the signal, and �i are the
means under the two hypotheses. DF is simply the cu-
mulative sum or integration, of �01 with resetting at 0.
The computation has the same computational cost as
the alternative of lowpass �ltering the signal and thresh-
olding the result at the optimal value ��.

5.2.2 Comparison to the �ltering approach

The performance of the PH test can be compared to
lowpass �ltering followed by thresholding on tests with
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Figure 12: Receiver operating characteristic (ROC) of
Page-Hinkley test between two Gaussian distributions
with di�erent means and the same variance as a function
of the signal to noise ratio s = ��

�
. The log10(�tf ) is

shown as a function of the mean time to detection �td for
s =0.5, 1.0, 1.5, and 2.0.

equivalent false alarm rates. The asymptotic false alarm
rate PH

f and time to detection PH�tD for the Page-
Hinkley test can be approximated by applying Wald's
identity and approximations [25]. The results are

PH�tF � jeT
2

� T 2 � 1j=�0
PH�tD � (e�T

2

+ T
2 � 1)=�1

where

�i =

Z
log

�
p1(�)

p0(�)

�
pi(�)d�:

Since the false alarms are the interarrival times of a
Bernoulli process they are geometrically distributed.
Therefore the asymptotic false alarm rate is

PH
f =

1
PH�tF

:

For the change in mean between two Gaussian processes
with the same standard deviations �, �i is

�i = 1=2

�
��

�

�2
:

A plot of the trade-o� between the time to detection,
�td, and the time to false alarm,�tf is called the receiver
operating characteristic (ROC). It is a function of the

signal-to-noise ratio s = ��
�
. Graph 12 shows the value

of �td and log10 �tf parameterized by T for a �xed value
of s. The ROC for this test is shown in �gure 12 for
s = 0:5; 1:0; 1:5; 2:0. Both the mean time to a false alarm
and decision increase with increasing threshold. At a
�xed false alarm time, an increase in the signal to noise
ratio will decrease the time to detection.
The performance of the alternative test of lowpass �l-

tering followed by thresholding can be bounded using the
9



following asymptotic approximation derived by Hall [10].
The approximations are valid in the limit of an increas-
ing threshold and short sampling time. Consider a �lter
realized by a stable, linear, time invariant vector process
x

x(k + 1) = Ax(k) + w(k + 1) + ��u�1(k � r)

driven by a white, zero-mean, Gaussian noise w(k) with
noise intensity Q. A change of size �� is applied by the
unit step u�1 at time r. The covariance of x satis�es
the discrete Lyapunov equation S = ASA

T +Q and the
decision function is DF (k) = x

T (k)S�1x(k). In princi-
ple it is possible to determine PrFA(k) by propagating
the density for x(k), p(x; k), forward in time and then
integrating over the decision region. The propagation
equation is

p(x; k+ 1) =

Z
D

pw(x� A�)p(�; k)d�

where D = fx : DF (k) � T
2g. Then PrFA(k) is given

by

Pr
FA

(k) = 1�
Z
D

p(u; k)du:

Unfortunately there are no closed form solutions to this
problem. However by treating the discrete system as a
sampling of a continuous system, an approximation valid
for large k can be determined. Using this approximation,
the steady state false alarm rate f is found to be asymp-
totically bounded by

f � 1� exp

�
ln(det(Ad))T

p

�(p=2 + 1)
exp�T

2=2(1� p=T 2)

�

where p is the dimension of x. In the case of a �rst-order
lag �lter x(k + 1) = ax(k) + w(k), the bound is

f0 � 1� exp
�p

�=2 ln(a)T exp�T
2=2(1� 1=T 2)

�
:

This is the bound for x2=S > T . The PH test is equiva-

lent toX=S1=2 > T which has a false-alarm rate bounded
by f0=2.
To approximate PrD(k) note that DF (k) is a

noncentral chi-squared random variable with p de-
grees of freedom and noncentrality parameter �2(k) =
�xT (k)S�1�x(k) [2]. The process mean �x satis�es

�x(k + 1) = Ad�x(k) + ��

with initial condition �x(0) = 0 for a change in mean
of ��, where we have assumed for simplicity r = 0.
If the cumulative noncentral Chi-square distribution of
DF at value T 2 is denoted by F (T 2

; �
2
; p), then PrD(k)

is bounded by

Pr
D
(k) � 1� F (T 2

; �
2
; p)

which can be computed numerically or approximated.
For a scalar, �rst-order lag-�lter, the ROC can be

computed as a function of the the signal-to-noise ratio
s as in the PH test. In this case, the values of �td and
log10 �tf are parameterized by a. The optimal threshold

for the test is ��2

4S
where S =

(1�a)

(1+a)
�
2. This gives a
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Figure 13: Receiver operating characteristic (ROC) of
�rst order lag �lter test with threshold between two
Gaussian distributions with di�erent means and the
same variance as a function of the signal to noise ra-

tio s = ��
�
. The log10(�tf ) is shown as a function of the

mean time to detection �td.

threshold of T 2 =
�
s
2

�2 (1�a)

(1+a)
. With the one-sided test,

an approximation for PrD(k) is simply the probability of
drawing a value greater that ��=2 from a Gaussian ran-
dom sample which has mean �x(k) and variance S, given
that the test has not already terminated. The probabil-
ity of terminating at time k given that the test has not
already terminated is

F (k) = 1� erf

 
s

2

r
1� a
1 + a

!
:

The probability of terminating at time k is then given
by the recursion

PD(0) = F (0)

PD(k) = F (k)(1� PD(k � 1)):

This gives an underestimate of the termination time. An
overestimate is given by the rise time for �x(k) to ��=2.
Figure 13 shows the logarithm of �tf as a function of
�td for a signal-to-noise ratio of s = 0.5, 1.0, 1.5, and 2
computed using these two approximations. The curve for
s = 0:5 has been cut short, because the approximation
is not valid for small �td.
Figure 14 indicates that the lowpass �lter approach

has a longer delay to detection compared to the PH test
when they have the same false alarm rate. The test
shown in �gure 11 will signal an alarm on average every
6�106 samples and the change will be detected after 28
samples. To get equivalent performance from the low-
pass �lter, a must equal 0.98. With this value, the esti-
mate of �tD is 29.5 and the rise time is 34.5. These results
demonstrate that the PH test gives an improvement in
performance without an increase in computational cost.
In addition, an estimate of the change time is possible
with a small amount of additional storage.
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Figure 14: Lowpass �lter of x(n + 1) = 0:98x(n) +
0:02y(n+1) on the same signal as �gure 4. The threshold
is 0.50. The change is detected at 153. This is a slower
response then the response for the PH test. Further, an
estimate of the change time is not computed.

5.2.3 Change between Deterministic Signals in

Additive Gaussian Noise

The sequential hypothesis approach can be extended
to derive tests for characteristics that are detectable with
a single linear �lter. A direct extension to the binary
problem is given by the hypotheses:

H0 : y(t) = s0(t) + v0(t) t = 0; :::; n
H1 : y(t) = s1(t) + v1(t)

where si are known deterministic signals. A test equiv-
alent to the binary case results with i(t) rede�ned as

i(t; r) = log(pv;i(y(t) � si(t� r)))

where pv;i are the known probability densities for the

noise process. In this case, DF (0; 1; yn0 ) cannot be com-
puted recursively. Instead, the maximization must be
computed by exhaustive search over a growing window
of length n. To limit the increase in computational com-
plexity, a suboptimal approach is usually taken where
the search window is constrained to a moving window of
�xed length.
Because of the time invariance of si, the complexity

of the calculation of Snr (0; 1) is order Lm where L is
the number of points in the window and m is the cost
of computing �01(n; r) for a single point. To see this,
suppose that Snr (0; 1) has been computed over the win-
dow and stored in a vector �S01(n) of size L. When data
point y(n + 1) arrives �01(t; r) must be computed for
every r and t in the window and then summed. How-
ever, the sum of �01(t; r) for r and t less than n + 1
has already been computed and stored in �S01. Thus
by shifting �S01(n) by one and then adding �01(n+ 1; r)
to the shifted result we obtain �S(n + 1). This requires
order Lm operations. With a vector processor with L

elements, the entire calculation can be done in parallel

in m operations. �S01(n + 1) must then be searched for
the maximum element. This structure for the calcula-
tions is preserved in the more general case of an unknown
change magnitude in Gaussian noise, which is considered
in the next section.

5.3 Unknown Parameterized Distributions

In most applications the magnitude of the change is un-
known. For this problem, there are two probability mod-
els for y(t)

H0 : y(t) p0(y(t); �0)
H1 : y(t) p1(y(t); �1)

where �0 is a known parameter vector and �1 is unknown.
�0 is an element of <q0 , �1 is element of <q1 , and y

is an element of <p. The probability densities p0 and
p1 may or may not be from the same family. If the
dimension and interpretation of �0 and �1 are the same,
one approach for detecting the change is to choose a
minimum change value �� > 0 a priori and then run
two Page-Hinkley tests in parallel with �1 = �0 � ��.
The test which terminates �rst is used as the decision
rule. Changes of parameter greater than �� will trigger
a decision, but the delay to decision will be longer than
with the correct ��.
One approach to choosing a value for �� is to select a

distribution for �1 a priori . In this case the measurement
distribution, under H1, is the convolution

p1(y(t)jH1) = p1(y(t); �1)
p�1 :
If �1 is treated as a sequence of random variables drawn
from p�1 , then the Page-Hinkley test can be applied as
above.
The problem of choosing a distribution for �1 can be

eliminated by maximizing L over both �1 and r. This
yields the generalized likelihood ratio (GLR) test [30]

DF (0; 1; yn0 ) = max
0�r�n�q1

max
�1

S
n
r (0; 1):

There is a delay of at least q1 samples before detection
so that �1 can be estimated. If �0 is also unknown the
test includes one more maximization.

5.3.1 Unknown Change in Mean

As an example of this problem, suppose pi are both
Gaussian densities with �0 = (�0; V0) the known mean
and variance before the change. For simplicity assume
�0 = 0. After the change the process has a new mean
�1 but the same variance V0. Then �01 is

�01(�1; k) = �
T
1 V

�1
0 y(k) �

1

2
�
T
1 V

�1
0 �1:

The maximization over �1 yields the usual sample mean
estimate for �1 from r to n

�̂1(r; n) =
1

(n� r + 1)

nX
k=r

y(k);

and the decision function becomes

DF (0; 1; yn0 ) = max
r2[0;n�1]

nX
k=r

�01(�̂1(r; n); k)

= max
r2[0;n�1]

(n� r + 1)

2
�̂
T
1 (r; n)V

�1
0 �̂1(r; n):
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Again, the maximization is limited to a moving window
of size L since it must be solved by exhaustive search.
Under hypothesis 0, DF is a central chi-squared

random variable with p=2 degrees-of-freedom DF �
X 2(p=2) which has mean p=2. Therefore, the thresh-
old T must be at least p=2. Since under hypothesis 1,
DF is noncentral chi-squared with p freedoms and non-
centrality parameter 1

2
�
T
1 V

�1
0 �1, the detection time can

be approximated by the results in section 5.2.2.
The test computation can be computed in order Lm,

or in order m steps by a vector processor of size L. At
time n the value of �̂1(r; n) is stored for every point in
the window in the arrayM (n). Each column ofM is the
estimate of �1 involving the �nal j measurements. After
receiving y(n + 1), all of the columns of M are shifted
right by 1 and then each column j is updated by

M (j; n+ 1) =M
�(j; n) + (y(n + 1)�M�(j; n))=j

where M� indicates the shift operation. The decision
function becomes

DF (0; 1; yn0 ) = max
1�j�L

j

2
M (j; n)TV �10 M (j; n)

with r̂ = n� jmax + 1.

5.4 Multiple Parameterized Models

In the most general case each hypothesis Hp in the col-
lection H could be parameterized by a di�erent number
of free parameters �p. This is the form that our dynamic
sensing algorithm takes. The decision function is still
the likelihood ratio but now with a maximization over
three di�erent parameter sets

DF (p; q; yn0 ) = max
r

min
�p

max
�0

p;�q
log

L(p; q; r; �0p; �q)

L(p; r; �p)
;

where �0p is the value of the parameters for Hp for the
data from 0 to r � 1. Again, the maximization over r
is explicit and so only a maximum number of moving
windows are kept.
Two additional issues arise in this problem. First,

models with more free parameters have greater explana-
tory power. That is they are able to �t �nite length
noise signals better than models with fewer free param-
eters. Therefore, a method of penalizing the number of
free parameters which corrects this problem is required.
The next subsection discusses this issue.
Second, the autoregressive model hypothesis, hypoth-

esis 5, does not use a �xed number of parameters, and
the parameter estimates depend upon the order of the
model. Therefore, an e�cient computationally technique
for estimating the model parameters for all model orders
is needed. This is provided by estimation of the reec-
tion coe�cients which is discussed in section 5.4.2.
Finally, section 5.4.3 gives the detailed procedure for

our algorithm. This includes initialization, choice of
weighting for the number of parameters, the estimation
procedures, and the decision procedure.

5.4.1 Model Penalty

A problem arises with the unadjusted likelihood ra-
tio test when the test involves models with di�erent

numbers of free parameters. Models with more free
parameters, or degrees-of-freedom, have more explana-
tory power. That is they are able to �t �nite lengths of
data better than models with fewer degrees-of-freedom.
Therefore, the model with the greatest number of param-
eters will always be the most likely. In order to correct
this problem, a uniform method of penalizing the extra
freedoms is required. Note that even if all the models
had the same number of freedoms, the change hypoth-
esis has twice as many freedoms as the recursive model
because because it uses two models.

This problem is ubiquitous to likelihood approaches
which involved comparisons between models with di�er-
ent numbers of freedoms. This problem is eliminated
in the Bayesian approach by the a priori choice of prior
probabilities for the number of models and parameters.
The log of these prior probabilities adds to the likelihood
calculation and essential creates an a priori model cost.
What the likelihood approach requires is a principle for
choosing these model costs.

The minimum description length principle [22, 21], or
MDL, is one of the few general principles for choosing
the model cost. This principle states that the cost of the
model is related to the number of parameters or bits it
takes to encode the model. In general, simpler expla-
nations are preferred, therefore the likelihood should be
reduced by the complexity of coding the model. For a
number of linear parameter estimation problems, Rissa-
nen has shown that the model cost, de�ned in terms of
description length, is asymptotically k

2
logn where k is

the number of parameters and n is the number of sam-
ples used in the estimation.

An equivalent result was derived by Schwarz [23].
Schwarz derived an asymptotic expansion to the optimal
Bayes procedure by assuming a �xed error cost and fairly
general conditions for the prior distribution and the sam-
ple distributions. Under his assumption the Bayes pro-
cedure chooses the a posteriori most probable model and
parameter values. Asymptotically this is equivalent to
maximizing the log-likelihood minus k

2
logn: For auto-

regressive (AR) processes this procedure was shown to
be strongly consistent (asymptotically) by Hemerly and
Davis [11].

No such result exists for the still popular, and useful,
alternative AIC procedure derived by Akaike [1]. Akaike
suggested that the decision criterion should be based
on maximizing the expected value of the log-likelihood.
When all the models use the same underlying probabil-
ity distribution, the penalty becomes the di�erence in
expected log-likelihood between two competing models
when the actual signal is white noise. For parameter esti-
mation problems, this gives a penalty equal to the num-
ber of free parameters. For AR processes, Shibata [24]
derived the distribution of the number of free parame-

ters estimate, k̂, using this penalty. The result shows

that the most probable k̂ equals k but that the expected
value of k is generally closer to k + 1.

All of these results are asymptotic and so for small
sample sizes, with which all our tests work, there is some
freedom in choosing the penalty. Because of the stronger
theoretical justi�cation of the MDL criterion, our algo-
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rithms utilizes a penalty of the form b
k
2
log(n) where b

is a unit parameter cost. In addition, since our proce-
dures use data sizes of between 20 and 40 samples for the
moving window the MDL and AIC criterion give nearly
equivalent penalties. Values of b larger than one favor
simpler hypotheses more heavily than the MDL crite-
rion. We obtained subjectively good results with b from
2.2 to 2.7.

5.4.2 Linear Models and Orthogonal

Estimation

This section discusses the e�cient computation of the
order and parameter estimates for linear predictor mod-
els in Gaussian white noise. All of the models used in our
dynamic sensing algorithm �t the framework discussed
here.
The general form of a linear predictor model is:

y(n) =  
T (n)� + e(n)

where  T (n) is a vector of regression coe�cients, � is
the parameter vector, and e is a white Gaussian noise
process. For example, for the new mean model H1
 
T (n) = 1. For the AR model with m free coe�cients

 
T (n) = [y(n � 1); :::; y(n�m)].
For the linear predictor model the maximum likeli-

hood estimate of the parameters is the least-squares es-
timate. The least-squares estimate can be written in
matrix form by collecting the measurements into a vec-
tor as Y (n) = y

n
1 , and collecting each element of  T

into a vector as si(n) =  (i)n1 . Then the least-squares
estimate takes the form

Iij(n) = hsi(n)jsj(n)i

I(n) =

nX
t=1

 (t) T (t)

Xi(n) = hsi(n)jY (n)i

X (n) =

nX
t=1

 
T (t)y(t)

�̂(n) = I�1(n)X (n);

where hji denotes inner product. I is called the empirical
information matrix and X is called the empirical infor-

mation vector. �̂(n) is the parameter estimate at time
n.
The parameter estimates depend upon the model or-

der because in general the vectors fsj(n)g are not orthog-
onal. An e�cient estimation procedure for the model
order can be performed by �rst orthogonalizing the vec-
tors fsj(n)g and then reconstructing the estimate for
any desired order. The orthogonal parameter estimates
are called the the reection coe�cients because they
are related to the amount of energy reected back at
a changing impedance junction in an electrical transmis-
sion line [19].
When the computation is performed on-line only I(n)

and X (n) are actual kept in memory. Therefore, the
reection coe�cients need to be computed from these
matrices. If the vectors fsj(n)g were actually available,
a Gram-Schmidt procedure could be applied to the vec-
tors to generate an orthogonal basis. This decomposition

represents the matrix S = [si] as S = QD
1=2
R where Q

is the orthonormal basis, D1=2 is the diagonal matrix of
lengths for the orthogonal vectors, and R is the corre-
lation structure of S. The time dependence has been
dropped for clarity. Then, the reection coe�cients, K,
satisfy D1=2

K = Q
T
Y:

Now note that I = S
T
S = R

T
DR, since Q is or-

thonormal, and X = S
T
Y = R

T
D

1=2
Q
T
Y . Therefore

the reection coe�cients are generated by the �rst stage
of Gaussian elimination. Gaussian elimination factors I
into RT

DR. Therefore, the reection coe�cients are the
solution to RT

DK = X . This solution is just the result
of the �rst stage of Gaussian elimination. The second

step, back substitution, solves R�̂ = K.
Now the reection coe�cients can be used to recon-

struct the solution for any model order. Given any order
model m, let the �rst m reection coe�cients be Km

and the corresponding submatrix of R be Rm. Then the
original model coe�cients for an order m model can be

determined from Km = Rm�̂m.
More importantly, the reection coe�cients can be

used to immediately determine the optimal model order.
Let E0 = hY jY i be the original signal energy. Then be-
cause of orthogonality, the energy remaining after using
the mth reection coe�cients is Em = Em�1�k2i =Dm;m,
and the adjusted log-likelihood of this model is l(Y;m) =

�0:5n(log(Em=n)+1)�b (m+1)

2
log(n). The model order

which maximizes l(Y;m) is optimal under this criterion.
Although the computations can be reorganized for

better numerical performance, this is the essence of the
ladder or lattice algorithm. In summary the estimation
procedure stores I, X , and the energy in the input signal
E0 and then performs the following update procedure:

1. Update the regression vector  based on the model
equation.

2. Update E0.

E0  E0 + y(n)T y(n)

3. Update the information vector and matrix.

I  I +  
T
 

X  X +  
T
y(n)

4. Decompose I into I = R
T
DR.

5. Solve for the reection coe�cients.

R
T
DK = X

6. Determine the optimal model order m� by maxi-
mizing the adjusted log-likelihood l(m).

Em  Em�1 � k2i =Dm;m

l(m)  �0:5n(log(Em=n) + 1)� b
(m + 1)

2
log(n)

7. Solve for the optimal model parameters.

�̂m�  R
�1
Km�

When the number of model parameters is �xed, the fast-
gain algorithm can be used to update the parameter es-
timates with a fewer number of computations [18] but
the essentials are the same.
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Figure 15: Generalized Likelihood segmentation proce-
dure with multiple hypotheses. A single recursive model
and a collection of moving models must be updated for
every new measurement.

5.4.3 Computational Organization

The sequential nature of the test leads to an organiza-
tion of the computations that minimizes the number of
computations. A conceptual picture of the computations
is shown in �gure 15. At any stage in the computation
there is one hypothesis being grown recursively and a
collection of L moving window models for every alterna-
tive hypothesis. A minimum length Lmin is chosen for
the moving windows based on estimation requirements.
Since all of the hypotheses have linear parameters in

Gaussian noise, the least squares estimate of the param-
eters is the maximum likelihood estimate. Therefore,
for every window w, both recursive and moving, and hy-
pothesis p we store Dp(w) which contains: 1) the current
value of the empirical information matrix Ip(w), 2) the
current value of the empirical information vector Xp(w),
3) the current value of the parameters �̂p(w), and 4) the
current value of the adjusted log-likelihood lp(w).
All of the moving windows for each hypothesis are col-

lected into a structure Mp(n) = fDp(1); :::; Dp(lmax)g.
For window lengths less than lmin, the parameters are
not estimated. When a new data point y(n+ 1) is mea-
sured the moving windows are updated by:

1. The values inMp are shifted by 1 for every hypoth-
esis.

2. Xp(w), Ip(w), �̂p(w), and lp(w) are updated for ev-
ery window using the algorithm described in sec-
tion 5.4.2.

Let the current hypothesis by H�. For this cur-
rent hypothesis a collection of recursive windows R =
fD�(1); :::; D�(lmax)g is stored. In this case each D(i)
structure contains the information vector and matrix
based on data from 0 to n�i+1. When a new data point
y(n+1) is measured the recursive windows are updated
by:

1. The values in R are shifted by 1.

2. The values in D
�(1) are updated using the algo-

rithm described in section 5.4.2 except now the
model order is �xed.

After updating all the moving windows and the re-
cursive window, the algorithm examines the results to
detect a change. The likelihood of the current recur-
sive model D�(1) plus the threshold T 2

p is compared to

the sum of the likelihood for all possible pairs of moving
models with the matching recursive model. If the change
likelihood is greater a change is detected.
Several steps are necessary to update the computation

after detecting a change. First the change time is taken
as the new time origin. Then, the number of moving
models is adjusted so that only models that lie entirely
after the detected change time are kept. Finally, recur-
sive models starting at time r, with lengths from Lmin

to n� r+ 1 must be recomputed in a batch mode. The
computation then proceeds from this adjusted state.
To initialize the computation, each hypothesis is eval-

uated on a minimum length window Lmin in a batch
mode. The optimal hypothesis is computed by maximiz-
ing the likelihoods after adjusting for a model cost. The
maximal hypothesis is then stored as a single recursive
model.
This computation produces at every time t, lagged by

Lmax = Lmin+L�1, a hypothesis model, its associated
parameter vector, an estimate of y, and the model's ad-
justed likelihood. In addition, a sequence of event marks
are produced as each change in model is detected. If the
hypothesis models are chosen well, the output of the al-
gorithm is essential a sequence of symbols for the data
which can be used for further task recognition process-
ing.

6 Experiments and Results

The algorithms developed in the previous section were
applied to segmenting the contact signal hypotheses de-
veloped in section 4 on both the selected data samples
and more general examples. In addition, the algorithms
were simpli�ed and specialized to particular problems
to show their utility in detecting important but minute
changes in real-time. The results should be evaluated in
terms of three criteria: 1) do the algorithms divide the
signal into segments that make sense, 2) are the hypothe-
ses identi�ed by this context free algorithm the ones we
expect, and 3) could the results be interpreted given a
context. The results show that the algorithms do a good
job of segmenting the signal, but that a context free
interpretation is very di�cult. However, by �xing the
context for simple cases, robust interpretations should
be possible.

6.1 Performance on design set

The general multi-model generalized likelihood ratio test
was applied to the set of data used for developing the
model. There were six basic models

Null State (H0): y(t) � N (�0; V0)
New Mean (H1): y(t) � N (�; V0)
New Noise Level (H2): y(t) � N (�0; V1)
New Mean and
Noise Level (H3): y(t) � N (�1; V1)

Impact Signal (H4): y(t) =
P4

k=1 �ksk(t) + � + e(t)
e(t) � N (0; V1)

Grasping Signal (H5): y(t) =
Pp

j=1 ajy(t � j) + e(t)

e(t) � N (0; V1):

For each model, moving windows with 15 to 40 sam-
ples, inclusively, were used. The number of free parame-
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Figure 16: Impact Signal incorrectly marked at tick 200.

ters was penalized using the MDL criterion with b = 2:2.
In addition, impacts cause such large changes in variance
that changes were signaled when the �rst data point of
an impact entered a moving window. Therefore, a per-
sistence test of 20 was necessary to get the correct mark-
ing of the change time. The length of minimumwindow
was chosen based on the length required for estimation,
while the maximumwas chosen based on the size of the
persistence test. The decision threshold was set at 12.

6.2 Performance on task examples

6.2.1 Impacts

The training set for impacts was used to get a mea-
surement of performance. The classi�cation for 72 ex-
amples was:

H0 H1 H2 H3 H4 H5
0 25 0 0 40 7

The results show that impact hypotheses (H4) and the
change in variance hypothesis (H1) are di�cult to distin-
guish and suggests the need to consider context. Selec-
tion of H4 depends upon this signal having some consis-
tency from sample to sample. This is only occasionally
the case, and so the simpler explanation H1 is frequently
chosen. In real world impact situations, this problem re-
sulted in confusion of the impact model (H4) with the
change in new mean and noise model (H3) and the grasp-
ing signal model (H5). In the case of H5, a set of high
frequency poles was estimated.
However, the introduction of context should make dis-

tinguishing the hypotheses much easier. An example of a
typical unsuccessful marking is shown in �gure 16. The
top plot shows the signal, the next plot shows the se-
quence of hypotheses and the transition marks, the third
plot shows the variance estimate, and the bottom plot
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Figure 17: Impact Signal correctly marked.

shows the log of the loglikelihood for the top two hy-
potheses. Estimates of the coe�cients for each of the
models is also produced by the procedure, but is not
shown. The �gure shows than in unsuccessful marking
the variance estimate has a sudden increase followed by
a sudden decrease. It also shows that the likelihood indi-
cates an event very clearly, at the impact time, and that
the two top hypotheses, which includes the impact hy-
pothesis, are very close during the impact. It should be
possible to use this additional information to add con-
text and get more accurate markings. Finally, the resid-
ual vibration after the impact is matched to hypothesis
3 because of the change in mean caused by the hammer
resting on the sensor. A successful marking is shown in
�gure 17. The impact signal is modeled as H4 and the
residual after the impact is modeled with H5. Again, H1
and H4 are close during the impact event.
The transition marks are generally close to the actual

transition. The transition time error for the training set
was:

Distance to transition 0 1 2 3 > 3
48 12 2 1 9

The transition times are within three 87% of the time.
Errors larger than 3 were caused by small transitions in
the signal that occurred just before the impact. In this
case, the persistence test prevents a second change at
the impact location and thus causes a large error.
The performance on the training examples indicate

that impacts are very di�cult to detect in a context free
form. They are easily confused with jumps in the driv-
ing variance for the other models. This is con�rmed
in a more general impact experiments. To get a sense
of performance for general manipulation, the �ngertip
was held by hand and then struck against an aluminum
block. One hundred and three examples were taken, and
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the impact point was selected by looking for the �rst out-
lier that was 20 or more standard deviations away from
the initial signal. The initial part of each of these sig-
nals is much more variable and the impacts are usually
followed by a large change in mean from the sustained
contact. For these examples the classi�cation was:

H0 H1 H2 H3 H4 H5
0 37 0 55 1 10

This clearly shows that impacts are confused with H3
and H1. However, the segmentation times are still very
good with 93% of the times falling within 3 of the correct
time.

Distance to transition 0 1 2 3 > 3
75 14 5 2 7

Even in the case of an error, the variance shows a char-
acteristic increase and then decrease over time. This can
be used to improve labeling at a context level.

6.2.2 Changes in texture

Several basic change in texture experiments were per-
formed. The �rst used the slip apparatus to move the
sensor over the aluminum bottom and then over a piece
of 180 grit sandpaper. An example segmentation from
this experiment is shown in �gure 18. In all of these ex-
periments, the high vibration section was matched with
H5. The moment of impact with the sandpaper is gener-
ally indicated by a sudden rise in variance. In this par-
ticular plot, the contact occurs at tick 1240. It was not
marked because the likelihood did not pass the persis-
tence test, however the change in variance was detected.
In all the plots at least two levels of vibration, as indi-
cated by the variance estimate, are always marked: one
for sliding on the aluminum, and one for the sandpa-
per. In �gure 18 this can be clearly seen in the variance
estimate at tick 500 and 1500.
The importance of this result, and the other texture

experiments is that substantial (over 500 samples) sec-
tions of each signal are marked as statistically similar.
This is a huge reduction in the size of the input to a
higher level recognizer. The algorithms reduce large
pieces of the raw signal into a single variance and set
of estimation parameters.
This can be clearly seen in two additional texture ex-

periments. In each of these experiments the sensor was
moved by hand in order to get smooth, low vibration,
motion. In the �rst experiment, the �ngertip sensor was
pulled over a smooth plastic surface and then over 4
sheets of ordinary paper (�gure 19). In the second, the
�ngertip was pulled across a calibrated surface roughness
made with a lathe (�gure 20).
In �gure 19 the transition to sliding over the paper

is marked at tick 200. The algorithm detects both a
change in the variance, which is caused by the di�erence
in roughness between the two surfaces, and a change in
the spectrum of the signal. In �gure 20 the repetitive
pattern of the lathed surface texture can be seen in the
signal. The algorithm models this with the autoregres-
sive coe�cients. The algorithm detects the jump in the
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Figure 18: Example of change in texture: Sliding over
an aluminum surface followed by sliding over 180 grit
sandpaper.
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Figure 19: Example of change in texture: Section of
sliding over a plastic table-top followed by four sheets
of paper. The mark is placed at the point of change
between the two surfaces. In addition to a change in
variance, the algorithm detects a change in the spectral
content of the signal as indicated by the AR coe�cients.
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Figure 20: Example of change in texture: Motion across
a calibration surface roughness calibration surface. The
�ngertip begins sliding over the surface at approximately
tick 180. The surface was made with a lathe and has half-
sinusoidal features of height 0.002 in and width 0.030 in.

spectrum when the �ngertip begins to move across the
textured surface. If the velocity of the sensor could be
controlled, or modelled, the autoregressive coe�cients
could be potential used for identifying or sorting tex-
tures.

6.3 Summary

The results show that the algorithm tests for char-
acteristics that changed when the contact conditions
changed. The technique produced generally accurate es-
timates of the change times, and was sensitive to small
variations in the contact conditions. Our experiments
showed that changes between small texture variations
were detectable when the sensor was moved by hand. It
was less sensitive under computer control, possibly be-
cause of the additional robot vibration. The results show
that the algorithm provides a method of discrimination
between di�erent contact conditions.
Identi�cation, or labeling, of the correct signal source

was problematic. This paper discussed work aimed at
characterizing the statistical source of the data, and then
using that source as a label. The autoregressive hypoth-
esis H5 was often selected as the most probable even in
the developmental data sets. In more general manipu-
lation, where some low frequency interaction force will
always be present, this hypothesis will become even more
probable. Therefore, future work will explore using only
the AR signal model

y(t) = �+

pX
i=0

aiy(t � i) + e(t)

as a basis for segmentation. This model encompasses

almost all of the other models and therefore little seg-
mentation power will be lost.
In addition, this model produces segments by �tting

a spectrum to the local data. Therefore, all of the data
in a segment will have approximately the same spectral
content. Preliminary work shows that it may be possible
to use the AR coe�cients for texture sorting. The same
texture tended to produce an equivalent spectrum when
the sensor was moved at the same velocity. Additional
work in adjusting for sensor velocity and characterizing
the performance of this technique remains to be done.
In addition, a task level explanation of the results re-

quires a task model or task context which was delib-
erately not introduced into this study. Future work is
aimed at examining this problem. A context can provide
both a interpretation framework, and a guide for placing
better segmentation boundaries. The framework may
depend upon position measurements and should predict
the expected signal parameters.

7 Conclusion

This paper examined the problem of temporal segmen-
tation of manipulation force signals. Substantially more
information, useful for manipulation, then contact/no
contact is carried by the contact force signals. A better
understanding of the signal characteristics and their rela-
tionship to task models would provide a rich framework
for controlling manipulation.
The �rst problem in designing a system to interpret

the force signals, is to segment the signal into statisti-
cally equivalent classes. The sequential hypothesis test-
ing method was introduced as a general tool for produc-
ing segment boundaries, and was applied to the problem
of segmenting the individual strains from a 6-axis force
torque sensor.
Experiments with isolated simple examples was used

to develop a set of statistical source hypotheses for the
data. These experiments resulted in the development
of six basic statistical models. Impact signals were the
most di�cult signal to model and detect. A great many
procedures and models were attempted before settling
on a training data based model and the GLR test.
The GLR test produced accurate segmentation

boundaries and event time marks. In addition, the re-
sults showed that an autoregressive model was often the
most power hypothesis. We expect that this model will
be su�cient, by itself, for producing good segmentations
of the signal.
In addition, the framework produced some simple

tests which can be used in place of threshold procedures
and which have better performance and theoretical jus-
ti�cation with no additional computational cost. An ap-
propriate �lter followed by the Page-Hinkley test can be
used to test for many simple conditions. In some prelim-
inary experiments, we were able to detect the onset of
�ngertip slip, by feeding the absolute value of a highpass
signal into the Page-Hinkley test.
One of the most important design lessons is that the

high frequency component of the force signal carries es-
sential information. During manipulation, the robot �n-
gers will exert time varying lowpass forces. Therefore,
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Level 4: Associating Dynamics with Objects
in the Environment

Level 3: Characterizing Dynamics of Interaction
Level 2: Association of Signal Statistics

with Regions of Space
Level 1: Network of Expected Signal Statistics
Level 0: Characterizing Sensor Signal Statistics

Table 1: Hierarchy of haptic explanations.

any unexpected events, like impact or slip must be de-
tected in the high frequency range. Lowpass �ltering
the sensors to eliminate this "noise" removes a major
information channel.

Soft covers, used for better gripping, for the aluminum
�ngertips have the e�ect of lowpass �ltering the contact
signals. Therefore, a two part sensor that uses a high fre-
quency sensor embedded in the cover, and the �ngertip
sensor for low frequency signals needs to be developed.
The high frequency sensory can be coarsely distributed
and have poor directional sensitivity. It's only the vibra-
tion magnitude that is important.

Sensors should also be designed with critical damping
properties. The �ngertip sensor is lightly damped and
rings when excited at high frequencies. Light damping
makes modeling the force signal source more di�cult, be-
cause near the natural frequency the signal is a reection
of the sensor's dynamics and not the input signal.

Although the full algorithm implemented in this paper
does not run in real-time, we feel that a less complete set
of tests based purely on the AR models could be made
to run in real-time on a DSP processor. The steps in
the algorithm are highly vectorized and could be run in
parallel. We are investigating these possibilities.

Additional discrimination is possible by examining the
spatio-temporal distribution of the contact signal. Local
slip could be distinguished from an overall vibration by
examining this distribution. However, this requires the
development of new array sensor technologies.

The procedures reported on in this paper provide a
powerful front-end to an algorithm for interpreting the
state of contact. Such an interpretation will require task
context. This can be provided with several approaches
each with di�erent levels of explanatory power. We en-
vision the hierarchy of haptic explanations shown in ta-
ble 1. This sequence of levels of interpretation provides
the basis for our long-term research agenda in dynamic
haptic sensing. Our current research is aimed at inves-
tigating levels 1 and 2 to provide a contextual basis for
interpreting the sensor signal statistics, and the bottom
level was investigated in this paper.

Level 1 is the lowest level of context. In this level an
expected sequence or network of expected hypotheses is
associated with a task. For example in a change of tex-
ture task, the algorithm would be told that two textures
are present and that it is expected that a transition from
one to the other will occur. Each texture would be char-
acterized by the parameters that the level 0 algorithm is
expected to estimate for each region.

The next level of complexity is to associate the ex-
pected hypotheses and their parameters with a region
of the workspace. This approach again builds a graph,
but now the graph is indexed by regions of space. This
approach requires measurements of position.
With the measurement of position, a di�erent graph

can be constructed (level 3). This graph would predict
relationships between force signals and the position sig-
nals. The elements in the graph become the possible dy-
namic relationships between position and contact force.
This would require knowledge of the possible physics
available in the task.
Finally, at the highest level of context the dynamics

and the signals are associated with objects in the en-
vironment. This would require approximate knowledge
about the shape and associated physics for the objects
that the robot might interact with. This could either be
programmed in or be acquired through sensing with a
combination of haptic sensors and vision.
This paper addressed the problem of dynamic con-

tact sensing. Dynamic models of di�erent basic con-
tact events were developed and used to derive a sta-
tistical segmentation algorithm based on the general-
ized likelihood ratio teat. This test provides a power-
ful model-based framework for developing segmentation
algorithms. The procedure was shown to be capable of
segmenting a number of useful signals into statistically
equivalent pieces. This resulted in a huge reduction in
the amount of data that has to be given to a higher level
recognizer. Finally, we presented a framework for future
study of higher level recognizers and discussed the chal-
lenges presented by our approach to perception based
robot programming.
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