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Abstract

A common assumption of stereo vision researchers is that the goal of stereo is to compute explicit 3D
information about a scene, to support activities such as navigation, hand-eye coordination and object
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We provide a demonstration of a stereo algorithm that supports separating �gure from ground through
attentive �xation on key features.
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1 Introduction

The title of this article is, of course, deliberately provoca-
tive, in part to capture the reader's attention, but in
part also to make a point. A common assumption of
researchers working in stereo vision is that the goal of
stereo is to compute explicit 3D information about a
scene, in order to support activities such as navigation,
hand-eye coordination and object recognition. While
there are applications in which such information can be
accurately computed, these domains require very accu-
rate camera calibration information. We suggest that
in many applications, it may be di�cult to attain and
maintain such accurate information, and hence we sug-
gest that it may be worthwhile to reconsider what is re-
quired of a stereo algorithm, in light of the needs of the
task that uses stereo's output. In particular, we examine
the role of stereo in object recognition, arguing that it
may be more e�ective as a means of separating objects
from background, than as a provider of 3D information
to match with object models. To support this argument,
we provide a demonstration of a stereo algorithm that
separates �gure from ground through attentive �xation
on key features, without explicitly computing actual 3D
information.

2 Some Stereo Puzzles

It has been common in recent years within the computer
vision community to consider the stereo vision problem
as consisting of three key steps [23], [27]:

� Identify a particular point in one image (say the
left).

� Find the point in the other (say right) image that
is a projection of the same scene point as observed
in the �rst image.

� Measure the disparity (or di�erence in projection)
between the left and right image points. Use knowl-
edge of the relative orientation of the two camera
systems, plus the disparity, to determine the actual
distance to the imaged scene point.

These steps are repeated for a large number of points,
leading to a 3D reconstruction of the scene, at those
points.

There are many variations on this theme, including
whether to use distinctive features such as edges or cor-
ners as the points to match, or to simply use local
patches of brightness values, what constraints to apply to
the search for corresponding matches (e.g. epipolar lines,
similar contrast, similar orientation, etc.), and whether
to restrict the relative orientation of the cameras (e.g.
to parallel optic axes). Nonetheless, it has been com-
monly assumed for some time that the hard part of the
problem is solving for the correspondence between left
and right image features. Once one knows which points
match, it has been assumed that measuring the dispar-
ity is trivial, and that solving for the distance simply
requires using the geometry of the cameras to invert a
simple trigonometric projection.

This sounds �ne, but let's consider some puzzles about
this approach. The �rst puzzle is a perceptual one, illus-

Figure 1: Cornsweet illusion in depth.

trated in Figure 1. This illusion is a depth variant on the
standard Cornsweet illusion in brightness, and is due to
Anstis et al. [2] (see also [37]). It consists of a physical
object with two coplanar regions separated by a sharp
discontinuity, where the regions immediately to the sides
of the discontinuity are smoothly curved. These surfaces
are textured with random dot paint, to make them visi-
ble to the viewer. Subjects are then asked to determine
whether the two planar regions are coplanar, or sepa-
rated in depth, and if it is the latter, which surface is
closer and by how much. Although physically the two
surfaces are in fact coplanar, subjects consistently see
one of the two surfaces as closer (the left side in the case
of Figure 1). The reported error is :5cm and is consistent
for three di�erent view distances: 72; 145 and 290cm.

This is clearly surprising if one believes that the above
description of the stereo process holds for biological as
well as machine solutions. In particular, if the human
system maintains a representation of reconstructed dis-
tance, and if that representation is accessible to queries,
then it is di�cult to see how human observers could con-
sistently make such a mistake.

Additional stereo puzzles are provided in [40], which
the authors use to argue that depth is not computed
directly in humans, but is reconstructed from non-zero
second di�erences in depth. As a consequence, they
demonstrate that human stereo vision is blind to con-
stant gradients of depth. Similar observations on the
role of disparity gradients in reconstructing depth are
given by [44].

It need not be the case that machine stereo systems
make the same \mistakes" as human observers, but the
existence of such an illusion for humans raises an in-
teresting question about the basic assumptions of ap-
proaches that reconstruct distance.

Consider a second puzzle about the approach of
matching features, then using trigonometry to convert
into depth. As noted, for years stereo researchers have
assumed that the correspondence problem was the hard
part of the task. Once correct correspondences were
found, the reconstruction was a simple matter of geom-
etry. This is true in principle, but it relies on �nding
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the intrinsic parameters of the camera systems and the
extrinsic parameters relating the orientation of the two
cameras. While solutions exist for �nding these param-
eters (e.g. [41]), such solutions appear to be numerically
unstable [45, 43]. If one does not perform very care-
ful calibration of the camera platform, the result will be
very noisy reconstructed distances.

Of course, there are circumstances in which careful
calibration can be performed, and in these cases, ex-
tremely accurate reconstructions are possible. A good
example of this is automated cartographic reconstruc-
tion from satellite imagery, where commercial systems
can provide maps with accuracy on the order of a few
meters, from satellite photography [19]. On the other
hand, if the cameras are mounted on a mobile robot that
is perturbed as it moves through the environment, then
it may be more di�cult to attain and maintain careful
calibration. Thus, we see that there are some sugges-
tions that human observers do not reconstruct depth,
and some suggestions that one needs very careful cali-
bration (which is often hard to guarantee) in order to do
this. We will explore the calibration sensitivity issue in
section 3.

Given this puzzle, it is worth stepping back to ask
what one needs from the output of a stereo algorithm.
Aside from specialized tasks such as cartography, the two
standard general application areas are navigation and
recognition. Interestingly, Faugeras [8] (see also [39]) has
recently argued that one can construct and maintain a
representation of the scene structure around a moving
robot, without a need for careful calibration. Moreover,
the solution involves using relative coordinate systems
to represent the scene, so that there is no metrical re-
construction of the scene.

What about object recognition? We have found it
convenient to separate the recognition problem into three
pieces [11]:

� Selection: Extract subsets of the data features
likely to have come from a single object.

� Indexing: Look up those object models that could
have given rise to one such selected subset.

� Correspondence: Determine if there is a way of
matching model features to data features that is
consistent with a legal transformation of the model
into the data.

We have argued [11] that for many approaches to
recognition, the �rst stage is the crucial one. In many
cases, it reduces the expected complexity of recognition
from exponential to low-order polynomial, and in many
cases, it is necessary to keep the false positive rates under
control. If we accept that the hard part of recognition is
selection, rather than correspondence, then this has an
interesting implication for stereo. If stereo were mainly
oriented towards solving the correspondence problem, it
is natural to expect that it needs to deliver accurate 3D
data that can be compared to 3D models. But if stereo is
mainly intended to help with the selection problem, then
one no longer needs to extract exact 3D reconstructions,
one simply needs stereo to identify data feature subsets
that are roughly in the same depth range, or equivalently

do not have large variations in disparity. We will exam-
ine a modi�ed stereo algorithm in section 4 that takes
advantage of this observation.

If one accepts that stereo is primarily for segmenta-
tion, not for 3D reconstruction, this leads to the further
question of whether recognition of 3D objects can be
done without explicit 3D input data. A number of re-
cent techniques have shown interesting possibilities along
these lines; for example, the recent development of the
linear combinations method [42] suggests that one could
use stored 2D images of a model to generate an hypoth-
esized 2D image which can then be compared to the ob-
served image. Again, one does not need to extract exact
3D data. It is also intriguing along these lines to observe
that some physiological data [34, 35] may also support
the idea of the human system solving 3D recognition
from purely 2D views. Of course, it is possible to solve
the recognition problem by matching reconstructed 3D
stereo data against 3D models [27].

To summarize, we consider three main points:

� the human stereo system may not directly compute
3D depth, suggesting that humans may not need
explicit depth;

� small inaccuracies in measuring camera parameters
can lead to large errors in computed depth, suggest-
ing that we may not be able to compute explicit
depth accurately;

� the critical part of object recognition is �g-
ure/ground separation, which may not require ex-
plicit depth information.

We will use this to argue that stereo can contribute
to the e�cient solution of the object recognition prob-
lem, without the need for accurate calibration and with-
out the need for explicit depth computation. In this
case, the importance of eye movements or related con-
trol strategies is increased, causing us to reexamine the
structure of stereo algorithms. Similar questions have
been by systems that use actively controlled stereo eye-
head systems to acquire depth information (for example,
[1, 5, 6, 7, 9, 20, 30, 38, 33]).

3 Why Reconstruction is Too Sensitive

While our �rst point is based primarily on earlier psy-
chophysical observations, the second point bears closer
examination. Let's look in more detail at the problem of
computing distance from stereo disparity. Suppose our
two cameras have points of projection located at b` and
br, measured in some world coordinate system. Assume
that the optic axes are ẑ` and ẑr, and that both cameras
have the same focal length f (though we could easily
relax this to have two di�erent focal lengths).

In this case, we can represent the left image plane by

fvj hv; ẑ`i = d`g

where h:; :i represents an inner (or dot) product. The
principal point (or image center) is given by

c` = b` + f ẑ`
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where we have chosen to place the image plane in front of
the projection point, to avoid the inversion of the coordi-
nate axes of the image. Since we know that this point lies
on the image plane, we can deduce the constant o�set,
so that the left image plane is given by

fvj hv� b`; ẑ`i = fg :

A similar representation holds for the right image plane.
Now an arbitrary scene point p maps, under perspec-

tive projection, to a point p` on the left image plane,
given by

p` = b` +
f(p � b`)

hp� b`; ẑ`i

and for convenience we write this as

p` = c` + d`

where hd`; ẑ`i = 0. Here d` is an o�set vector in the
image plane from the principal point:

d` = f

�
ẑ` � ((p� b`)� ẑ`)

hp� b`; ẑ`i

�
:

Note that we haven't speci�ed the world coordinate
system yet, and we can now take advantage of that free-
dom. In particular, we choose the origin of the world
coordinate system to be centered between the projection
points, so that b` = �br = b.

By subtracting dr from d`, we get the following rela-
tionship

hp� b`; ẑ`id` � hp� br; ẑridr =

f [�b` + br � hp� b`; ẑ`i ẑ` + hp� br; ẑri ẑr ] :(1)

For the special case of the origin centered between the
projection points, this becomes

hp� b; ẑ`id` � hp+ b; ẑridr =

f [�2b� hp� b; ẑ`i ẑ` + hp+ b; ẑri ẑr] : (2)

We can isolate components of p with respect to each
of the two optic axes, by taking the dot product of both
sides of equation 1 or 2 with respect to these unit vectors.
This gives us two linear equations (assuming that ẑ` 6=
ẑr), which we can solve to �nd these components of p.
Adding them together yields:

hp; ẑ` + ẑri =�
(f2 + ��) hb; ẑ` � ẑri+ 2f hb; �ẑ` � �ẑri

�
�� � f

2
; (3)

where

� = hdr + f ẑr; ẑ`i

� = hd` + f ẑ`; ẑri :

To explore how this computation of depth from stereo
measurements depends on the accuracy of the calibrated
parameters and the disparity measurements, we consider
the symmetric case of:

ẑ` = cos 
ẑ + sin 
x̂

ẑr = cos 
ẑ � sin 
x̂

b̂ = �bx̂

where x̂ is chosen as the direction of the vector connect-
ing the two centers of projection, and where the two cam-
eras make a symmetric (though opposite signed) gaze
angle 
 with the ẑ axis, and where the o�set of each
camera from the origin is the same. In this case, substi-
tution and manipulation leads to

hp; ẑi cos 
 = (4)

2b
�
f
2 cos2 
 + dr sin 


� �
f
2 cos2 
 � d` sin 


�
2 sin
 (f2 cos2 
 + drd`) � f

�
cos2 
 � sin2 


�
(dr � d`)

where we have let

dr = hdr; ẑi

d` = hd`; ẑi :

Note that in the special case of parallel optic axes (
 =
0), this reduces to

hp; ẑi =
2fb

d` � dr

which is exactly what one would expect, since d` � dr is
simply the disparity at this point.

For convenience, call Z = hp; ẑi. This equation tells
us how to compute the depth Z, given measurements
for the camera parameters f; b; 
 and the two principal
points c`; cr as well as the individual measurements of
displacement d`;dr (or equivalently d` and dr).

The question we want to consider is how accurately
do we need to know these parameters? There has been
some previous analysis of stereo error in the literature,
primarily focused on the e�ects of pixel quantization
[43, 28, 25], although some analysis of the e�ects of cam-
era parameters has also been done [45, 44]. Here we are
primarily interested in the e�ects of the camera param-
eters.

For sake of simplicity, we will assume that 
 is small.
For example, if the cameras are �xated at a target 1
meter removed, with an interocular separation of 10cm,
then 
 � :05 radians, or if the �xation target is :5 meters
o�, then 
 � :1 radians. In the second case, the small
angle approximation will lead to an error in cos 
 of at
most :005 and an error in sin 
 of at most :0002. Using
the small angle approximation leads to

Z � 2b
f
2 + 
f(dr � d`)

2
(f2 + drd`) � f(dr � d`)
(5)

If we rewrite this, isolating depth in terms of interocular
units (2b), and image o�sets in terms of focal length (or
equivalently in terms of angular arc), we get:

Z

2b
�

1 + 

dr�d`

f

2
 � dr�d`
f

+ 2
 dr
f

d`
f

: (6)

In some cases it is more convenient to consider this ex-
pression in terms of relative units, that is representing
depth in terms of interocular spacing, by using

Z
0 =

Z

2b

and to use disparities as angular arcs by using

d
0

r =
dr

f

d
0

` =
d`

f

:
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In this case, we have

Z
0

�
1 + 
(d0r � d

0

`)

2
 � (d0r � d
0

`) + 2
d0rd
0

`

: (7)

By taking partial derivatives of this equation with re-
spect to each of the parameters of interest (which we
treat as independent of one another), we arrive at the
following expressions for the relative change in computed
depth as a function of the relative error in measuring the
parameters:

�����Z

Z

���� =

�����b

b

���������Z

Z

���� =

�����dr

f

����
����
 + Z

0

� 2
d0`Z
0

1 + 
(d0r � d
0

`)

���������Z

Z

���� =

�����d`

f

����
����
 + Z

0 + 2
d0rZ
0

1 + 
(d0r � d
0

`)

���������Z

Z

���� =

�����f

f

����
���� (
 + Z

0)(d0r � d
0

`) � 4
d0rd
0

`Z
0

1 + 
(d0r � d
0

`)

���������Z

Z

���� = j�
j

����d
0

r � d
0

` � 2Z0(1 + d
0

rd
0

`)

1 + 
(d0r � d
0

`)

����
If we use standard viewing geometries (i.e. focal length

much larger than individual pixel size, 
 small), we can
approximate these expressions as follows:

�����Z

Z

���� �

�����b

b

���� (8)

�����Z

Z

���� �

�����dr

f

���� jZ0

j (9)

�����Z

Z

���� �

�����d`

f

���� jZ0

j (10)

�����Z

Z

���� �

�����f

f

���� jZ0(d0r � d
0

`)j (11)

�����Z

Z

���� � 2 jZ0

j j�
j (12)

We note that related error expressions were obtained
in [43], although the focus there was on the e�ects of er-
rors in the matching of image features and the quantiza-
tion of image pixels on the accuracy of recovered depth.

Our concern is how uncertainty in measuring the cam-
era parameters impacts the computed depth. Ideally, we
would like a linear relationship, so that, for example, a
1 percent error in computing a parameter would result
in at most a 1 percent error in depth.

To explore this, we consider two cases: a camera sys-
tem with 15mm focal length and :015mm pixels so that
a pixel subtends an angular arc of :001 radians; and the
human visual system, where the fovea has a receptor
packing subtending approximately :00014 radians.

By equation 8, relative errors in computed depth due
to mismeasurement of the baseline separation are gen-
erally quite small. For example, a 1% relative error in
measuring the baseline will result in a 1% relative error
in the computed distance.

Equations 9 and 10 are essentially the same. They
show a non-linear e�ect, in that the relative error in com-
puting depth is a function both of the relative error in
computing the position of each image point with respect
to the global coordinate frame, and more importantly is
a function of the distance of the object from the viewer,
in units of interocular separation (2b). Thus, the relative
error will get much worse for more distant objects. If we
let the pixel error in measuring position be k, then using
a standard pixel size and focal length, the relative error
in depth is

k

103

���� Z2b
����

for our camera system. To see how large this can get,
we need to understand what can contribute to k. E�ects
include:

� image based localization errors

� image based matching errors

� registration errors between the image and the world
coordinates due to:

{ principal points

{ image orientation

Uncertainty and smoothing e�ects in the edge detec-
tor will a�ect the �rst source of error, but typically will
only cause errors on the order of a few pixels. Since
matching errors by de�nition must lead to incorrect
depth reconstructions, we ignore them in our analysis.
The second major source of error comes from convert-
ing the image pixel measurements to world coordinates,
and here there are two main sources. One is that all of
our disparity measurements in the analysis above were
based on the displacement of features from the principal
points. This requires that we measure those principal
points accurately [21], and this is particularly important
since in many cameras, the principal point can often be
tens of pixels away from the center of the sensor array.
For example, the CCD cameras in use in one of our stereo
setups have principal points displaced from the image ar-
ray center by 30 pixels in x and 1 pixel in y for the left
camera and 18 pixels in x and 3 pixels in y for the right
camera. Methods in the literature for locating the prin-
cipal points [21] are reported to have residual errors of
at most 6 pixels.

Finally, we need to know the orientation of the camera
rasters with respect to the world axes. Even if we ignore
the e�ects of gaze angle, rotation about the optic axis
(cyclotorsion) can result in an error in the disparity o�set
with respect to the interocular baseline. Since this error
goes with the cosine of the rotation, we expect the e�ects
of such error to be small.

If we have found the principal points and the orien-
tation of the cameras with respect to world coordinates
accurately, then k will typically be on the order of a few
pixels. If we have not, k can easily be on the order of
tens of pixels. To see the e�ect of this on reconstructed
depth, Figure 2 shows plots of the percentage relative
error in computing depth, as a function of the distance
to the object (measured in units of interocular separa-
tion), for the case of k = 1 and k = 10. For an object
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Relative depth error vs. Object distance
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Figure 2: Vertical axis is the percentage error in comput-
ing depth, horizontal axis is the distance to the object (in
units of interocular separation). Top graph is for errors
in localizing image features of 10 pixels, bottom graph
is for 1 pixel errors.

1 meter away from our standard camera setup, k = 10
leads to 10% errors in computed depth. For the human
system, these errors are reduced by a factor of 10. A
second way of seeing this is to ask what is the accuracy
on pixel location needed to keep the relative depth error
less than 1%, as a function of the distance to the object.
This is shown in Figure 3.

By equation 11, a 1 percent error in estimating f and
disparities on the order of 10 pixels, will still only lead
to 1 percent errors in relative depth for nearby objects
(Z=2b � 10), which is small. Note that as the disparities
get larger, the error increases. This has the interesting
implication that if the object of interest is roughly �x-
ated (i.e. the two optic axes intersect at or near the
object) then disparities for features on the objects will
be small, and the depth error will be small, while objects
at larger disparities will have larger errors. Note that a
similar observation has been made by Olson [31] who
shows that much of the sensitivity of depth reconstruc-
tion to camera parameters can be isolated in the compu-
tation of the depth of the �xation point, while relative
depth of other points with respect to this �xation can be
computed fairly accurately.

All of this analysis is encouraging. Consider equation
12, however. Here, a 1 degree error in estimating the
gaze angle will lead to 34 percent relative depth errors
for nearby objects (Z=2b � 10), and even a :5 degree gaze
angle error will lead to 17 percent relative depth errors.
This is graphed in more detail in Figure 4. Similarly, in
Figure 5, we plot the accuracy in gaze angle needed to
keep the relative depth error at most 1%, as a function

Accuracy limit on pixel error vs object distance
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Figure 3: Vertical axis is the accuracy in pixel location
needed so that the relative error in depth is less than 1%,
horizontal axis is the distance to the object (in units of
interocular separation).

of distance to the object.
We note that errors due to gaze angle calibration

could be a real problem. It is interesting to note that
the human system appears able to measure gaze angle
only up to an accuracy of roughly 1 degree [16] (page
67).

In short, we need to be certain that we have estimated
the principal points accurately, and that we have very
accurate measurements of the gaze angles of the cam-
eras. If we cannot do so, then we will su�er distortion in
our computed depth. More importantly, that distortion
varies with actual depth, so the e�ect is non-linear. If we
are trying to recognize an object whose extent in depth
is small relative to the distance to its centroid, then the
e�ect of this noise sensitivity is reduced. This is because
the e�ect of the error will be systematic, and in the
case of small relative depth, this uncertainty basically
becomes a constant scale factor on the computed depth.
On the other hand, however, if the object has notice-
able relative extent in depth (even on the order of a few
percent), then the uncertainty in computing depth will
skew the results, causing di�culties for most recognition
methods that compare computed 3D structure against
stored models. Thus, the sensitivity may cause serious
problems for recognition methods, both due to the large
errors in depth and due to the distortions with varying
depth.

4 Another Look at Stereo

Given that it may be di�cult to reliably compute dis-
tance, and that distance may not be needed to handle
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Relative depth error vs. Object distance
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Figure 4: Vertical axis is the percentage error in comput-
ing depth, horizontal axis is the distance to the object
(in units of interocular separation). Graphs are for er-
rors in computing the gaze angle of 1, :5 and :25 degrees,
from top to bottom.

Accuracy limit on gaze error vs object distance
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Figure 5: Vertical axis is the accuracy in gaze angle (in
degrees) needed so that the relative error in depth is less
than 1%, horizontal axis is the distance to the object (in
units of interocular separation).

the two main uses of stereo output, we suggest that
it is useful to reconsider the performance requirements
that stereo should satisfy to support tasks such as ob-
ject recognition. To handle �gure/ground separation, a
stereo algorithm should:

� be able to detect proximal (in the image) features
that lie within some range of depth (i.e. �nd points
that are near one another in 3D space, even if one
does not know exactly where in 3D),

� be able to align matching distinctive features so
that they are centered in the two images, to ensure
that nearby parts of the corresponding object are
visible in both images and can be matched,

� be able to integrate other visual cues about possible
trigger features to foveate and �xate.

First, we should consider whether we can use exist-
ing stereo algorithms (e.g. [10], [4], [26], [36], [14]) to
tackle the problem of �gure/ground separation. We can
conveniently separate stereo processing into several com-
ponents:

� Choice of features to match: for our discussions,
we will consider only edge based stereo matching.

� Constraints on the matching process.

� Control mechanism used to guide the matching
process.

Most current stereo algorithms solve the correspon-
dence problem as follows: Given any left image edge,
search the set of right image edges for a unique match.
The search is usually constrained by the (assumed
known) epipolar geometry, and by a set of similarity
constraints (e.g. edges should have similar orientation,
similar contrast (or intensity variation), and so on). This
holds both for matching individual edge points (in which
case additional constraints such as �gural continuity may
also apply) and for extended edge fragments.

The key question is what constitutes a unique match,
and this depends on the control mechanism used by the
algorithm. For example, most of these algorithms at-
tempt to �nd matches over a wide range of disparity,
re
ecting the fact that the viewed scenes may have ob-
jects ranging from close to the viewer (less than 1 meter)
out to objects at the horizon. This can easily translate
into disparity ranges on the order of several hundred pix-
els. The problem is that under these circumstances, it
may be very di�cult to guarantee uniqueness of match,
especially when one is only considering local attributes
of features, such as orientation and local contrast. One
solution is to incorporate local geometric information
about nearby edges [3], [29]. But an alternative is to
consider changing the control mechanism.

The key problem is that previous stereo algorithms
had as their goal the reconstruction of the scene, and
hence they were designed to �nd as many correct
matches as possible, over a wide range of disparities.
On the other hand, if all we are interested in is sepa-
rating out candidate image features that are likely to
correspond to a single object, and we are willing to al-
low edge features to participate in several such groups,
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then an alternative control method is viable. In particu-
lar, since we are interested in �nding roughly contiguous
3D regions, it is attractive to envision a control method
in which one �xates at some target, then searches for
matching features within some range of disparity about
that �xation point, collecting all such matching features
as a candidate object, and continues.

Such an algorithm is similar in approach to some ear-
lier stereo methods, notably [23, 27, 3], and it bears
some similarity to evidence of the human stereo system,
particular in the restriction of matching disparities only
over a narrow range about the �xation point (referred
to as Panum's limit in the perceptual literature) and the
role of eye movements in guiding stereo [23, 27, 31]. It
also clearly relates to work in active stereo head systems
[1, 5, 6, 7, 9, 20, 30, 38, 33], especially work on using
saliency of low level cues, or using motion information
to drive stereo control loops that �xate candidate target
areas [9, 6, 5, 30, 38, 33].

To demonstrate this idea, we have implemented the
following stereo algorithm (in
uenced in part by earlier
algorithms [3], [29]).

� Process both images to extract intensity edges. For
convenience, process these edges to extract linear
segments, using a standard split-and-merge algo-
rithm. This latter step is mainly for reduction in
computation and is not central to the demonstra-
tion.

� For each linear feature segment, record the position
of the two endpoints, and the average intensity on
each side of the feature. Also record the distance
from each endpoint to other nearby features.

� Find a distinctive feature in one image that has a
unique match in the other image, as measured over
the full range of possible disparities. To begin with,
we will measure distinctiveness as a combination of
the length of the feature and the contrast of the
feature. The idea is that such a feature can serve
as a focal trigger feature. Of course many other
cues could serve to focus attention [22].

� Rotate both cameras so that the distinct feature
and its match are both centered in the cameras.
This is a simple version of a �xation mechanism, in
which the trigger feature is foveated and �xated in
both cameras. Note that this will in general cause
the optic axes to be non-parallel so that epipolar
lines will no longer lie along horizontal rasters. A
simpler version just uses a pan and tilt motion of
the cameras to center the feature in one image,
while leaving the optic axes parallel.

� Within a prede�ned range of disparity ��

(Panum's limit) about the zero disparity position
(due to �xation), search for other features that have
a unique match. Note that uniqueness here means
only within this range of disparity. There may be
other edges outside of this disparity range that sat-
isfy the matching constraints, but in this case such
matches are ignored. In our implementation, two
edges match if their lengths are roughly the same,

if a signi�cant fraction of each edge has an epipo-
lar overlap with the other edge, if the orientation
is roughly the same, if the average intensity on at
least one side of the edge is roughly the same, and
if the arrangement of neighbouring edges at one of
the endpoints is roughly the same.

� This set of edges now consistutes an hypothesized
fragment of a single object. We can save these
edges, and continue the process, looking for an-
other unique trigger feature to align the cameras.
Alternatively, we can pass these edge features on to
a recognition algorithm, such as Alignment [17, 18].

We have implemented an initial version of this algo-
rithm, and used it in conjunction with an eye-head sys-
tem, which can pan and tilt as a unit, as well as change
the optic axes of one or both cameras. An example of
this algorithm in operation is shown in Figures 6{11.
Given the images in Figure 6, we extract edges (Figure
7). From this set of edges, the most distinctive edge
(measured as a combination of length and intensity con-
trast) with a unique match is isolated in Figure 8. This
enables the cameras to �xate the edge and obtain a new
set of images (Figure 9) and edges (Figure 10). Relative
to this �xation, stereo matching is performed over a nar-
row range of disparity, isolating a set of edges likely to
come from a single object (Figure 11). Notice how the
tripod is extracted from the originally cluttered image,
with minimal additional features.

5 Conclusions

We have suggested that stereo may play a central role
in object recognition, but not in the manner usually as-
sumed in the literature. We have suggested that stereo
may be most useful in supporting �gure/ground separa-
tion, and that to do so it need not compute explicit 3D
information. Supporting this argument were the obser-
vation that depth reconstruction is extremely sensitive
to accuracy in the measured camera parameters, and the
observation that the human stereo system may not com-
pute explicit depth.

Using the idea of depth detectors tuned to a nar-
row range about a �xation point has been previously
explored in the literature, primarily for obstacle avoid-
ance [15], [32]. This work considers the same general
idea within the context of recognition. Such an approach
opens up several other avenues for investigation. For ex-
ample, what is the role of other visual cues in aiding the
stereo matching problem. While one option is to aug-
ment image features with attributes, such as texture or
color measures, an alternative is to consider using such
cues to drive vergence eye movements, helping to align
the cameras on trigger features, so that the local matcher
can extract image features likely to correspond to a sin-
gle object. We intend to explore these and related issues
in the near future.
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