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Abstract

We had previously shown that regularization principles lead to approximation schemes which are equivalent
to networks with one layer of hidden units, called Regularization Networks. In particular we had discussed
how standard smoothness functionals lead to a subclass of regularization networks, the well-known Radial
Basis Functions approximation schemes. In this paper we show that regularization networks encompass
a much broader range of approximation schemes, including many of the popular general additive models
and some of the neural networks. In particular we introduce new classes of smoothness functionals that
lead to di�erent classes of basis functions. Additive splines as well as some tensor product splines can
be obtained from appropriate classes of smoothness functionals. Furthermore, the same extension that
leads from Radial Basis Functions (RBF) to Hyper Basis Functions (HBF) also leads from additive models
to ridge approximation models, containing as special cases Breiman's hinge functions and some forms of
Projection Pursuit Regression. We propose to use the term Generalized Regularization Networks for this
broad class of approximation schemes that follow from an extension of regularization. In the probabilistic
interpretation of regularization, the di�erent classes of basis functions correspond to di�erent classes of
prior probabilities on the approximating function spaces, and therefore to di�erent types of smoothness
assumptions. In the �nal part of the paper, we show the relation between activation functions of the
Gaussian and sigmoidal type by considering the simple case of the kernel G(x) = jxj.
In summary, di�erent multilayer networks with one hidden layer, which we collectively call Generalized
Regularization Networks, correspond to di�erent classes of priors and associated smoothness functionals
in a classical regularization principle. Three broad classes are a) Radial Basis Functions that generalize
into Hyper Basis Functions, b) some tensor product splines, and c) additive splines that generalize into
schemes of the type of ridge approximation, hinge functions and one-hidden-layer perceptrons.

c
 Massachusetts Institute of Technology, 1993

This paper describes research done within the Center for Biological and Computational Learning in the Depart-
ment of Brain and Cognitive Sciences and at the Arti�cial Intelligence Laboratory. This research is sponsored by
grants from the O�ce of Naval Research under contracts N00014-91-J-1270 and N00014-92-J-1879; by a grant from
the National Science Foundation under contract ASC-9217041 (which includes funds from DARPA provided under
the HPCC program); and by a grant from the National Institutes of Health under contract NIH 2-S07-RR07047.
Additional support is provided by the North Atlantic Treaty Organization, ATR Audio and Visual Perception Re-
search Laboratories, Mitsubishi Electric Corporation, Sumitomo Metal Industries, and Siemens AG. Support for the
A.I. Laboratory's arti�cial intelligence research is provided by ONR contract N00014-91-J-4038. Tomaso Poggio is
supported by the Uncas and Helen Whitaker Chair at the Whitaker College, Massachusetts Institute of Technology.



1 Introduction

In recent papers we and others have argued that the
task of learning from examples can be considered in
many cases to be equivalent to multivariate function ap-
proximation, that is, to the problem of approximating a
smooth function from sparse data, the examples. The
interpretation of an approximation scheme in terms of
networks, and viceversa, has also been extensively dis-
cussed (Barron and Barron, 1988; Poggio and Girosi,
1989, 1990; Broomhead and Lowe, 1988).

In a series of papers we have explored a speci�c, al-
beit quite general, approach to the problem of function
approximation. The approach is based on the recogni-
tion that the ill-posed problem of function approxima-
tion from sparse data must be constrained by assum-
ing an appropriate prior on the class of approximating
functions. Regularization techniques typically impose
smoothness constraints on the approximating set of func-
tions. It can be argued that some form of smoothness
is necessary to allow meaningful generalization in ap-
proximation type problems (Poggio and Girosi, 1989,
1990). A similar argument can also be used in the case
of classi�cation where smoothness involves the classi�ca-
tion boundaries rather than the input-output mapping
itself. Our use of regularization, which follows the clas-
sical technique introduced by Tikhonov (1963, 1977),
identi�es the approximating function as the minimizer
of a cost functional that includes an error term and a
smoothness functional, usually called a stabilizer. In the
Bayesian interpretation of regularization the stabilizer
corresponds to a smoothness prior, and the error term
to a model of the noise in the data (usually Gaussian
and additive).

In Poggio and Girosi (1989) we showed that regular-
ization principles lead to approximation schemes which
are equivalent to networks with one \hidden" layer,
which we call Regularization Networks (RN). In par-
ticular, we described how a certain class of radial sta-
bilizers { and the associated priors in the equivalent
Bayesian formulation { lead to a subclass of regular-
ization networks, the already-known Radial Basis Func-
tions (Powell, 1987, 1990; Micchelli, 1986; Dyn, 1987)
that we have extended to Hyper Basis Functions (Poggio
and Girosi, 1990, 1990a). The regularization networks
with radial stabilizers we studied include all the classi-
cal one-dimensional as well as multidimensional splines
and approximation techniques, such as radial and non-
radial Gaussian or multiquadric functions. In Poggio and
Girosi (1990, 1990a) we have extended this class of net-
works to Hyper Basis Functions (HBF). In this paper we
show that an extension of Regularization Networks, that
we propose to call Generalized Regularization Networks
(GRN), encompasses an even broader range of approx-
imation schemes, including, in addition to HBF, tensor
product splines, many of the general additive models,
and some of the neural networks.

The plan of the paper is as follows. We �rst discuss
the solution of the variational problems of regularization
in a rather general form. We then introduce three di�er-
ent classes of stabilizers { and the corresponding priors
in the equivalent Bayesian interpretation { that lead to

di�erent classes of basis functions: the well-know radial
stabilizers, tensor-product stabilizers, and the new addi-
tive stabilizers that underlie additive splines of di�erent
types. It is then possible to show that the same exten-
sion that leads from Radial Basis Functions to Hyper
Basis Functions leads from additive models to ridge ap-
proximation, containing as special cases Breiman's hinge
functions (1992) and ridge approximations of the type
of Projection Pursuit Regression (PPR) (Friedman and
Stuezle, 1981; Huber, 1985). Simple numerical exper-
iments are then described to illustrate the theoretical
arguments.

In summary, the chain of our arguments shows that
ridge approximation schemes such as

f(x) =

d0X
i=1

h�(w� � x) :

where

h�(y) =

nX
�=1

c��G(y � t��)

are approximations of Regularization Networks with ap-
propriate additive stabilizers. The form of G depends
on the stabilizer, and includes in particular cubic splines
(used in typical implementations of PPR) and one-
dimensional Gaussians. It seems, however, impossible
to directly derive from regularization principles the sig-
moidal activation functions used in Multilayer Percep-
trons. We discuss in a simple example the close relation-
ship between basis functions of the hinge, the sigmoid
and the Gaussian type.

The appendices deal with observations related to the
main results of the paper and more technical details.

2 The regularization approach to the

approximation problem

Suppose that the set g = f(xi; yi) 2 Rd �RgNi=1 of data
has been obtained by random sampling of a function f ,
belonging to some space of functions X de�ned on Rd,
in the presence of noise, and suppose we are interested
in recovering the function f , or an estimate of it, from
the set of data g. This problem is clearly ill-posed, since
it has an in�nite number of solutions. In order to choose
one particular solution we need to have some a priori
knowedge of the function that has to be reconstructed.
The most common form of a priori knowledge consists in
assuming that the function is smooth, in the sense that
two similar inputs correspond to two similar outputs.
The main idea underlying regularization theory is that
the solution of an ill-posed problem can be obtained from
a variational principle, which contains both the data and
prior smoothness information. Smoothness is taken into
account by de�ning a smoothness functional �[f ] in such
a way that lower values of the functional correspond to
smoother functions. Since we look for a function that
is simultaneously close to the data and also smooth, it
is natural to choose as a solution of the approximation
problem the function that minimizes the following func-
tional:
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H[f ] =

NX
i=1

(f(xi) � yi)
2 + ��[f ] : (1)

where � is a positive number that is usually called the
regularization parameter. The �rst term is enforcing
closeness to the data, and the second smoothness, while
the regularization parameter controls the tradeo� be-
tween these two terms.

It can be shown that, for a wide class of functionals �,
the solutions of the minimization of the functional (1) all
have the same form. Although a detailed and rigorous
derivation of the solution of this problem is out of the
scope of this memo, a simple derivation of this general
result is presented in appendix (A). In this section we
just present a family of smoothness functionals and the
corresponding solutions of the variational problem. We
refer the reader to the current literature for the mathe-
matical details (Wahba, 1990; Madych and Nelson, 1990;
Dyn, 1987).

We �rst need to give a more precise de�nition of
what we mean by smoothness and de�ne a class of suit-
able smoothness functionals. We refer to smoothness as
a measure of the \oscillatory" behavior of a function.
Therefore, within a class of di�erentiable functions, one
function will be said to be smoother than another one if
it oscillates less. If we look at the functions in the fre-
quency domain, we may say that a function is smoother
than another one if it has less energy at high frequency
(smaller bandwidth). The high frequency content of a
function can be measured by �rst high-pass �ltering the
function, and then measuring the power, that is the L2

norm, of the result. In formulas, this suggests de�ning
smoothness functionals of the form:

�[f ] =

Z
Rd

ds
j ~f(s)j2
~G(s)

(2)

where~ indicates the Fourier transform, ~G is some posi-
tive function that falls o� to zero as ksk !1 (so that 1

~G
is an high-pass �lter) and for which the class of functions
such that this expression is well de�ned is not empty. For
a well de�ned class of functions G (Madych and Nelson,
1990; Dyn, 1991) this functional is a semi-norm, with a
�nite dimensional null space N . The next section will
be devoted to giving examples of the possible choices for
the stabilizer �. For the moment we just assume that it
can be written as in eq. (2), and make the additional as-

sumption that ~G is symmetric, so that its Fourier trans-
form G is real and symmetric. In this case it is possible
to show (see appendix (A) for a sketch of the proof)
that the function that minimizes the functional (1) has
the form:

f(x) =

NX
i=1

ciG(x� xi) +

kX
�=1

d� �(x) (3)

where f �gk�=1 is a basis in the k dimensional null space
N and the coe�cients d� and ci satisfy the following
linear system:

(G+ �I)c +	T
d = y

	c = 0

where I is the identity matrix, and we have de�ned

(y)i = yi ; (c)i = ci ; (d)i = di ;

(G)ij = G(xi � xj) ; (	)�i =  �(xi)

The existence of a solution to the linear system shown
above is guaranteed by the existence of the solution of
the variational problem. The case of � = 0 corresponds
to pure interpolation, and in this case the solvability of
the linear system depends on the properties of the basis
function G.

The approximation scheme of eq. form (3) has a sim-
ple interpretation in terms of a network with one layer
of hidden units, which we call a Regularization Network
(RN). Appendix B describes the simple extension to vec-
tor output scheme.

3 Classes of stabilizers

In the previous section we considered the class of stabi-
lizers of the form:

�[f ] =

Z
Rd

ds
j ~f (s)j2
~G(s)

(4)

and we have seen that the solution of the minimization
problem always has the same form. In this section we
discuss three di�erent types of stabilizers belonging to
the class (4), corresponding to di�erent properties of the
basis functions G. Each of them corresponds to di�er-
ent a priori assumptions about the smoothness of the
function that must be approximated.

3.1 Radial stabilizers

Most of the commonly used stabilizers have radial sim-
metry, that is, they satisfy the following equation:

�[f(x)] = �[f(Rx)]

for any rotation matrix R. This choice re
ects the a
priori assumption that all the variables have the same
relevance, and that there are no priviliged directions.
Rotation invariant stabilizers correspond clearly to ra-
dial basis function G(kxk). Much attention has been
dedicated to this case, and the corresponding approx-
imation technique is known as Radial Basis Functions
(Micchelli, 1986; Powell, 1987). The class of admissible
Radial Basis Functions is the class of conditionally pos-
itive de�nite functions of any order, since it has been
shown (Madych and Nelson, 1991; Dyn, 1991) that in
this case the functional of eq. (4) is a semi-norm, and
the associated variational problem is well de�ned. All
the Radial Basis Functions can therefore be derived in
this framework. We explicitly give two important exam-
ples.

Duchon multivariate splines
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Duchon (1977) considered measures of smoothness of the
form

�[f ] =

Z
Rd

ds ksk2mj ~f (s)j2 :

In this case ~G(s) = 1
ksk2m and the corresponding basis

function is therefore

G(x) =

� kxk2m�d lnkxk if 2m > d and d is even

kxk2m�d otherwise.

(5)
In this case the null space of �[f ] is the vector space

of polynomials of degree at mostm in d variables, whose
dimension is

k =

�
d+m � 1

d

�
:

These basis functions are radial and conditionally pos-
itive de�nite, so that they represent just particular in-
stances of the well known Radial Basis Functions tech-
nique (Micchelli, 1986; Wahba, 1990). In two dimen-
sions, for m = 2, eq. (5) yields the so called \thin
plate" basis function G(x) = kxk2 lnkxk (Harder and
Desmarais, 1972), depicted in �gure (1).

The Gaussian

A stabilizer of the form

�[f ] =

Z
Rd

ds e
ksk2
� j ~f(s)j2 ;

where � is a �xed positive parameter, has ~G(s) = e�
ksk2
�

and as basis function the Gaussian function, represented
in �gure (2). The Gaussian function is positive de�nite,
and it is well known from the theory of reproducing ker-
nels that positive de�nite functions can be used to de-
�ne norms of the type (4). Since �[f ] is a norm, its null
space contains only the zero element, and the additional
null space terms of eq. (3) are not needed, unlike in
Duchon splines. A disadvantage of the Gaussian is the
appearance of the scaling parameter �, while Duchon
splines, being homogeneous functions, do not depend on
any scaling parameter. However, it is possible to devise
good heuristics that furnish sub-optimal, but still good,
values of �, or good starting points for cross-validation
procedures.

Other Basis Functions

Here we give a list of other functions that can be used as
basis functions in the Radial Basis Functions technique,
and that are therefore associated with the minimization
of some functional. In the following table we indicate as
\p.d." the positive de�nite functions, which do not need
any polynomial term in the solution, and as \c.p.d. k"
the conditionally positive de�nite functions of order k,
which need a polynomial of degree k in the solution.

G(r) = e��r
2

Gaussian, p.d.

G(r) =
p
r2 + c2 multiquadric, c.p.d. 1

G(r) = 1p
c2+r2

inverse multiquadric, p.d.

G(r) = r2n+1 multivariate splines, c.p.d. n

G(r) = r2n ln r multivariate splines, c.p.d. n

3.2 Tensor product stabilizers

An alternative to choosing a radial function ~G in the
stabilizer (4) is a tensor product type of basis function,
that is a function of the form

~G(s) = �d
j=1~g(sj) (6)

where sj is the j-th coordinate of the vector s, and ~g
is an appropriate one-dimensional function. When g is
positive de�nite the functional �[f ] is clearly a norm and
its null space is empty. In the case of a conditionally
positive de�nite function the structure of the null space
can be more complicated and we do not consider it here.

Stabilizers with ~G(s) as in equation (6) have the form

�[f ] =

Z
Rd

ds
j ~f (s)j2

�d
j=1~g(sj )

which leads to a tensor product basis function

G(x) = �d
j=1g(xj)

where xj is the j-th coordinate of the vector x and g(x)
is the Fourier transform of ~g(s). An interesting example
is the one corresponding to the choice:

~g(s) =
1

1 + s2
;

which leads to the basis function:

G(x) = �d
j=1e

�jxj j = e
�
P

d

j=1
jxj j

= e�kxkL1 :

This basis function is interesting from the point of view
of VLSI implementations, because it requires the com-
putation of the L1 norm of the input vector x, which
is usually easier to compute than the Euclidean norm
L2. However, this basis function in not very smooth,
as shown in �gure (3), and its performance in practical
cases should �rst be tested experimentally.

We notice that the choice

~g(s) = e�s
2

leads again to the Gaussian basis function G(x) =

e�kxk
2

.
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3.3 Additive stabilizers

We have seen in the previous section how some tensor
product approximation schemes can be derived in the
framework of regularization theory. We now will see that
is also possible to derive the class of additive approxima-
tion schemes in the same framework, where by additive
approximation we mean an approximation of the form

f(x) =

dX
�=1

f�(x
�) (7)

where x� is the �-th component of the input vector x
and the f� are one-dimensional functions that will be
de�ned as the additive components of f (from now on
Greek letter indices will be used in association with com-
ponents of the input vectors). Additive models are well
known in statistics (see Hastie and Tibshirani's book,
1990) and can be consider as a generalization of linear
models. They are appealing because, being essentially a
superposition of one-dimensional functions, they have a
low complexity, and they share with linear models the
feature that the e�ects of the di�erent variables can be
examined separately.

The simplest way to obtain such an approximation
scheme is to choose a stabilizer that corresponds to an
additive basis function (see �g. 4 for an example):

G(x) =

nX
�=1

��g(x
�) (8)

where �� are certain �xed parameters. Such a choice, in
fact, leads to an approximation scheme of the form (7)
in which the additive components f� have the form:

f�(x) = ��

NX
i=1

ciG(x
� � x�i ) (9)

Notice that the additive components are not independent
at this stage, since there is only one set of coe�cients ci.
We postpone the discussion of this point to section (4.2).

We would like to write stabilizers corresponding to

the basis function (8) in the form (4), where ~G(s) is the
Fourier transform of G(x). We notice that the Fourier
transform of an additive function like the one in equation
(8) is a distribution. For example, in two dimensions we
obtain

~G(s) = �x~g(sx)�(sy) + �y~g(sy)�(sx) (10)

and the interpretation of the reciprocal of this expression
is delicate. However, almost additive basis functions can
be obtained if we approximate the delta functions in eq.
(10) with Gaussians of very small variance. Consider,
for example in two dimensions, the stabilizer:

�[f ] =

Z
Rd

ds �
j ~f (s)j2

�x~g(sx)e
�(

sy

�
)2 + �y~g(sy)e

�(
sx
�
)2

(11)

This corresponds to a basis function of the form:

G(x; y) = �xg(x)e
��2y2 + �yg(y)e

��2x2 : (12)

In the limit of � going to zero the denominator in ex-
pression (11) approaches eq. (10), and the basis func-
tion (12) approaches a basis function that is the sum of
one-dimensional basis functions. In this paper we do not
discuss this limit process in a rigorous way. Instead we
outline another way to obtain additive approximations
in the framework of regularization theory.

Let us assume that we know a priori that the function
f that we want to approximate is additive, that is:

f(x) =

dX
�=1

f�(x
�)

We then apply the regularization approach and impose a
smoothness constraint, not on the function f as a whole,
but on each single additive component, through a regu-
larization functional of the form:

H[f ] =

NX
i=1

(yi �
dX

�=1

f�(x
�
i ))

2 + �

dX
�=1

1

��

Z
R

ds
j ~f�(s)j2
~g(s)

where �� are given positive parameters which allow us to
impose di�erent degrees of smoothness on the di�erent
additive components. The minimizer of this functional
is found with the same technique described in appendix
(A), and skipping null space terms, it has the usual form

f(x) =

NX
i=1

ciG(x� xi) (13)

where

G(x� xi) =

dX
�=1

��g(x
� � x

�
i ) ;

as in eq. (8).

We notice that the additive component of eq. (13)
can be written as

f�(x
�) =

NX
i=1

c
�
i g(x

� � x
�
i )

where we have de�ned

c
�
i =

ci

��
:

The additive components are therefore not independent
because the parameters �� are �xed. If the �� were free
parameters, the coe�cients c

�
i would be independent, as

well as the additive components.
Notice that the two ways we have outlined for deriv-

ing additive approximation from regularization theory
are equivalent. They both start from a prior assumption
of additivity and smoothness of the class of functions
to be approximated. In the �rst technique the two as-
sumptions are both in the choice of the stabilizer, (eq.
11); in the second they are made explicit and exploited
sequentially.
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4 Extensions: from Regularization

Networks to Generalized

Regularization Networks

In this section we will �rst review some extensions of reg-
ularization networks, and then will apply them to Radial
Basis Functions and to additive splines.

A fundamental problem in almost all practical appli-
cations in learning and pattern recognition is the choice
of the relevant variables. It may happen that some of
the variables are more relevant than others, that some
variables are just totally irrelevant, or that the relevant
variables are linear combinations of the original ones.
It can therefore be useful to work not with the original
set of variables x, but with a linear transformation of
them, Wx, where W is a possibily rectangular matrix.
In the framework of regularization theory, this can be
taken into account by making the assumption that the
approximating function f has the form f(x) = F (Wx)
for some smooth function F . The smoothness assump-
tion is now made directly on F , through a smoothness
functional �[F ] of the form (4). The regularization func-
tional is now expressed in terms of F as

H[F ] =

NX
i=1

(yi � F (zi))
2 + ��[F ]

where zi =Wxi. The function that minimizes this func-
tional is clearly, accordingly to the results of section (2),
of the form:

F (z) =

NX
i=1

ciG(z� zi) :

(plus eventually a polynomial in z). Therefore the solu-
tion for f is:

f(x) = F (Wx) =

NX
i=1

ciG(Wx �Wxi) (14)

This argument is exact for given and known W, as in
the case of classical Radial Basis Functions. Usually the
matrix W is unknown, and it must be estimated from
the examples. Estimating both the coe�cients ci and
the matrix W by least squares is probably not a good
idea, since we would end up trying to estimate a num-
ber of parameters that is larger than the number of data
points (though one may use regularized least squares).
Therefore, it has been proposed to replace the approxi-
mation scheme of eq. (14) with a similar one, in which he
basic shape of the approximation scheme is retained, but
the number of basis functions is decreased. The result-
ing approximating function that we call the Generalized
Regularization Network (GRN) is:

f(x) =

nX
�=1

c�G(Wx�Wt�) : (15)

where n < N and the centers t� are chosen according to
some heuristic (Moody and Darken, 1989), or are consid-
ered as free parameters (Poggio and Girosi, 1989, 1990).

The coe�cients c� and the elements of the matrix W
are estimated accordingly to a least squares criterion.
The elements of the matrix W could also be estimated
through cross-validation, which may be a formally more
appropriate technique.

In the special case in which the matrix W and the
centers are kept �xed, the resulting technique is one orig-
inally proposed by Broomhead and Lowe (1988), and the
coe�cients satisfy the following linear equation:

GTGc = GT
y ;

where we have de�ned the following vectors and matri-
ces:

(y)i = yi ; (c)� = c� ; (G)i� = G(xi � t�) :

This technique, which has become quite common in the
neural network community, has the advantage of retain-
ing the form of the regularization solution, while being
less complex to compute. A complete theoretical analy-
sis has not yet been given, but some results, in the case
in which the matrix W is set to identity, are already
available (Sivakumar and Ward, 1991).

The next sections discuss approximation schemes of
the form (15) in the cases of radial and additive basis
functions.

4.1 Extensions of Radial Basis Functions

In the case in which the basis function is radial, the
approximation scheme of eq. (15) becomes:

f(x) =

nX
�=1

c�G(kx� t�kw)

where we have de�ned the weighted norm:

kxkw � x �WT
Wx : (16)

The basis functions of eq. (15) are not radial anymore,
or, more accurately, they are radial in the metric de�ned
by eq. (16). This means that the level curves of the basis
functions are not circles, but ellipses, whose axes do not
need to be aligned with the coordinate axis. Notice that
in this case what is important is not the matrixW itself,
but rather the product matrixWT

W. Therefore, by the
Cholesky decomposition, it is su�cient to takeW upper
triangular. The approximation scheme de�ned by eq.
(15) has been discussed in detail in (Poggio and Girosi,
1990; Girosi, 1992), so we do will not discuss it further,
and will consider, in the next section, its analogue in the
case of additive basis functions.

4.2 Extensions of additive splines

In the previous sections we have seen an extension of
the classical regularization technique. In this section we
derive the form that this extension takes when applied
to additive splines. The resulting scheme is very similar
to Projection Pursuit Regression (Friedman and Stuezle,
1981; Huber, 1985).

We start from the \classical" additive spline, derived
from regularization in section (3.3):
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f(x) =

NX
i=1

ci

dX
�=1

��G(x
� � x

�
i ) (17)

In this scheme the smoothing parameters �� should be
known, or can be estimated by cross-validation. An al-
ternative to cross-validation is to consider the param-
eters �� as free parameters, and estimate them with a
least square technique together with the coe�cients ci.
If the parameters �� are free, the approximation scheme
of eq. (17) becomes the following:

f(x) =

NX
i=1

dX
�=1

c
�
i g(x

� � x
�
i )

where the coe�cients c�i are now independent. Of
course, now we must estimate N � d coe�cients instead
of just N , and we are likely to encounter the over�tting
problem. We then adopt the same idea presented in sec-
tion (4), and consider an approximation scheme of the
form

f(x) =

nX
�=1

dX
�=1

c��G(x
� � t��) ; (18)

in which the number of centers is smaller than the num-
ber of examples, reducing the number of coe�cients that
must be estimated. We notice that eq. (18) can be writ-
ten as

f(x) =

dX
�=1

f�(x
�)

where each additive component has the form:

f�(x
�) =

nX
�=1

c��G(x
� � t��) :

Therefore another advantage of this technique is that
the additive components are now independent, each of
them being a one-dimensional Radial Basis Functions.

We can now use the same argument from section (4) to
introduce a linear transformation of the inputs x!Wx,
where W is a d0�d matrix. Callingw� the �-th column
of W , and performing the substitution x ! Wx in eq.
(18), we obtain

f(x) =

nX
�=1

d0X
�=1

c��G(w� � x � t��) : (19)

We now de�ne the following one-dimensional function:

h�(y) =

nX
�=1

c��G(y � t��)

and rewrite the approximation scheme of eq: (19) as

f(x) =

d
0X

i=1

h�(w� � x) : (20)

Notice the similarity between eq. (20) and the Projec-
tion Pursuit Regression technique: in both schemes the
unknown function is approximated by a linear superposi-
tion of one-dimensional variables, which are projections
of the original variables on certain vectors that have been
estimated. In Projection Pursuit Regression the choice
of the functions hk(y) is left to the user. In our case the
hk are one-dimensional Radial Basis Functions, for ex-
ample cubic splines, or Gaussians. The choice depends,
strictly speaking, on the speci�c prior, that is, on the
speci�c smoothness assumptions made by the user. In-
terestingly, in many applications of Projection Pursuit
Regression the functions hk have been indeed chosen to
be cubic splines.

Let us brie
y review the steps that bring us from the
classical additive approximation scheme of eq. (9) to
a Projection Pursuit Regression-like type of approxima-
tion:

1. the regularization parameters �� of the classical ap-
proximation scheme (9) are considered as free pa-
rameters;

2. the number of centers is chosen to be smaller than
the number of data points;

3. it is assumed that the true relevant variables are
some unknown linear combination of the original
variables;

We notice that in the special case in which each addi-
tive component has just one center (n = 1), the approx-
imation scheme of eq. (19) becomes:

f(x) =

d0X
�=1

c�G(w� � x� t�) : (21)

If the basis function G were a sigmoidal function this
would be clearly a standard Multilayer Perceptron with
one layer of hidden units. Sigmoidal functions cannot
be derived from regularization theory, but we will see in
section (6) the relationship between a sigmoidal function
and a basis function that can be derived from regular-
ization, like the absolute value function.

There are clearly a number of computational issues re-
lated to how to �nd the parameters of an approximation
scheme like the one of eq. (19), but we do not discuss
them here. We present instead, in section (7), some ex-
perimental results, and will describe the algorithm used
to obtain them.

5 Priors, stabilizers and basis functions

It is well known that a variational principle such as equa-
tion (1) can be derived not only in the context of func-
tional analysis (Tikhonov and Arsenin, 1977), but also in
a probabilistic framework (Marroquin et al., 1987; Bert-
ero et al., 1988, Wahba, 1990). In this section we illus-
trate this connection informally, without addressing the
several deep mathematical issues of the problem.

Suppose that the set g = f(xi; yi) 2 Rn � RgNi=1 of
data has been obtained by random sampling a function
f , de�ned on Rn, in the presence of noise, that is

6



f(xi) = yi + �i; i = 1; : : : ; N (22)

where �i are random independent variables with a given
distribution. We are interested in recovering the func-
tion f , or an estimate of it, from the set of data g. We
take a probabilistic approach, and regard the function f
as the realization of a random �eld with a known prior
probability distribution. Let us de�ne:

{ P[f jg] as the conditional probability of the function
f given the examples g.

{ P[gjf ] as the conditional probability of g given f . If
the function underlying the data is f , this is the prob-
ability that by random sampling the function f at the
sites fxigNi=1 the set of measurement fyigNi=1 is obtained,
being therefore a model of the noise.

{ P[f ]: is the a priori probability of the random �eld f .
This embodies our a priori knowledge of the function,
and can be used to impose constraints on the model,
assigning signi�cant probability only to those functions
that satisfy those constraints.

Assuming that the probability distributions P[gjf ]
and P[f ] are know, the posterior distribution P[f jg] can
now be computed by applying the Bayes rule:

P[f jg] / P[gjf ] P[f ]: (23)

We now make the assumption that the noise variables
in eq. (22) are normally distributed, with variance �.
Therefore the probability P[gjf ] can be written as:

P[gjf ] / e
� 1

2�2

P
N

i=1
(yi�f(xi))2

where � is the variance of the noise.
The model for the prior probability distribution P[f ]

is chosen in analogy with the discrete case (when the
function f is de�ned on a �nite subset of a n-dimensional
lattice) for which the problem can be rigorously formal-
ized (Marroquin et al., 1987). The prior probability P[f ]
is written as

P[f ] / e���[f ]

where �[f ] is a smoothness functional of the type de-
scribed in section (3) and � a positive real number. This
form of probability distribution gives high probability
only to those functions for which the term �[f ] is small,
and embodies the a priori knowledge that one has about
the system.

Following the Bayes rule (23) the a posteriori proba-
bility of f is written as

P[f jg] / e
� 1

2�2
[
P

N

i=1
(yi�f(xi))2+2��2�[f ]]

: (24)

One simple estimate of the function f from the prob-
ability distribution (24) is the so called MAP (Maximum
A Posteriori) estimate, that considers the function that
maximizes the a posteriori probability P[f jg], or mini-
mizes the exponent in equation (24). The MAP estimate
of f is therefore the minimizer of the following functional:

H[f ] =

NX
i=1

(yi � f(xi))
2 + ��[f ] :

where � = 2�2�. This functional is the same as that
of eq. (1), and from here it is clear that the parameter
�, that is usually called the \regularization parameter"
determines the trade-o� between the level of the noise
and the strength of the a priori assumptions about the
solution, therefore controlling the compromise between
the degree of smoothness of the solution and its closeness
to the data.

As we have pointed out (Poggio and Girosi, 1989),
prior probabilities can also be seen as a measure of com-
plexity, assigning high complexity to the functions with
small probability. It has been proposed by Rissanen
(1978) to measure the complexity of a hypothesis in
terms of the bit length needed to encode it. It turns
out that the MAP estimate mentioned above is closely
related to the Minimum Description Length Principle:
the hypothesis f which for given g can be described in
the most compact way is chosen as the \best" hypothe-
sis. Similar ideas have been explored by others (for in-
stance Solomono� in 1978). They connect data compres-
sion and coding with Bayesian inference, regularization,
function approximation and learning.

5.1 The Bayesian interpretation of Generalized

Regularization Networks

In the probabilistic interpretation of standard regulariza-
tion the term ��[f ] in the regularization functional cor-
responds to the following prior probability in a Bayesian
formulation in which the MAP estimate is sought:

P[f ] / e���[f ]:

From this point of view, the extension of section (4) cor-
responds (again informally) to choose an a priori prob-
ability of the form

P[f ] /
Z

�ge���[g]�(f(x) � g(Wx))

where �g means that a functional integration is being
performed. This restricts the space of functions on which
the probability distribution is de�ned to the class of func-
tions that can be written as f(x) = g(Wx), and assume

a prior probability distribution e���[g((x))] for the func-
tions g, where � is now a radially symmetric stabilizer.

In a similar manner, in the case of additive approxi-
mation the prior probability of f is concentrated on those
functions f that can be written as sums of additive com-
ponents, and corresponding priors are of the form:

P[f ] /
Z

�f1 : : : �fd �
d
�=1e

� 1
��

�[f�]�

 
f(x) �

dX
�=1

f�(x
�)

!
:

This is equivalent to saying that we know a priori that
the underlying function is additive.
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6 Additive splines, hinge functions,

sigmoidal neural nets

In the previous sections we have shown how to extend
RN to schemes that we have called GRN, which include
ridge approximation schemes of the PPR type, that is

f(x) =

d0X
i=1

h�(w� � x) ;

where

h�(y) =

nX
�=1

c��G(y � t��):

The form of the basis function G depends on the sta-
bilizer, and a list of \admissible" G has been given in
section (3). These include the absolute value G(x) = jxj
{ corresponding to piecewise linear splines, and the func-
tion G(x) = jxj3 { corresponding to cubic splines (used
in typical implementations of PPR), as well as Gaussian
functions. Though it may seem natural to think that sig-
moidal multilayer perceptrons may be included in this
framework, it is actually impossible to derive directly
from regularization principles the sigmoidal activation
functions typically used in Multilayer Perceptrons. In
the following section we show, however, that there is a
close relationship between basis functions of the hinge,
the sigmoid and the Gaussian type.

6.1 From additive splines to ramp and hinge

functions

We will consider here the one-dimensional case. Mul-
tidimensional additive approximations consist of one-
dimensional terms (once the W has been �xed). We
consider the approximation with the lowest possible de-
gree of smoothness: piecewise linear. The associated
basis function G(x) = jxj is shown in �gure 5 top left,
and the associated stabilizer is given by

�[f ] =

Z 1

�1
ds

j ~f(s)j2
s2

Its use in approximating a one-dimensional function con-
sists of the linear combination with appropriate coe�-
cients of translates of jxj. It is easy to see that a lin-
ear combination of two translates of jxj with appropri-
ate coe�cients (positive and negative and equal in ab-
solute value) yields the piecewise linear threshold func-
tion �L(x) shown in �gure 5. Linear combinations of
translates of such functions can be used to approximate
one-dimensional functions. A similar derivative-like, lin-
ear combination of two translates of �L(x) functions with
appropriate coe�cients yields the Gaussian-like function
gL(x) also shown in �gure 5. Linear combinations of
translates of this function can also be used for approxi-
mation of a function. Thus any given approximation in
terms of gL(x) can be rewritten in terms of �L(x) and
the latter can be in turn expressed in terms of the basis
function jxj.

Notice that the basis functions jxj underlie the
\hinge" technique proposed by Breiman (1992), whereas

the basis functions �L(x) are sigmoidal-like and the
gL(x) are Gaussian-like. The arguments above show the
close relations between all of them, despite the fact that
only jxj is strictly a \legal" basis function from the point
of view of regularization (gL(x) is not, though the very
similar but smoother Gaussian is). Notice also that jxj
can be expressed in terms of \ramp" functions, that is
jxj = x+ + x�.

These relationships imply that it may be interesting
to compare how well each of these basis functions is able
to approximate some simple function. To do this we used
the model f(x) =

Pn

� c�G(x � t�) to approximate the
function h(x) = sin(2�x) on [0; 1], where G(x) is one of
the basis functions of �gure 5. The function sin(2�x)
is plotted in �gure 6. Fifty training points and 10,000
test points were chosen uniformly on [0; 1]. The param-
eters were learned using the iterative back�tting algo-
rithm that will be described in section 7. We looked at
the function learned after �tting 1, 2, 4, 8 and 16 basis
functions. The resulting approximations are plotted in
the following �gures and the errors are summarized in
table 1.

The results show that the performance of all three
basis functions is fairly close as the number of basis
functions increases. All models did a good job of ap-
proximating sin(2�x). The absolute value function did
slightly better and the \Gaussian" function did slightly
worse. It is interesting that the approximation using two
absolute value functions is almost identical to the ap-
proximation using one \sigmoidal" function which again
shows that two absolute value basis functions can sum
to equal one \sigmoidal" piecewise linear function.

7 Numerical illustrations

7.1 Comparing additive and non-additive

models

In order to illustrate some of the ideas presented in this
paper and to provide some practical intuition about the
various models, we present numerical experiments com-
paring the performance of additive and non-additive net-
works on two-dimensional problems. In a model consist-
ing of a sum of two-dimensional Gaussians, the model
can be changed from a non-additive Radial Basis Func-
tion network to an additive network by \elongating" the
Gaussians along the two coordinate axes. This allows us
to measure the performance of a network as it changes
from a non-additive scheme to an additive one.

Five di�erent models were tested. The �rst three dif-
fer only in the variances of the Gaussian along the two
coordinate axes. The ratio of the x variance to the y vari-
ance determines the elongation of the Gaussian. These
models all have the same form and can be written as:

f(x) =

NX
i=1

ci[G1(x � xi) +G2(x� xi)]

where

G1 = e
�( x

2

�1
+ y2

�2
)

and
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G2 = e
�( x

2

�2
+ y2

�1
)

The models di�er only in the values of �1 and �2. For
the �rst model, �1 = :5 and �2 = :5 (RBF), for the
second model �1 = 10 and �2 = :5 (elliptical Gaussian),
and for the third model, �1 =1 and �2 = :5 (additive).
These models correspond to placing two Gaussians at
each data point xi, with one Gaussian elongated in the
x direction and one elongated in the y direction. In the
�rst case (RBF) there is no elongation, in the second case
(elliptical Gaussian) there is moderate elongation, and
in the last case (additive) there is in�nite elongation. In
these three models, the centers were �xed in the learning
algorithm and equal to the training examples. The only
parameters that were learned were the coe�cients ci.

The fourth model is an additive model of the form
(18), in which the number of centers is smaller than the
number of data points, but the additive components are
independent, and can be written as:

f(x; y) =

nX
�=1

b�G(x� t�x ) +

nX
�=1

c�G(y � t�y )

where the basis function is the Gaussian:

G(x) = e�2x2 :

In this model, the centers were also �xed in the learn-
ing algorithm, and were a proper subset of the training
examples, so that there were fewer centers than exam-
ples. In the experiments that follow, 7 centers were used
with this model, and the coe�cients b� and c� were de-
termined by least squares.

The �fth model is a Generalized Regularization Net-
work model, of the form (21), that uses a Gaussian basis
function:

f(x) =

nX
�=1

c�e
�(w��x�t�)2 :

In this model the weight vectors, centers, and coe�-
cients are all learned.

The coe�cients of the �rst four models were set by
solving the linear system of equations by using the
pseudo-inverse, which �nds the best mean squared �t
of the linear model to the data.

The �fth model was trained by �tting one basis func-
tion at a time according to the following algorithm:

� Add a new basis function;

� Optimize the parameters w�, t� and c� using the
random step algorithm (described below);

� Back�tting: for each basis function � added so far:

{ hold the parameters of all other functions
�xed;

{ reoptimize the parameters of function �;

� Repeat the back�tting stage until there is no sig-
ni�cant decrease in L2 error.

The random step algorithm (Caprile and Girosi, 1990)
for optimizing a set of parameters works as follows. Pick
random changes to each parameter such that each ran-
dom change lies within some interval [a; b]. Add the
random changes to each parameter and then calculate
the new error between the output of the network and
the target values. If the error decreases, then keep the
changes and double the length of the interval for pick-
ing random changes. If the error increases, then throw
out the changes and halve the size of the interval. If the
length of the interval becomes less than some threshold,
then reset the length of the interval to some larger value.

The �ve models were each tested on two di�erent func-
tions: a two-dimensional additive function:

h(x; y) = sin(2�x) + 4(y � 0:5)2

and the two-dimensional Gabor function:

g(x; y) = e�kxk
2

cos(:75�(x+ y)):

The graphs of these functions are shown in �gure
10. The training data for the additive function con-
sisted of 20 points picked from a uniform distribution
on [0; 1]� [0; 1]. Another 10,000 points were randomly
chosen to serve as test data. The training data for the
Gabor function consisted of 20 points picked from a uni-
form distribution on [�1; 1]� [�1; 1] with an additional
10,000 points used as test data.

In order to see how sensitive were the performances
to the choice of basis function, we also repeated the ex-
periments for the models 3, 4 and 5 with a sigmoid (that
is not a basis function that can be derived from regular-
ization theory) replacing the Gaussian basis function. In
our experiments we used the standard sigmoid function:

�(x) =
1

1+ e�x
:

These models (6, 7 and 8) are shown in table 2 together
with models 1 to 5. Notice that only model 8 is a Multi-
layer Perceptron in the standard sense. The results are
summarized in table 3.

Plots of some of the approximations are shown in �g-
ures 11, 12, 13 and 14. As expected, the results show
that the additive model was able to approximate the ad-
ditive function, h(x; y) better than both the RBF model
and the elliptical Gaussian model. Also, there seems to
be a smooth degradation of performance as the model
changes from the additive to the Radial Basis Function
(�gure 11). Just the opposite results are seen in approx-
imating the non-additive Gabor function, g(x; y). The
RBF model did very well, while the additive model did
a very poor job in approximating the Gabor function
(�gures 12 and 13a). However, we see that the GRN
scheme (model 5), gives a fairly good approximation (�g-
ure 13b). This is due to the fact that the learning al-
gorithm was able to �nd better directions to project the
data than the x and y axes as in the pure additive model.
We can also see from table 3 that the additive model
with fewer centers than examples (model 4) has a larger
training error than the purely additive model 3, but a
much smaller test error. The results for the sigmoidal
additive model learning the additive function h (�gure
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14) show that it is comparable to the Gaussian additive
model. The �rst three models we considered had a num-
ber of parameters equal to the number of data points,
and were supposed to exactly interpolate the data, so
that one may wonder why the training errors are not
exactly zero. This is due to the ill-conditioning of the
associated linear system, which is a common problem in
Radial Basis Functions (Dyn, Levin and Rippa, 1986).

8 Summary and remarks

A large number of approximation techniques can be writ-
ten as multilayer networks with one hidden layer, as
shown in �gure (16). In past papers (Poggio and Girosi,
1989; Poggio and Girosi, 1990, 1990b; Maruyama, Girosi
and Poggio, 1992) we showed how to derive RBF, HBF
and several types of multidimensional splines from reg-
ularization principles of the form used to deal with the
ill-posed problem of function approximation. We had
not used regularization to yield approximation schemes
of the additive type (Wahba, 1990; Hastie and Tibshi-
rani, 1990), such as additive splines, ridge approxima-
tion of the PPR type and hinge functions. In this paper,
we show that appropriate stabilizers can be de�ned to
justify such additive schemes, and that the same exten-
sions that leads from RBF to HBF leads from additive
splines to ridge function approximation schemes of the
Projection Pursuit Regression type. Our Generalized
Regularization Networks include, depending on the sta-
bilizer (that is on the prior knowledge on the functions
we want to approximate), HBF networks, ridge approxi-
mation and tensor products splines. Figure (15) shows a
diagram of the relationships. Notice that HBF networks
and Ridge Regression networks are directly related in
the special case of normalized inputs (Maruyama, Girosi
and Poggio, 1992). Also note that Gaussian HBF net-
works, as described by Poggio and Girosi (1990) contain
in the limit the additive models we describe here.

We feel that there is now a theoretical framework that
justi�es a large spectrum of approximation schemes in
terms of di�erent smoothness constraints imposed within
the same regularization functional to solve the ill-posed
problem of function approximation from sparse data.
The claim is that all the di�erent networks and cor-
responding approximation schemes can be justi�ed in
terms of the variational principle

H[f ] =

NX
i=1

(f(xi) � yi)
2 + ��[f ] : (25)

They di�er because of di�erent choices of stabilizers
�, which correspond to di�erent assumptions of smooth-
ness. In this context, we believe that the Bayesian inter-
pretation is one of the main advantages of regularization:
it makes clear that di�erent network architectures cor-
respond to di�erent prior assumptions of smoothness of
the functions to be approximated.

The common framework we have derived suggests
that di�erences between the various network architec-
tures are relatively minor, corresponding to di�erent
smoothness assumptions. One would expect that each

architecture will work best for the class of function de-
�ned by the associated prior (that is stabilizer), an ex-
pectation which is consistent with numerical results (see
our numerical experiments in this paper, and Maruyama
et al. 1992; see also Donohue and Johnstone, 1989).

Of the several points suggested by our results we will
discuss one here: it regards the surprising relative suc-
cess of additive schemes of the ridge approximation type
in real world applications.

As we have seen, ridge approximation schemes depend
on priors that combine additivity of one-dimensional
functions with the usual assumption of smoothness. Do
such priors capture some fundamental property of the
physical world? Consider for example the problem of
object recognition, or the problem of motor control. We
can recognize almost any object from any of many small
subsets of its features, visual and non-visual. We can
performmany motor actions in several di�erent ways. In
most situations, our sensory and motor worlds are redun-
dant. In terms of GRN this means that instead of high-
dimensional centers, any of several lower-dimensional
centers are often su�cient to perform a given task. This
means that the \and" of a high-dimensional conjunction
can be replaced by the \or" of its components { a face
may be recognized by its eyebrows alone, or a mug by
its color. To recognize an object, we may use not only
templates comprising all its features, but also subtem-
plates, comprising subsets of features. Additive, small
centers { in the limit with dimensionality one { with the
appropriate W are of course associated with stabilizers
of the additive type.

Splitting the recognizable world into its additive parts
may well be preferable to reconstructing it in its full mul-
tidimensionality, because a system composed of several
independently accessible parts is inherently more robust
than a whole simultaneously dependent on each of its
parts. The small loss in uniqueness of recognition is eas-
ily o�set by the gain against noise and occlusion. There
is also a possible meta-argument that we report here only
for the sake of curiosity. It may be argued that humans
possibly would not be able to understand the world if
it were not additive because of the too-large number of
necessary examples (because of high dimensionality of
any sensory input such as an image). Thus one may be
tempted to conjecture that our sensory world is biased
towards an \additive structure".

A Derivation of the general form of

solution of the regularization

problem

We have seen in section (2) that the regularized solu-
tion of the approximation problem is the function that
minimizes a cost functional of the following form:

H[f ] =

NX
i=1

(yi � f(xi))
2 + ��[f ] : (26)

where the smoothness functional �[f ] is given by
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�[f ] =

Z
Rd

ds
j ~f(s)j2
~G(s)

:

The �rst term measures the distance between the data
and the desired solution f , and the second termmeasures
the cost associated with the deviation from smoothness.
For a wide class of functionals � the solutions of the
minimization problem (26) all have the same form. A
detailed and rigorous derivation of the solution of the
variational principle associated with eq. (26) is outside
the scope of this paper. We present here a simple deriva-
tion and refer the reader to the current literature for the
mathematical details (Wahba, 1990; Madych and Nel-
son, 1990; Dyn, 1987).

We �rst notice that, depending on the choice of G,
the functional �[f ] can have a non-empty null space,
and therefore there is a certain class of functions that
are \invisible" to it. To cope with this problem we �rst
de�ne an equivalence relation among all the functions
that di�er for an element of the null space of �[f ]. Then
we express the �rst term of H[f ] in terms of the Fourier
transform of f :

f(x) = C

Z
Rd

ds ~f (s)eix�s

obtaining the functional

H[ ~f ] =

NX
i=1

(yi�C
Z
Rd

ds ~f (s)eixi�s)2+�
Z
Rd

ds
j ~f(s)j2
~G(s)

:

Then we notice that since f is real, its Fourier transform
satis�es the constraint:

~f�(s) = ~f (�s)
so that the functional can be rewritten as:

H[ ~f ] =

NX
i=1

(yi�C
Z
Rd

ds ~f (s)eixi�s)2+�
Z
Rd

ds
~f(�s) ~f (s)

~G(s)
:

In order to �nd the minimum of this functional we take
its functional derivatives with respect to ~f :

�H[ ~f ]

� ~f (t)
= 0 8t 2 Rd : (27)

We now proceed to compute the functional derivatives

of the �rst and second term of H[ ~f ]. For the �rst term
we have:

�

� ~f(t)

NX
i=1

(yi � C

Z
Rd

ds ~f (s)eixi�s)2

= 2

NX
i=1

(yi � f(xi))

Z
Rd

ds
� ~f (s)

� ~f (t)
eixi�s

= 2

NX
i=1

(yi � f(xi))

Z
Rd

ds �(s� t)eixi�s

= 2

NX
i=1

(yi � f(xi))e
ixi�t

For the smoothness functional we have:

�

� ~f (t)

Z
Rd

ds
~f (�s) ~f (s)

~G(s)
= 2

Z
Rd

ds
~f (�s)
~G(s)

� ~f (s)

� ~f (t)

= 2

Z
Rd

ds
~f(�s)
~G(s)

�(s� t) = 2
~f(�t)
~G(t)

:

Using these results we can now write eq. (27) as:

NX
i=1

(yi � f(xi))e
ixi�t + �

~f (�t)
~G(t)

= 0 :

Changing t in �t and multiplying by ~G(t) on both sides
of this equation we get:

~f (t) = ~G(�t)
NX
i=1

(yi � f(xi))

�
eixi�t :

We now de�ne the coe�cients

ci =
(yi � f(xi))

�
i = 1; : : : ; N ;

assume that ~G is symmetric (so that its Fourier trans-
form is real), and take the Fourier transform of the last
equation, obtaining:

f(x) =

NX
i=1

ci�(xi � x) �G(x) =
NX
i=1

ciG(x� xi) :

We now remember that we had de�ned as equivalent all
the functions di�ering by a term that lies in the null
space of �[f ], and therefore the most general solution of
the minimization problem is

f(x) =

NX
i=1

ciG(x � xi) + p(x)

where p(x) is a term that lies in the null space of �[f ].

B Approximation of vector �elds

through multioutput regularization

networks

Consider the problem of approximating a vector �eld
y(x) from a set of sparse data, the examples, which are
pairs (yi;xi) for i = 1 � � �N . Choose a Generalized Reg-
ularization Network as the approximation scheme, that
is, a network with one \hidden" layer and linear output
units. Consider the case of N examples, n � N centers,
input dimensionality d and output dimensionality q (see
�gure 17). Then the approximation is

y(x) =

nX
i=1

ciG(x� xi)

with G being the chosen Green function. The equation
can be rewritten in matrix notation as

y(x) = Cg(x)
11



where g is the vector with elements gi = G(x� xi).
Let us de�ne as G the matrix of the chosen Green func-
tion evaluated at the examples, that is, the matrix with
elements Gi;j = G(xi � xj). Then the \weights" c are
\learned" from the examples by solving

Y = CG

where Y is de�ned as the matrix in which column l is
the example yl. C is de�ned as the matrix in which row
m is the vector cm. This means that x is a d�1 matrix,
C is a q � n matrix, Y is a q � N matrix and G is a
n� N matrix. Then the set of weights C is given by

C = YG
+

It also follows (though it is not so well known) that
the vector �eld y is approximated by the network as the
linear combination of the example �elds yl , that is

y(x) = YG
+
g(x)

which can be rewritten as

y(x) =

NX
l=1

bl(x)yl

where the bl depend on the chosen G, according to

b(x) =G
+
g(x)

Thus for any choice of the regularization network {
even HBF { and any choice of the Green function { in-
cluding Green functions corresponding to additive splines
and tensor product splines { the estimated output vec-
tor is always a linear combination of example vectors
with coe�cients b that depend (nonlinearly) on the in-
put value. The result is valid for all networks with one
hidden layer and linear outputs, provided that a L2 cri-
terion is used for training. Thus, for all types of regu-
larization networks and all Green functions the output
is always a linear combination of output examples (see
Poggio and Girosi 1989).
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1 basis 2 basis 4 basis 8 basis 16 basis
function functions functions functions functions

Absolute value train: 0.798076 0.160382 0.011687 0.000555 0.000056
test: 0.762225 0.127020 0.012427 0.001179 0.000144

\Sigmoidal" train: 0.161108 0.131835 0.001599 0.000427 0.000037
test: 0.128057 0.106780 0.001972 0.000787 0.000163

\Gaussian" train: 0.497329 0.072549 0.002880 0.000524 0.000024
test: 0.546142 0.087254 0.003820 0.001211 0.000306

Table 1: L2 training and test error for each of the 3 piecewise linear models using di�erent numbers of basis functions.

Model 1 f(x; y) =
P20

i=1 ci[e
�
�

(x�xi )
2

�1
+

(y�yi)
2

�2

�
+ e

�
�

(x�xi)
2

�2
+

(y�yi)
2

�1

�
] �1 = �2 = 0:5

Model 2 f(x; y) =
P20

i=1 ci[e
�
�

(x�xi )
2

�1
+

(y�yi)
2

�2

�
+ e

�
�

(x�xi)
2

�2
+

(y�yi)
2

�1

�
] �1 = 10; �2 = 0:5

Model 3 f(x; y) =
P20

i=1 ci[e
� (x�xi )

2

� + e�
(y�yi)

2

� ] � = 0:5

Model 4 f(x; y) =
P7

�=1 b�e
� (x�t�x )2

� +
P7

�=1 c�e
� (y�t

�
y )

2

� � = 0:5

Model 5 f(x; y) =
Pn

�=1 c�e
�(w��x�t�)2 {

Model 6 f(x; y) =
P20

i=1 ci[�(x� xi) + �(y � yi)] {

Model 7 f(x; y) =
P7

�=1 b��(x� t�x) +
P7

�=1 c��(y � t�y ) {

Model 8 f(x; y) =
Pn

�=1 c��(w� � x� t�) {

Table 2: The eight models we tested in our numerical experiments.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8
h(x; y) train: 0.000036 0.000067 0.000001 0.000001 0.000170 0.000001 0.000003 0.000743

test: 0.011717 0.001598 0.000007 0.000009 0.001422 0.000015 0.000020 0.026699
g(x; y) train: 0.000000 0.000000 0.000000 0.345423 0.000001 0.000000 0.456822 0.000044

test: 0.003818 0.344881 67.95237 1.222111 0.033964 98.419816 1.397397 0.191055

Table 3: A summary of the results of our numerical experiments. Each table entry contains the L2 errors for both
the training set and the test set.
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G(r) = r^2 ln(r)

Figure 1: The \thin plate" radial basis function G(r) = r2 ln(r), where r = kxk.
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z = exp(- x^2 - y^2)

Figure 2: The Gaussian basis function G(r) = e�r
2

, where r = kxk.
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z = exp(- |x| - |y|)

Figure 3: The basis function G(x) = e�kxkL1
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a)

z = exp(-x^2) 

b)

z = exp(-y^2) 

c)

z = exp(-x^2) + exp(-y^2)

Figure 4: In (c) it is shown an additive basis function, in the case in which the additive component of the basis
functions (a and b) are gaussian.
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Figure 5: a) Absolute value basis function, jxj, b) \Sigmoidal" basis function �L(x) c) Gaussian-like basis function
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Figure 10: a) Graph of h(x; y). b) Graph of g(x; y).
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Figure 11: a) RBF Gaussian model approximation of h(x; y) (model 1). b) Elliptical Gaussian model approximation
of h(x; y) (model 2). c) Additive Gaussian model approximation of h(x; y) (model 3).
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Figure 12: a) RBF Gaussian model approximation of g(x; y) (model 1). b) Elliptical Gaussian model approximation
of g(x; y) (model 2).
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Figure 13: a) Additive Gaussian model approximation of g(x; y) (model 3). b) GRN Approximation of g(x; y) (model
5).
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Figure 14: a) Sigmoidal additive model approximation of h(x; y) (model 6). b) Sigmoidal additive model approxi-
mation of h(x; y) using fewer centers than examples (model 7). c) Multilayer Perceptron approximation of h(x; y)
(model 8).
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Figure 15: Several classes of approximation schemes and associated network architectures can be derived from
regularization with the appropriate choice of smoothness priors and corresponding stabilizers and Greens functions
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Figure 16: The most general network with one hidden layer and scalar output.
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Figure 17: The most general network with one hidden layer and vector output. Notice that this approximation
of a q-dimensional vector �eld has in general fewer parameters than the alternative representation consisting of q
networks with one-dimensional outputs. If the only free parameters are the weights from the hidden layer to the
output (as for simple RBF with if n = N ) the two representations are equivalent.
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