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A brief introduction to use of projectiwve coordinates for
hand=-eye position computations. Some standard theorems.
Appendix A reproduces parts of Roberts' thesis concerning
homogeneous coordinastes and matching of perspectively tranzformed
cbjects. Appendix B by Avnold Griffith deriwes the stereo
calibration formulae using just the invariance of cross-ratlos
et prejections of lines, and he describes a preogram that uses this,



FPerspective and stereo calculations

1.0 Redundant Coordimates

We are used to Pqipg limearly independent, #-5-. Cartesian coordinates for
apalytic geometry. As you will see, tEEIH are sométimes advamtages in weing
"redundant" coordinate systems, with an "extra" axis, because computations
become simpler. Alsc, they canm help with "oumerical stabilitv," im audiding
divisicns by keeping numerators and depominators separate until the end of
the computation.

1.1 Barycentric Coordinates

A well-known coordinete asystem ise the barycentric system. Choose 3

non-collinear points in the plane
LN

-

i P
L% (=
Then the barveentric coordinates of an arbitrhry fourth peint P is the

ordered set of weights of mass-points at the P_'s that would have their

i
center-of-gravity at P. 0Of course, this is not unique, because if
{ml, T, « mj} rfpresent: P, then so does {kml, k@z, kmj}, We could set
my oty +omg = l, or usf the ratios mlfmj, mzfmj 88 unique representors.
- Given Pl - {xl, yl}, PE = {xz, yi}, P] = {13, y3} in Certesian coordinstes,

we find the {normallzed)} besryecentriec coprdinates of an unknown P = (=, ¥} by

salving
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There is one coordinate system in which this comes out neatly:
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Figure 1.1

There the bhrycenﬁriﬂ epordinates of a point (v, ¥) are (x, v, 1 - x - ¥) 8o
that the first twoe components are the Cartesian coordinates, Lf the multiplier
is chosen to make the three sum to unity,
1.2 Projective Coordinates

The trouble with using barycentric coordinates for Vision iz that they
aren't suitably invariant under perspective changes. But this can be fixed!

Choose & fourth point PKF and let (nl, nl, naj be its barycentric coordinates

"
for L PF and Pn . Fow define the projective eoordinates of a poimt P with

respect to P , P, P. and to b
P o Lt ¥ o0 and ny o be

= =
(p» g, ¥) = -ll ir E'E"}
1 T2 T

How sz Pys and PD are gny non-collinear triple.



where {m11 my s mjj are the barycentric coordinates of F with respect to
Ez. PF. Pﬂ- This is invariant, under a projection of any quadrilaterial

P'.i:' PF. PD, P:“!r‘ inte another P;{, P:;.' 1:":'], P::::rl.' Mote that in projective

coordinstes the pointa

F F F
?:»: ¥ 0 x¥
always have components

I:].,D,D:I' {E‘;].JD} {r}iui-l} {lrlrr.'i

For outr standard aystem we will use a wnit square.

LT
Figure 1,2
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In thiz system the projective coordinates of a Cartesian peint P = (x, y) are

proportional to

I:H| ¥ :‘I"l"‘:r"‘l-}d



Here are some coordimates of points, some "normalized to make their sum

= gnity.

(42, fean li,0.00 (2.0,1) kmﬂ -
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With & fkew quadrilaterial one see more clearly what is happening:
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1.3 Transforming Back

To transform back from projective to Cartesian coordinates, one assumes

that one has & projective point (p, q, ) "ka, k¥, ki(x+ ¥) - 1) hence

x= ;;ﬁ:; and ¥y = ;:g:;
and this will work except when (p+g-r) is dangerously small, numerically.
This happens for very large x's andfor ¥'s and means that the point cannot
be in the "table-plane" ar it would be we far away! The "bad points" lie
n;a: the "line at infinity" which has the equation Lp+ n,q ¥ nar - 0,
and we will discuse it later,

2.0 TIransforming from Eye coordinates to Table coordindtes: no Z -axis

If we think of the table as a big square, whose cormers are the vertices

of Figure 1.2, its projection on the retina will loak gomething like this:
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snd we want te find the point in table-coordinates corresponding to am
srbitrary point seen on the retina. (We assume the point is projected from
the table--we'll worry about the z-axis later.)

We need some notation, Let

{ui. ?i} be recinal (i.e., "widissector") coordinates;

{zi- FIJ be cable Cartesian coordinates;

{p: 9, ¥) be projective coordinates.

We don't have to say, for projective coordinates, whether they are table or
retinal., because they're invarisnt! Now the four P-points (the table eorners)

have coordinstes

Projective Tabla Retinal
P“ (1,0.0% {1.0) (Ui: ?1}
13'::‘1 (0,1,0% 0,1y (uzp ﬂi)
PU {0,0,1) {0,0) (uﬂ’ “3)
PHF {1,1,1) {1,1) Euﬁ. vﬁ}.

Suppose that their retinal coordinates have in fact been determined--by
experiment.--using, say, the program de veloped by Arnold Griffith, or by
the Vision System.

low we can take an srbltrary point (u, ¥) on the retina and transform it

to projective cootdinates, as follows.



First--once and for all--we find the barycentric coordinates of ?xr with

by using the formulase (see §1.1):

tt + P . P
respect Lo PE v To

u, U, uu, U v vy Yy
m, = |V, Yy Vg my, = vy Y, Yy ng oYY Y,
1 1 1 1 1 1 1 11

and these are saved for future use. HNow the projective coordinates {p, g, r)

for the point (u, v) are given by (see §1.2):

U Uy U, ul 1 1.1.3 ul 1.12 i
S S -t |y vy r= L v. v, ¥

P nl 2 3 4 n, 1 K| n, 1 2
1 1 1 1 11 I 1 1

Observe, for programming speed, that these can be expanded as

- [MMJM}[M]
e =

q = ete,

r = ete.

where the bracketed quantities can be precomputed once and for s1L!!
Each retinal = projective conversion requires only two multiplicetlions
and two additions per component. Onre doesn't have to worry about numerical

stability at this point because the n's will be large enough. (That is why we
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ghould use the whole takle: g0 that Pﬁ can be maximally far from the other
P's and thus have large barveentric cnnrdinatés_}

Finally one has te Transform Back te Cartesian table coordinates (see
#1.3). This need not be done immediately. We should watch this carefully,
in fact, because often it need never be done.

3.0 BSome Theorems
3.1 Quadrangles

You might wonder why & plane quadrangle is sufficient, or why a triangle
i insufficient. The triangle isn't enough because there are 9 parameters in
the transformation, with ene of them redundant in the racios, leaving H.
Various degree-of-freedom analyses will show this. You mipht prefer the
following constrictive argument to the wswal kind of exicmatie proois found
in projective-geometry ll:lu:mk.s. (By the way, I am a novice about the theory:
thie is just my initial way of understanding it. and it may be "immature.')
We will accept that projection of & picture through & point (the lens center
approximation) onte another plane carries lines into lines, because pairs of
planes intersect in lines.

How, given an arbitrary quadrilateral, observe that one can geometrically

censtruct the "projective' midpoint of any side
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by first finding its center Sl by intersecting diagomals, then finding the
Vercex 32 by intersecting opposite sides, and finslly finding the "midpoint"

of Pg' PF by intersecting with the line through 51 amnd 52. It is clesr that

this is the isvariant peoint with projective cocordimates (0,-1,13}. How

chserve that we have 4 new, known, guadrilsateral PD' PH, 5 5. s0 we can do

4 73
o OF gimilarly, 53’ PF1 Repeating

this indefinitely often, we thus can construct all bimary fractions elong the

it egain, imvariantly bisecting 53, F

0
Thus we obtain, by "closure," of continuity, or Dedekind Cuts...whatever

line P_, P !
ine y

vou prefer, & real coordinate system alung[PD, PT]lihe the picture in §2
where we eee the projection of & Cartesian coordinate system.
We have thus shown, by arguments using only intersections of lines, that

this image is uniqueély constructable from the wertices of pur arbitrsry
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quadrilaterial--hénce it must beé "projectively invariant."

3.2 Useful thepreme about humugenenus coardinates

In addition to the Cartesian coordinates (x, v) we are interested in
homogeneous coordinates, defined as the equivalence-cla sses of triples under
multiplication of each component by the same factor k. The types we will treat
are |

H: (Homoscalar) (%, v, 1)
B: (Barycentric) (%. v, l-x-v)
P: (Projective) (x, v, m=bv-1).
Gcale Change
In all systems Lf
(% ¥} = (u, », W)
then
(kx, ky) = (u, v, 5,

Transforming Back to CeErtesian

B: (u, v, W) _'5-1‘; {u,v)

B (u, v, W) = (4, ¥)
P: {u, v, wy — u+iaw {u, v).

Linas

We will represent & line as & column vector [u, v, w]. The Cartesisn
line ax + by +-c = [ hecomes
H: {a, b, )
B: (ate, b, <)

B {ate; bBro, -c).



(The simplicity of the form for H recommends it highly.)

The point (u, v, w) is on the line [p, q, ®] 1if (u, v, w¥-[p, 9., ] = 0O,
that is, if up + vg + wr = 0. The sign of the scalar product tells an which
side of the line is the polnt, and even its distance away, provided the vectors

are pormalized to standard foerm. For example, in B:
{u, v, l-u=v)[p+r, g+r, r] = up + vg + r.

The line through two points {ul. v wl} and {uz, Vs WE? ie given by

that is,
u(vlwz - vzwl} + v{wluz - wﬁ“ll + H(ulvz = uzvl} =0

because the determimant will vanish only when the first column eguals the
second, or the third, or a linear combination of them.

Two lines [py. g0 7] and [py 6y, 1,

intersect in the point
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E':I.ITI = q-zrl’ Tlpl = rzpl’ p-lq.z = qulj'

Useful fact: the three points

(0,11 {1,0,13 {1,1,0}

are never collinear. (This is known as Fano's Axiom.)
Transformatione
To tramelate P = (x,v,w) to the origim, i.e., to transform

{x+ o, v+ B) = (x.p) apply the matrix: P' = PT.

W

T{F) W

-x -y W

This works in any svstem, provided w is n-:r_mal ly defined.

The line through a point ¥ normal to the line L is given by

T(P) - K * L

where T{P) is as above and K is



The line parallel to L through P is given by T{P}EEL where
-1 0 0
k=] o0-10
g o o

4.0 Finding where the eye fias

There are any number of ways to do this and the choice depends on
{1} convenience of a "calibration object” and (2) avoidance of numerical
degeneracy--loss of precision. The larper the ealibration object, the better
-=Gosper 's use of a l;rge imaginary object whose vertices are traced out by the
arm allows larger spana than would be convenient for real objects in the labora-
tory, as well as providing the important direct hand-eye-relation coefficients.
Alsa, this dynamic calibratinn~ﬁﬁje¢t could be programmed to provide favorable
positions as a function of the observations, to avoild degemeracy for a wider
clage of hand-eye position relations.

4.1 A Reference Cube

We will amalyze a perticularly straightforward tegt-gbject--six of the

vartices of a cube. These form two Bquaresat right amgles.

i . E"z

F= { f".ﬂ if‘dl:f-t}
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We will find the point F of the lens center by observing the
projections {QD' ul} and {ﬂD, El}jnf the points PF and nylin the xz plane.

The analysis i& simple when we use the projective coordinates im beth
planes. First, observe the geometry of the projections along the x and =

axed, for a point (x, y) in the xy plane: we want toe find its projection

{x', 2') in the =z plane.

R
E
fi
i.'u “ |
F
P
o
¥ b
T o
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By similar triamgles we have

£ £

L] }riz' 1 }r]{+ *
+ f

7 ¥

'x -

For the two points B = (0,1} = (3 a)gnd Bo= (L) = (ByiBy),, ve

then obtain

f f
z =
% ® TIE Be = TE1
T Y Ry
£ £+
o [ x B n.'.'!'-:_-_-.—-i
1 '_l,r-]'fr 1 :,r-'l—_f:Iil

How &y gl' BU. ﬂl are computed as the normalized projective coordinates

of the images af E}r and P}r_l,r in the guadrangle Pq]" P}:' 'E*;. P:{ B0 WE can

assume that they are available. But then we obtain, simply:

£, " Lo

I |
fy = oy - qnlﬁL
i 0= L,
L 1
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Two pointe ghowld be noticed!

(1} o, and ED should be egual. Any

(1]
if large, the observaticn is suspect. If
T Tl
0 ] :
' 1

{2) The quantity L = 5+ -
1 {ul =

eve is relatively far frem the ecene, the

deviation is & measurement error:

Em&ll*une probably should use

is eritical for accuracy. If the

projection will be nearly parallel;

the oy = gy = 1 and L will be emall, killing precision--2s one would expect.

For a large Z-foot object with the Eve & feet awasy, we would have L = 173 so

that the precision of the F measuremeénts 1g 1/3 that of the plane measurements,

which is fine.

4,2 Using 8 Matrix

The geometrTic argument above is perfectly valid because the first two

components of the projective coordinates are egual to the sppropriate

Cartesian coordinates. Let's just compute the xy — xz prejective transforma-

tion for fun. OGiven {x, ¥, x + ¥ - l,']:'{:.r we want to get (x', =z', %" + z' - l}x¥
Since,
vE + xf vi
x'-—-“—-—-—i- and z'-—;—.
v+ v+ f
¥ ¥
we have

' 4z - 1=

£ o+ yf +xf 4+ £ -
yE b yf v xf 1 -y

v o4+ f
¥

and the required triplet is obtained by
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f f 1] H
. ¥ X
1
¥+ Ey 4 ft “ ¥
2f £ +f +F -1 -f why-1 .
¥ xO¥ O Z ¥

Substituting Py = (0:1,0) and PH? = {1,1,1) we have

_ 1 ~
{ﬂﬂrﬂulm} - l']'f:p {f:{:le }

1 o

which leads, of tnurﬁé. to the same solution as in %4.1. There 1? no particular
reason, here, to use the matrix formulation: there wowld, if one used more
complicated coordinates, €.g., tetrahedra. The term fH -+ fF &+ fz = 1 eugpeste
that one might find value in using & spatial projective system in which the
lens-point {f“, fy, fzj ie a reference vertex, and Leénnen 15 said te be
writing a memo about this. The barycenters of F in the Fy Px P? P, tetra-
hedra are {fx, fF' fz’ 1 - fx - f:‘r - fz}'

Te eummarize the procedure to find where the eve is:

{1} Measure the six pﬂints'pnaitiuns.

{2} Find the barycentric coordinates of an with respect to
P B P . BLL -

{3) Express PF. ny in the xz projective system. 31.2.

(4] TUse the formulae in $4.1 to find £ ler and f_.
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5.0 Finding a8 space point, using Steren

Suppose that two points (x, ¥) and (x', ¥') are found in the two eyes,

* w ¥
and are supposed to be images of the same point (x ,v ,z }. Then they must

lie on the intersection of the two lines defined by (see diagram on p., 20)

{“! L DE = cfxs fy: fz}
and

(x'y ¥'s 0) = {f“1 f?1 iz}'

If we perametrize the lines by 0 =t £ 1 and eliminate z we obtain from the

x equation

1
[ ] - []
1 - fxfz ._fxf=

xE - x'f
z

t T

which ig the fractional distance of the intersection from the table te the

first eye. Then the intersectiom i%
FLeE) = ¢ & % z*}
{{l't)?: + tf?:: I:l-t:l}l' + t .:Ir: z T :r.' ¥ a

0f course, oné might encounter &n error because the two lines dom't

{ntersect! To check this, one might alsc compute the other version of t:
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1
"T-ff - ¢
WV Oz IB-

[ _ 1
yfz ¥ fz

t

and if it doean't agree closely something is wrong. I hope someone else will

do 8 more thoughtful error analysis.

Dimensional Analvsis and Stability

1t would be waluable for someone to analvze the general precision question
abput all of this. Consider the following gquestions:

(1Y Do I need six points? Clearly not, in principle. But what ahuu¥ .
practice? Can we do just as well with 5 or even 4 points?

(2} To leck at it another way, if we have redundaént information, éan we
use it better? We uwsed just two ravs in our analysis, but we could alse use
the projections of F_ in the xy plane, P, in the P, F__, Py. P:?. ete.

S0 one could use all six available raye and average, or something, to reduce

errors. ("Something" might just be selectien of the best pair.)
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Appendix B. by Arnold Griffith
General hEErnach

A4 calibration object consisting of two parallel squares of edge length

and separation s, defines a coordinate system (x. y. =) in the real world:

4 point P in space gives rise to two rays Rl end B,; both incident with P,
and respectively incident with the "points of view" of the cameras in the

positions designated one and two:

(%) (%,.%:)

Lt {xi. yi} and {xij yi} be the intersections of Ri with the Y plane &nd

¥
the XY' planes respectively . The basis of the sterec routine here described

The ¥Y¥' plane may be seen from the disgram to be parallel to and with
© similar orientation,as the XY plane, but displaced a distance 5.



is the determination of these points. Once these are determined, the location

of P in space follows easily.

The Determination of an Intersection Point, an Example

The image on the retina, f.e., the focal plane, of the sgquare which

defines the XY plane is5 a quadrilaterial ARCD.

A B (0,5)
M'p (048

{ ] ':-iﬁ.lcl:l IE}'SII
8 t,[QE e :

Fote that O must be the image of the center of the square A"B'C'D', and
hence M and N are the images of the edge midpoints M' and K'. Let Q be the
image of some point in space. GSince ¢ is the image of any point along B, »

it is the image of (x1, ylj. It i5 easy to see that Y and X on the diagram

are the imzges of the points {ﬂ,ylj and {xl,ﬂj:



A

i II: 'P:'r.l‘ r-:l

y G (%Y

M)

B L ¢’
W

Congsider the computation of, €.g., ¥q- By a thesrem of projective geometry

wié have that

AM'-Y'E'  _ AM-YB
YA M'E YA MB (1)

where, €.g., AM stands for an (unsigned) distamce between A and M. It is
easy to see that this equation is still wvalid whem AM is interpreted as a

vector from A te M, and + is dot-product. Hemce Ef. (1) becomes, eventually;

A - By
MB-AVRMACBY | (2)

El-E'

The Determination of Position

The rays El and EE may not intersect because thev came from two points
which aré not the same, or because of measurement errors. It is important
to have a criterien for cln;enﬂss such that rays aatiafying.the criterion are
to be considered to be from the same cbject. An easily computed criterion
s the difference in z-values of two points, ene on each line, which have the
same x and y coordinates. The computation involves an intersection of two

lines in 2-space.



If the lines are sufficiently cloee, {.e., the z-values at (x, ¥v) on the two
lines differ by a sufficiently emall ampunt, then the z value for the point
ig the average of the two z values on the lines,
Avallability: The following programs exist and will be described in further
detall in a forthcoming Vision Memo.
[CAL) Does the calibration; i.e., looks at the-real world and finds
A, By, G, D, 0, Fys Bys Moand ¥ for both eyes.
(WHEREL P C) P is & point, C is one or two, depending on which camera position
F iz seen at. Returns ﬂ{xc,ychﬂxﬂ,y&)).
(WHEREZ X Y) X is the value of (WHERE1 P 1), Y is (WHEREl P2). Value is
((=: ¥y, 2) d), where (x, v, 2) is the position of the point, P,

and & is the z-value disparity described above,



