
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

and

CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING

DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES

A.I. Memo No. 1438 May, 1996

C.B.C.L. Paper No. 116

A Formulation for Active Learning with
Applications to Object Detection

Kah Kay Sung and Partha Niyogi
This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

We discuss a formulation for active example selection for function learning problems.

This formulation is obtained by adapting Fedorov's optimal experiment design to the

learning problem. We speci�cally show how to analytically derive example selection

algorithms for certain well de�ned function classes. We then explore the behavior and

sample complexity of such active learning algorithms. Finally, we view object detection

as a special case of function learning and show how our formulation reduces to a useful

heuristic to choose examples to reduce the generalization error.

Copyright c
 Massachusetts Institute of Technology, 1995

This report describes research done at the Center for Biological and Computational Learning and the Arti�cial

Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the Center is provided in part by

a grant from the National Science Foundation under contract ASC{9217041.

1 Introduction

Many problems in disparate �elds like computer vision, �nance, natural language processing are

increasingly being approached from a machine learning perspective. Typically, there is some task

to be performed like object recognition/detection or stock market prediction and the learner has

access to data relevant to this task. On the basis of this data set the learner develops hypotheses

and uses these to perform the task.

In most classical formulations of learning from examples, the data (examples) are assumed to

be randomly drawn and presented to the learner. This is the case for for a variety of situations

ranging from network models [16, 14], PAC [23] frameworks, and classical pattern recognition. In

this sense, the learner is a passive recipient of information about the target concept.

In contrast, one could consider a learner that plays a more active role in collecting its exam-

ples. In this paper, we take a formal look at the problem of selecting high utility examples for

machine learning systems. The example selection problem falls under a newly emerging general

area of research, called active learning, that investigates how learners can pose intelligent queries

to teachers under various learning scenarios, to achieve \better" learning results. Active learn-

ing di�ers from traditional example-based learning paradigms in the following way: Rather than

passively accepting training examples that randomly describe a target concept, an active learner

uses information derived from its current state and prior knowledge about the target concept to

intelligently gather useful examples from speci�c input space locations for further training. By care-

fully generating intelligent queries instead of performing random sampling, one can expect active

learning techniques to have faster learning rates and better approximation results than traditional

example-based learning algorithms.

Our main focus is on active example selection strategies for a function approximation based

learning framework. Speci�cally, we address the following three questions:

1. Given a function approximation based learning task and some prior information about the

target function, are there principled strategies for selecting useful training data in some

\optimal" fashion?

2. Assuming such principled data selection strategies do exist, do these active strategies require

fewer examples than classical learning techniques to approximate target functions to the same

degree of accuracy?

3. Can one directly apply these active example selection strategies to real-world function ap-

proximation learning tasks or easily adapt them into more feasible forms without losing too

much of their original
avor?

Using ideas from Optimal Experiment Design [6], we begin by proposing an active example

selection formulation for function approximation tasks and show that one can indeed select high

utility examples for a given task in a principled and \optimal" fashion. MacKay [10] and Cohn

[5] have adopted a similar formalism for active learning and we comment on di�erences with their

work at appropriate points in the future. More recently, Sollich [19] has arrived at a very similar

formulation motivated by statistical mechanics.

While the formulation proposed (and the variants suggested by others) are certainly well mo-

tivated, they are however, computationally intractable in general. In this paper, we show that the

general formulation can be used to analytically derive precise, tractable, data selection algorithms

for three speci�c function approximation classes: (1) unit step functions, (2) polynomial approxi-

mators and (3) Gaussian radial basis function networks. In addition, we describe some conditions

on parameterized function classes for which the general formulation can be analytically solved to

yield active algorithms. For the three function classes considered in this paper, we provide either

1

theoretical or empirical results suggesting that the active strategy learns the target function with

fewer data examples than random sampling.

Ultimately, the litmus test of any theoretical framework is whether it can a�ect the way practical

learning systems are built. To this e�ect, we consider a reduced version of the original active learning

formulation that essentially hunts for new data where approximation \error bars" are high. We

show how such a scheme, with minor modi�cations, leads to a practical example selection strategy

(referred to henceforth as a \boot-strap" strategy). We have adopted this method of choosing

examples in an object and pattern class detection approach. Although the \boot-strap" strategy

loses some of the original active learning
avor and may thus be \sub-optimal" in its choice of new

examples, we show empirically that it still outperforms random sampling in training a frontal face

detection system, and is therefore still an e�ective means of dealing with unmanageably large data

sets to make learning tasks tractable.

2 Background and Approach

We start with an overview of active learning and related work. Active learning has appeared

in various forms throughout knowledge engineering and machine learning literature. One early

implementation can be found in certain expert systems, where an important component of learning

relies on issuing queries to the instructor. For example, Sammut and Banerji [17] use queries

about speci�c examples as part of a strategy for e�ciently learning a target concept. Shapiro's

Algorithmic Debugging System prompts the user with a variety of query types to locate errors in

Prolog programs [18]. In computational learning theory, several types of active learning queries have

also been de�ned (see for example [3]) and compared with Valiant's probably approximately correct

(PAC) model of concept identi�cation under random sampling [24]. Angluin [2], for example, has

shown that there are concept classes that can be e�ciently learnt with membership and equivalence

queries, but not with random sampling in Valiant's PAC model.

Some early connectionist approaches toward active learning include: Ahmad and Omohundro

[1] on training networks by selective attention; Hwang et. al. [9] on a query-based neural network

learning scheme that generates queries near classi�cation boundaries; Plutowski and White [13]

on an e�cient feedforward network training technique that selects new training examples with

maximum potential utility from among available candidate examples. Both Hwang et. al. [9]

and Plutowski et. al. [13] choose new training examples according to information derived from a

partially trained network.

Plutowski and White [13] examines the learning task from a more general function approxi-

mation standpoint, viz., approximating a target function, g(~x), using a network output function,

F (~w; ~x), parameterized by weights ~w. They design their criteria for selecting new examples to

meet two objectives: (1) to maximize the accuracy of �t between network output, F (~w; ~x), and

the target function, g(~x), and (2) to minimize the approximation's unreliability in the presence of

noise. The paper quanti�es the above two considerations by proposing an Integrated Mean Squared

Error (IMSE) measure to be minimized:

IMSE(xn) =

Z Z
[g(~x)� F (ln(xn;yn); ~x)]2
n(dynjxn)�(d~x)

=

Z
E[(g(~x)� F (~wn; ~x))

2jxn]�(d~x);

where xn;yn are the current n pairs of input-output training examples, ln(x
n;yn) = ~wn is the learn-

ing rule that begets network weights ~wn from the training examples,
n(ynjxn) is the conditional
probability of output distribution yn given input distribution xn, E[�jxn] is conditional expected

2

network output mean squared error given input distribution xn, and � is the probability distribu-

tion over the input space ~x. To select the next training example, the learning algorithm samples

at the next input location ~xn+1 that maximally decreases the IMSE. Unfortunately, an obvious

problem with the approach is that both the IMSE and the analytic expression for its decrement

(not shown) assume a known target function g(~x). This is seldom a reasonable assumption in real

learning scenarios where the target function is unknown.

2.1 Regularization Theory and Function Approximation | A Review

Our main focus in this chapter is on function approximation based active learning. We brie
y

review regularization theory as a lead in to our active learning formulation.

Let Dn = f(~xi; yi) 2 <d � <ji = 1; : : : ; ng be a set of n data points obtained by sampling a

function g, possibly in the presence of noise, where d is the input dimensionality. The function

approximation task is to recover g, or at least obtain a reasonable estimate of it, by means of an

approximator ĝ. Clearly, the problem is ill-posed [8] because there can be an in�nite number of

functions that pass through those data points. Some constraints are thus needed to transform the

problem into a well-posed one. The regularization approach [21] [22] [12] [4] selects a function ĝ

that minimizes the following functional:

H [ĝ] =
nX
i=1

(yi � ĝ(~xi))2 + � k Pĝ k2 : (1)

The �rst term of Equation 1 penalizes discrepancies between the solution, ĝ, and the observed

data. The second term, usually called a stabilizer, embodies a priori knowledge about the smooth-

ness of the solution. P is a constraint operator, usually a linear di�erential operator, and k � k
stands for a norm on the function space containing ĝ, usually the L2 norm. Together, they favor

functions that do not vary too quickly on <d. The regularization parameter, �, determines the

trade-o� between the two terms | data reliability and prior beliefs. Poggio and Girosi have shown

that the solution to Equation 1 has the following simple form:

ĝ(~x) =
nX
i=1

ciG(~x; ~xi) + p(~x); (2)

where G, p and the coe�cients ci, can all be derived from the constraint operator P , the n data

points (~xi; yi), the stabilizer and some boundary conditions (see [14] for details).

For our purpose, it is convenient to adopt a probabilistic interpretation of regularization that

treats the function ĝ and the data set Dn as random, dependent variables (see [15]). Using Bayes

rule, we can express the conditional probability of the function ĝ given examples Dn, P(ĝjDn), in

terms of the prior probability of ĝ, P(ĝ), and the conditional probability of Dn given ĝ, P(Dnjĝ):

P(ĝjDn) / P(Dnjĝ)P(ĝ): (3)

Equation 3 relates to the regularization functional of Equation 1 as follows: Suppose noise at

each of the n data points is identically independently Gaussian distributed with variance �2. The

conditional probability, P(Dnjĝ), can be written as:

P(Dnjĝ) / exp

�

nX
i=1

1

2�2
(yi � ĝ(~xi))2

!
:

3

Similarly, if ĝ is a stochastic process [11] [7], we can write P(ĝ) as:

P(ĝ) / exp
�
�l k Pĝ k2

�
;

where l is some �xed constant, P and k � k are as de�ned earlier. Equation 3 thus becomes:

P(ĝjDn) = Ke
�
P

n

i=1

1

2�2
(yi�ĝ(~xi))2 exp

�
�l k Pĝ k2

�

= K exp

�[

nX
i=1

1

2�2
(yi � ĝ(~xi))2 + l k Pĝ k2]

!

where K is some �xed constant. Taking natural logarithms on both sides and performing some

additional algebra yields:

�2�2 lnP(ĝjDn) + lnK =
nX
i=1

(yi � ĝ(~xi))2 + 2�2l k P ĝ k2;

which is identically Equation 1 with � = 2�2l and H [ĝ] = �2�2 lnP(ĝjDn)+ lnK. So, by choosing

a function ĝ that minimizes H [ĝ], regularization essentially maximizes the conditional probability

P(ĝjDn). In other words, it chooses:

ĝ 2 argmin
f
H [f] = argmax

f
P(f jDn)

= argmax
f
P(Dnjf)P(f);

that is, an a-posteriori most probable function ĝ given the set of examples Dn.

2.2 A Bayesian Framework

The active learning problem for function approximation can be posed as follows: Let Dn =

f(~xi; yi) 2 <d�<ji = 1; : : : ; ng be a set of n data points sampled from an unknown target function

g, possibly in the presence of noise, where d is the input dimensionality. Given an approximation

function concept class, F , where each f 2 F has prior probability PF(f), one can use regularization
techniques to approximate g from Dn (in the Bayes optimal sense) by means of a function ĝ 2 F .
We want a strategy to determine at what input location one should sample the next data point,

(~xn+1; yn+1), in order to obtain the \best" possible Bayes optimal approximation of the unknown

target function g with our concept class F .
One can use ideas from optimal experiment design [6] to approach the active data sampling

problem in two stages:

1. De�ne what we mean by the \best" possible Bayes optimal approximation of

an unknown target function. We propose an optimality criterion for evaluating the

\goodness" of a solution with respect to an unknown target function, similar in spirit to the

cost function, Equation 1, for a known target.

4

2. Formalize mathematically the task of determining where in input space to sample

the next data point. We express the above mentioned optimality criterion as a cost function

to be minimized, and the task of choosing the next sample as one of minimizing the cost

function with respect to the input space location of the next sample point.

Earlier work by Cohn [5] and MacKay [10] have tried using similar optimal experiment design

techniques to collect data with maximum information about the target function. Our work here

di�ers from theirs in two respects. First, we use a di�erent, and perhaps more general, optimality

criterion for evaluating solutions to an unknown target function. Speci�cally, our optimality crite-

rion considers both bias and variance components in the solution's output generalization error. In

contrast, both MacKay and Cohn use a \less complete" optimality criterion that favors solutions

with only small variance components in model parameter space. Second, we also examine the im-

portant sample complexity issue, i.e., does the active strategy require fewer examples than random

sampling to approximate the target to the same degree of accuracy? After completion of this work,

we learnt that Sollich [19] had also recently developed a similar formulation to ours, but his analysis

is conducted in a statistical physics framework. We will review these di�erences in greater detail

in a later section.

3 The Active Learning Formulation

In order to optimally select examples for a learning task, one should �rst have a clear notion

of what an \ideal" learning goal is for the task. One can then measure an example's utility in

terms of how well the example helps the learner achieve the goal, and devise an active sampling

strategy that selects examples with maximum potential utility. In this section, we propose one

such learning goal | to �nd an approximation function ĝ 2 F that \best" estimates the unknown

target function g. We then derive an example utility cost function for the goal and �nally present

a general procedure for selecting examples.

3.1 An Optimality Criterion for Learning an Unknown Target Function

Let g be the target function that we want to estimate by means of an approximation function

ĝ 2 F . If the target function g were known, then one natural measure of how well (or badly) ĝ

approximates g would be their Integrated Squared Di�erence (ISD) over the input space, <d, or

over some appropriate region of interest:

�(ĝ; g) =

Z
~x2<d

(g(~x)� ĝ(~x))2d~x: (4)

In most function approximation tasks, the target g is unknown, so we clearly cannot express

the quality of a learning result in terms of g. We propose an alternative scheme for characterizing

probabilistically the quality of an approximation result that takes into account only ĝ, the approx-

imation function itself, and the example data points it approximates, without actually having to

know g. Here, our objective notion is similar in spirit to the integrated squared di�erence \mis�t"

criterion described above. We elaborate further on what we mean below:

Figure 1(a) shows two approximation functions, ĝ1 and ĝ2, for a set of data points, D, from
an unknown target function g. Without further knowledge of the target function, g, one would

normally guess that ĝ1 is a more probable (and hence better) hypothesis for g, because it oscillates

less between the data points. This aspect of an approximation function's \goodness" has been fully

captured by regularization, which assigns P(ĝ1jD) a higher likelihood value than P(ĝ2jD).
Figure 1(b) shows a function, ĝ, that approximates two unknown target functions g1 and g2,

sampled at D1 and D2 respectively. Notice that in this example, the approximator ĝ �ts both

5

x

= function

1
ĝ

= data point from target functiong

2
ĝ

1
ĝ

1
ĝ

= function
2

ĝ

2
ĝ

(a)

xData set 1D

Data set 2D

ĝ

ĝ

x

(b)

Figure 1: (a): Two approximation functions, ĝ1 and ĝ2, for the same set of data points sampled from an
unknown target function. ĝ1 oscillates less between the data points, so one would normally guess that it is a more

probable hypothesis for the unknown target function. (b): An approximation function, ĝ, for two sets of data

points sampled from two (possibly di�erent) unknown target functions. Although ĝ �ts both sets of data points

exactly, one might still expect it to more closely resemble the unknown target function of the top system than of

the bottom system. This is due to the uneven example distribution in the bottom system.

data sets exactly, so we have ĝ = argmaxf2F P(f jD1) and ĝ = argmaxf2F P(f jD2). Intuitively

however, one might still expect the actual mis�t between g1 and ĝ to be smaller than the actual

mis�t between g2 and ĝ. This is because D1 is a more representative data sample for g1 than D2 is

for g2, and in both systems, ĝ is directly derived from D1 and D2 respectively. One can view this

expected mis�t notion between an unknown target g and its approximation function ĝ, as a sense of

\uncertainty" that one has in the current solution. The notion is not captured by the regularization

framework, and as we shall see, depends instead on the distribution of training examples over the

input space.

Since our active learning task is to determine the best input space location for sampling next, a

reasonable learning goal would be to sample at locations that minimize the expected mis�t notion

between the unknown target g and the resulting approximation ĝ.

3.2 Evaluating a Solution to an Unknown Target | The Expected Integrated Squared

Di�erence

We now formalize the above expected mis�t notion as a mathematical functional to be mini-

mized. The general idea is as follows: Let F be the approximation function class in our learning

task. Suppose we treat the unknown target function g as a random variable in F , then one way of

determining the expected mis�t between the regularized solution, ĝ, and the unknown target func-

tion, g, would be to compute an expected version of some di�erence measure between them, such

as their integrated squared di�erence, �(ĝ; g) (see Equation 4). Taking into account Dn, the n data

points seen so far, and PF(g), the prior probability of g in F , we have the following a-posteriori

likelihood for g: P(gjDn) / PF(g)P(Dnjg). The expected integrated squared di�erence (EISD)

between an unknown target, g, and its estimate, ĝ, given Dn, is thus:

6

x

g1

Data set 1D

= Regularized Solution

= Alternative Hypothesis

2
gg1= data point from unknown target function or

g’^

ĝ

ĝ

g’^

x

2
g

Data set
2D

ĝ

g’^

P (g1f = 1D|) P (f = |)2D2
g

f

Approximation function space

ĝg’^
f

Approximation function space

ĝg’^

Figure 2: Top Row: A regularized solution, ĝ, for two unknown target functions, g1 (left

graph) and g2 (right graph). The curve ĝ0 is an alternative hypothesis for the two unknown

target functions. There is more evidence against ĝ0 being a true hypothesis for g1 than for g2
because the �rst system has a data point near the center of the input space where ĝ0 di�ers

considerably from ĝ and the data point. Bottom Row: Graphs depicting the a-posteriori

probability distribution of the unknown target in approximation function space for the two

systems. Because there is more evidence against alternative hypotheses like ĝ0 in the �rst system

than in the second system, we get a sharper peak for the a-posteriori distribution at ĝ in the

�rst system than in the second system.

EF [�(ĝ; g)jDn] =

Z
g2F

P(gjDn)�(ĝ; g)dg =

Z
g2F

PF(g)P(Dnjg)�(ĝ; g)dg: (5)

The EISD is intuitively pleasing as an \uncertainty" measure for evaluating a solution to an

unknown target, because its value decreases with better distributed data samples. The following

example illustrates how the measure agrees well with \human intuition". We return to the two

function approximation problems described in Figure 1(b). In the �rst system, one intuitively

expects a smaller discrepancy between the unknown target and its approximation function than

in the second system, even though the same regularized estimate ĝ �ts both data sets equally

well. This is because the data samples D1 in the �rst system are more evenly (and hence better)

distributed than the samples D2 in the second system. We now argue that the EISD measure in

the �rst system should indeed be smaller than the EISD measure in the second system.

Consider the same two systems in the top row of Figure 2, where ĝ is the regularized solution

7

for the two unknown target functions g1 and g2. The two unknown targets are sampled at D1 and

D2 respectively, and both data sets contain the same number of data points. Consider next an

alternate hypothesis ĝ0 for g1 and g2, that di�ers slightly from the regularized solution ĝ over some

region of the input space. Because the �rst system has better distributed data points than the

second system, there is more evidence against most alternative hypotheses like ĝ0 being a viable

solution for g1 than for g2. Mathematically, this means that for most alternative hypotheses like ĝ0,

the ratio P(g1 = ĝ0jD1)=P(g1 = ĝjD1) is smaller than the ratio P(g2 = ĝ0jD2)=P(g2 = ĝjD2). One

can therefore expect EF [�(ĝ; g1)jD1] < EF [�(ĝ; g2)jD2], which agrees well with \human intuition".

The bottom row of Figure 2 depicts the di�erence between the two systems graphically. Because

most alternative hypotheses are poor solutions for the �rst data set D1, the �rst unknown target

g1 has an a-posteriori probability distribution that is heavily weighted around ĝ in approximation

function space. The same is less true about the a-posteriori probability distribution for g2 in the

second system. Thus, ĝ is a more \stable", and hence a more \certain" solution for g1 than for g2.

3.3 Selecting the Next Sample Location

Let g be the unknown target function that we want to learn, Dn = f(~xi; yi) 2 <d�<ji = 1; : : : ; ng
be the set of n examples seen so far, and ĝn be the current regularized approximation for g. We

now formalize the task of determining the best input space location to sample next. Since our

learning goal is to minimize the expected mis�t between g and its regularized solution, a reasonable

sampling strategy would be to choose the next example from the input location ~xn+1 2 <d that

minimizes the EISD between g and its new estimate ^gn+1.

How does one predict the new EISD that results from sampling the next data point at location

~xn+1? Suppose we also know the target output value (possibly noisy), yn+1, at ~xn+1. The EISD

between g and its new estimate ĝn+1 would then be EF [�(^gn+1; g)jDn [(~xn+1; yn+1)], where ^gn+1

can be recovered from Dn [(~xn+1; yn+1) via regularization. In reality, we do not know yn+1, but

we can derive its conditional probability distribution from Dn, the data samples seen so far. Once

again, let F be the approximation function class for our learning task and PF (f) be the prior

probability of f in F , then:

P(yn+1j ~xn+1;Dn) /
Z
f2F

P(Dn [(~xn+1; yn+1)jf)PF(f)df: (6)

Because yn+1 is a random variable and not a �xed value as we had assumed earlier, this leads to

the following expected value for the new EISD, if we sample our next data point at ~xn+1:

U(ĝn+1jDn; ~xn+1) =

Z 1

�1
P(yn+1j ~xn+1;Dn)EF [�(^gn+1; g)jDn [(~xn+1; yn+1)]dyn+1: (7)

Notice from Equation 5 that EF [�(^gn+1; g)jDn [(~xn+1; yn+1)] in the above expression is actually

independent of the unknown target function g, and so U(ĝn+1jDn; ~xn+1) (henceforth referred to as

the total output uncertainty) is fully computable from available information in the learning model.

Clearly, the optimal input location to sample next is the location that minimizes U(ĝn+1jDn; ~xn+1),

i.e.:

~̂xn+1 = argmin
~xn+1
U(gn+1jDn; ~xn+1): (8)

8

3.4 Summary of the Active Learning Procedure

We summarize the key steps involved in our active learning strategy for �nding the optimal

next sample location:

1. Compute P(gjDn). This is the a-posteriori likelihood of the di�erent functions g given Dn,

the n data points seen so far.

2. Assume a new point ~xn+1 to sample.

3. Assume a value yn+1 for this ~xn+1. One can compute P(gjDn [(~xn+1; yn+1)) and hence the

expected integrated squared di�erence (EISD) between the target and its new estimate ^gn+1.

This is given by EF [�(^gn+1; g)jDn [(~xn+1; yn+1)] (see Equation 5).

4. At the assumed ~xn+1, yn+1 has a probability distribution given by Equation 6. Averaging

the resulting EISD over all yn+1's, we obtain the total output uncertainty for ~xn+1, given by

U(^gn+1jDn; ~xn+1) in Equation 7.

5. Sample at the input location ~̂xn+1 that minimizes the total output uncertainty cost function

U(^gn+1jDn; ~xn+1).

Some �nal remarks about our example selection strategy: Intuitively, a reasonable selection

criterion should choose new examples that provide dense information about the target function g.

Furthermore, the choice should also take into account the learner's current state, namely Dn and

ĝn, so as to maximize the net amount of information gained. Our scheme treats an approximation

function's expected mis�t with respect to the unknown target g (i.e. their EISD) as a measure of

uncertainty in the current solution. It selects new examples, based on the data that it has already

seen, to minimize the expected value of the resulting EISD measure. In doing so, it essentially

maximizes the net amount of information gained with each new example.

Our main results in this active learning formulation are:

1. a cost function that captures the expected mis�t optimality criterion (Equation 5) for evalu-

ating the solution to an unknown target function, and

2. a formal speci�cation for the task of selecting new training examples with maximum potential

utility (Equation 8).

The developed framework, and the associated observations may, in themselves, be interesting

from a theoretical standpoint, but in practice, another fundamental concern must also be addressed

| the computational complexity issue. Both Equations 5 and 8, though theoretically computable

from available information in the learning model, are clearly intractable in their current form. Nev-

ertheless, we maintain the formulation still serves as a possible \optimal" benchmark for evaluating

other active example selection schemes. Later in this paper, we shall consider a reduced version

of the original function approximation based active learning formulation that essentially hunts for

new data where approximation \error bars" are high. We also show how such a scheme, with

minor modi�cations, leads to a \boot-strap" example selection strategy we have adopted to useful

advantage in an object and pattern class detection approach that we have developed.

3.5 Previous Frameworks Revisited

At this point, we are in a position to make concrete the di�erences between the technique devel-

oped here and those adopted by MacKay [10] and Sollich [19]. Recall that our active formulation

requires the computation of two expectations. One is over the a-posteriori distribution over the

9

function space F , the other is over the a-posteriori distribution over the space of yn+1's one would

expect given the data and a proposed sample location (xn+1). Speci�cally,

U(xn+1) = EP (yn+1 jDn;xn+1)EP (gjDn[(xn+1;yn+1))�(g; ĝ)

Here g ranges over all the functions in F and ĝ is the MAP solution that the learner would use

in practice in such a Bayesian setting.

In contrast, MacKay uses the following criterion:

U = EP (yjDn;xn+1)EP (~ajDn[(xn+1;yn+1)) k ~a� ~a� k

He assumes that F is a parameterized family with parameters denoted by ~a: Correspondingly,

~a� is the mean parameter value (averaged over the a-posteriori density over parameter space, i.e.,

~a� = EP (~ajDn[(xn+1;yn+1))~a))). Notice that his criterion operates in the parameter space rather

than the true function space. If, closeness in parameter space is linearly proportional to closeness

in function space, then the criterion would be equivalent to the following (where �g is the mean over

the function space):

EP (yn+1jDn;xn+1)EP (gjDn[(xn+1;yn+1))�(g; �g)

Finally, Sollich uses the following criterion:

U = EP (yn+1jDn;xn+1)EP (gjDn[(xn+1;yn+1))EP (hjDn[(xn+1;yn+1))�(g; h)

He distinguishes the space of target functions F from the space of hypothesis functions (say

H). One could then compute the a-posteriori distributions over both the target space and the

hypothesis space given a set of data. These a-posteriori distributions are used to compute three

averages in the sense above.

Having now reproduced each of the above frameworks in a common, consistent notation, we

make the following observations.

First, it is clear that the three frameworks di�er slightly. MacKay's criterion, which computes

\spread" around the mean of the a-posteriori distribution in parameter space is the variance of the

a-posteriori distribution in a strictly correct sense. He ignores the bias. Sollich's criterion (assuming

F = H) reduces to ours if one assumes that P (hjD) is a Kronecker-delta centered on ĝ; the MAP

solution. The two inner expections reduce essentially to just one non-trivial one; this condition is

referred to as \deterministic" learning as opposed to the stochastic \Gibbs" learning framework

seemingly consistent with the statistical mechanics approach. We have preferred to use the MAP

solution in our framework since in practice, that is what is used in most learning systems.

Finally, like Sollich, we use the output generalization error (�) in our approach. In reality, one

is interested in choosing examples to reduce the total generalization error. Using a metric based on

the parameter space is only an indirect measure of this generalization error. In the case of function

classes su�ciently non-linear in their parameters this is likely to give suboptimal performance.

We now return to the main subject of investigation, i.e., sample complexity, analytical tractabil-

ity, and practical utility.

4 Comparing Sample Complexity

To demonstrate the usefulness of the above active learning procedure, we show analytically and

empirically that the active strategy learns target functions with fewer data examples than random

sampling for three speci�c approximation function classes: (1) unit step functions, (2) polynomial

approximators and (3) Gaussian radial basis function networks. For all three function classes, one

can derive exact analytic data selection algorithms following the key steps outlined in Section 3.4.

10

x

y

1

o oo o o

oo o oo

1

o Data point in Dn

x LxR

w
x L

xR

w

Right−most ‘1’ point

Left−most ‘0’ point

x L xR−

Figure 3: Diagram showing the notation used for our unit-step example.

4.1 Unit Step Functions

We �rst consider the following simple class of one-dimensional unit-step functions described by

a single parameter a which takes values in [0; 1]: Let us denote the unit-step function by:

u(x� a) =

(
1 if x � a

0 otherwise

The target and approximation function class for this problem is given by:

F = fu(x� a)j0 � a � 1g

Assuming a has an a-priori uniform distribution on [0; 1], we obtain the following prior distribution

on the approximation function class:

PF(g = u(x� a)) =

(
1 if 0 � a � 1

0 otherwise

Suppose we have a noiseless data set, Dn = f(xi; yi); i = 1; ::ng, consistent with some unknown

target function g = u(x� a) that the learner has to approximate. We want to �nd the best input

location to sample next, x 2 [0; 1], that would provide us with maximal information. Let xR be the

right most point in Dn whose y value is 0, i.e., xR = maxi=1;::nfxijyi = 0g (see Figure 3). Similarly,

let xL = mini=1;::nfxijyi = 1g and w = xL � xR. Following the general procedure outlined in

Section 3.4, we go through the following steps:

1. Derive P(gjDn). One can show that:

P(g = u(x� a)jDn) =

(
1
w if a 2 [xR; xL]

0 otherwise

2. Suppose we sample next at a particular x 2 [0; 1], we would obtain y with the distribution:

P (y = 0jDn; x) =

8><
>:

(xL�x)
xL�xR

=
(xL�x)

w if x 2 [xR; xL]

1 if x � xR
0 otherwise

11

P (y = 1jDn; x) =

8><
>:

(x�xR)
xL�xR

=
(x�xR)

w
if x 2 [xR; xL]

1 if x � xL
0 otherwise

3. For a particular y, the new data set would be Dn+1 = Dn[(x; y) and the corresponding EISD

can be easily obtained using the distribution P(gjDn+1). Averaging this over P(yjDn; x) as

in step 4 of the general procedure, we obtain:

U(^gn+1jDn; x) =

(
w2

12 if x � xR or x � xL
1

12w
((xL � x)3 + (x� xR)3) otherwise

4. Clearly the new input location that minimizes the total output uncertainty, U(^gn+1jDn; x),

measure is the midpoint between xL and xR:

^xn+1 = arg min
x2[0;1]

U(^gn+1jDn; x) =
xL + xR

2
:

Thus, by applying the general procedure to this trivial case of one-dimensional unit-step func-

tions, we get the familiar binary search learning algorithm that queries the midpoint of xR and xL.

For this function class, one can show analytically in PAC-style [23] that this active data sampling

strategy takes fewer examples to learn an unknown target function to a given level of total output

uncertainty than randomly drawing examples according to a uniform distribution in x.

Theorem 1 Suppose we want to collect examples so that we are guaranteed with high probability

(i.e. probability > 1 � �) that the total output uncertainty is less than �. Then a passive learner

would require at least
1p
48�

ln(1=�) examples while the active strategy described earlier would require

at most (1=2) ln(1=12�) examples.

4.2 Polynomial Approximators

We consider next a univariate polynomial target and approximation function class with maxi-

mum degree K, i.e.:

F = fg(x;~a) = g(x; a0; : : : ; aK) =
KX
i=0

aix
ig:

The model parameters to be learnt are ~a = [a0 a1 : : : aK]
T and x is the input variable. We obtain

a prior distribution for F by assuming a zero-mean Gaussian distribution with covariance �F on

the model parameters ~a:

PF(g(�;~a)) = PF(~a) =
1

(2�)(K+1)=2j�F j1=2
exp(�

1

2
~aT��1F ~a): (9)

12

Our task is to approximate an unknown target function g 2 F within the input range [xLO; xHI]

on the basis of sampled data. Let Dn = f(xi; yi = g(xi) + �)ji = 1; : : : ; ng be a noisy data sample

from the unknown target in the input range [xLO; xHI], where � is an additive zero-mean Gaussian

noise term with variance �2s . We compare two di�erent ways of selecting the next data point: (1)

sampling the function at a random point x according to a uniform distribution in [xLO; xHI] (i.e.

passive learning), and (2) using our active learning framework to derive an exact algorithm for

determining the next sampled point.

4.2.1 The Active Strategy

Here, we go through the general active learning procedure outlined in Section 3.4 to derive an

exact expression for ^xn+1, the next query point. We summarize the key derivation steps below:

1. Let �xi = [1 xi x
2
i : : : x

K
i]

T be a power vector of the ith data sample's input value. One can

show (see Appendix A.1.1) that the a-posteriori approximation function class distribution,

P(~ajDn), is a multivariate Gaussian centered at ~̂a with covariance �n, where:

~̂a = �n(
1

�2s

nX
i=1

�xiyi)

and:

��1n = ��1F +
1

�2s

nX
i=1

�
�xi �xi

T
�
: (10)

2. Deriving the total output uncertainty expression U(^gn+1jDn; xn+1) requires several steps (see

Appendix A.1.2 and A.1.3). Taking advantage of the Gaussian distribution on both the

parameters ~a and the noise term, we eventually get:

U(^gn+1jDn; xn+1) = j�n+1Aj / j�n+1j; (11)

where A is a constant (K + 1)� (K + 1) matrix of numbers whose (i; j)th element is:

Ai;j =

Z xHI

xLO

t(i+j�2)dt

�n+1 has the same form as �n and depends on the previous data, the priors, noise and the

next sample location xn+1. When minimized over xn+1, we get ^xn+1 as the maximum utility

location where the active learner should next sample the unknown target function.

4.2.2 Simulations | Error Rate versus Number of Examples

We perform some simulations to compare the active strategy's sample complexity with that

of a passive learner which receives uniformly distributed random training examples on the input

domain [xLO; xHI]. In this experiment, we investigate whether our active example selection strategy

13

learns an unknown target to a smaller average error rate than the passive strategy for the same

number of data samples. The experiment proceeds as follows:

We randomly generate 1000 target polynomial functions using a �xed Gaussian prior on the

model parameters ~a = [a0 a1 : : : aK]
T. For each target polynomial, we collect data sets with noisy

y values ranging from 3 to 50 samples in size, using both the active and passive sampling strate-

gies. We then assume the same Gaussian priors on the approximation function class to obtain a

regularized estimate of the target polynomial for each data set. Because we know the actual target

polynomial for each data set, one can compute the actual integrated squared di�erence between

the target and its estimate as an approximation error measure. We compare the two sampling

strategies by separately averaging their approximation error rates for each data sample size over

the 1000 di�erent target polynomials.

In our simulations, we use polynomials of maximum degree K = 9, distributed according to the

following independent Gaussian priors on model parameters: for each aj in ~a = [a0 a1 : : : a9]
T, we

have:

P(aj) =
1

�j
p
2�

exp

�
a2j

2�2j

!
;

where �j = 0:9j+1. In other words, �F of Equation 9 is a 10� 10 diagonal covariance matrix such

that:

�F (i; j) =

(
�2i�1 = 0:92i if i = j

0 otherwise
(12)

Qualitatively, our priors favor smooth functions by assigning higher probabilities to polynomials

with smaller coe�cients, especially for higher powers of x. We also �x the input domain to be

[xLO; xHI] = [�5; 5].
Figure 4 shows the average integrated squared di�erence between the 1000 randomly generated

target polynomials and their regularized estimates for di�erent data sample sizes. We repeated

the same simulations three times, each with a di�erent output noise variance in the data samples:

�s = 0:1; 1:0 and 5:0. Notice that the active strategy has a lower average error rate than the passive

strategy particularly for smaller data samples. From this experiment, one can conclude empirically

that our active sampling strategy learns with fewer data samples than random sampling even when

dealing with noisy data.

4.2.3 Simulations | Incorrect Priors

So far we have assumed that the approximation function class F that the Bayesian learner uses

is identical to the target class: in other words, the learner has correct prior knowledge about the

target. This is highly questionable in a real world situation where little is known about the target

function and its properties and the learner is most likely to have an inaccurate prior model. We

now investigate how the active learning strategy behaves if the this is the case. Speci�cally, we

consider the following three scenarios:

In the �rst case, the active learner assumes a higher polynomial degree with similar but slightly

larger Gaussian variances than the true target priors. We use a 9th degree (i.e. K = 9) polynomial

function class with Gaussian priors �j = 0:9j+1 to approximate an unknown 8th degree (i.e. K = 8)

target polynomial with Gaussian priors �j = 0:8j+1. Qualitatively, the approximation function class

is more complex and favors smooth estimates less strongly than the target class.

The second case deals with the exact opposite scenario. The active learner uses a lower degree

polynomial with similar but slightly smaller Gaussian variances (K = 7 and �j = 0:7j+1) to

14

Figure 4: Comparing active and passive learning average error rates at di�erent output noise levels for polyno-

mials of maximum degree K = 9. We use the same priors on the target and approximation function classes. The
three graphs above plot log error rates against number of samples. See text for detailed explanation. The dark

and light curves are the active and passive learning error rates respectively.

15

Figure 5: Comparing active and passive learning average error rates for slightly di�erent priors between the

target and approximation function classes. Top: Results for the �rst case. The approximation function class
uses a higher degree polynomial with larger Gaussian variances on its coe�cients (K = 9 and �j = 0:9j+1) versus

(K = 8 and �j = 0:8j+1). Middle: The approximation function class uses a lower degree polynomial with smaller

Gaussian variances on its coe�cients (K = 7 and �j = 0:7j+1) versus (K = 8 and �j = 0:8j+1). Bottom: The
approximation and target polynomial function classes have smoothness priors that di�er in form. In all three

cases, the active learning strategy still results in lower approximation error rates than random sampling for the

same number of data points.

16

approximate an unknown 8th degree (i.e. K = 8) target with Gaussian priors �j = 0:8j+1. Here,

the approximation function class is less complex and favors smooth estimates more strongly than

the target class.

In the third case, we consider a polynomial approximation function class F whose prior dis-

tribution has a di�erent form from that of the target class. Let p 2 F be a polynomial in the

approximation function class. One can quantify the overall \smoothness" of p by integrating its

squared �rst derivative over the input domain [xLO; xHI]:

Q(p(�;~a)) =
Z x

HI

x
LO

�
dp(x;~a)

dx

�2
dx: (13)

The \smoothness" measure above leads to a convenient prior distribution on F that favors smoothly

varying functions:

PF (p) / exp(�Q(p(�;~a))) exp(�
a20
2�20

):

Here, a0 is the constant term in the polynomial p, whose coe�cients are ~a = [a0 a1 : : : aK]
T. Al-

though a0 does not a�ect the \smoothness" measure in Equation 13, we impose on it a Gaussian

distribution with variance �20 so PF (p) integrates to 1 over all polynomials in F like a true prob-

ability density function. One can show (see Appendix A.1.4 for detailed derivation) that PF(p)
has the following general form similar to Equation 9, the priors on polynomials with independent

Gaussian distributed coe�cients:

PF(p(�;~a)) = PF(~a) =
1

(2�)(K+1)=2j�F j1=2
exp(�

1

2
~aT��1F ~a):

The new covariance term �F is as given below:

��1F (i; j) =

8><
>:

1=�20 if i = j = 1

2
(i�1)(j�1)
i+j�3 (x

i+j�3
HI

� xi+j�3
LO

) if 2 � i � K + 1 and 2 � j � K + 1

0 otherwise

(14)

For this third case, we use an 8th degree (i.e. K = 8) polynomial function class with �0 = 0:8

in its \smoothness" prior to approximate a target polynomial class of similar degree with Gaussian

priors �j = 0:8j+1. Although the approximation and target function classes have prior distributions

that di�er somewhat in form, both priors are qualitatively similar in that they favor smoothly

varying polynomials.

For all three cases of slightly incorrect priors described above, we compare our active learner's

sample complexity with that of a passive learner which receives random samples according to a

uniform distribution on [xLO; xHI]. We repeat the active versus passive function learning simulations

performed earlier by generating 1000 target polynomials, collecting noisy data samples (�s = 0:5),

computing regularized estimates, averaging and comparing their approximation errors in the same

way as before. Figure 5 plots the resulting average integrated squared di�erence error rates over a

range of data sample sizes for all three cases. Despite the incorrect priors, we see that the active

learner still outperforms the passive strategy.

17

Figure 6: Distribution of the �rst 50 data points the active learner selects as the polynomial

degree K of the approximation function class varies from 5 to 9. In all 5 cases, we assume a

�xed data output noise level of �s = 0:5. Notice that for polynomials of degree K, the active

learner clusters its data samples typically around K + 1 locations.

4.2.4 Distribution of Data Points

Notice from Equations 10, 11, 12 and 14 that the total output uncertaintymeasure U(^gn+1jDn; ~xn+1)

for polynomial approximators (i.e., Equation 11) does not depend on the previous y data values ac-

tually observed, but only on the previous input locations sampled. In other words, the previously

observed y data values do not a�ect ^xn+1, the optimal location to sample next. One can show

that this behavior is common to all approximation function classes that are linear in their model

parameters [10] [19].

Given a polynomial approximation function class of maximum degree K, one can thus pre-

compute the sequence of input locations that our active learner will sample to gain maximum

information about the unknown target. There are two sampling trends that are noteworthy here.

First, the active strategy does not simply sample the input domain on a uniform grid. Instead, it

chooses to cluster its data samples typically around K + 1 locations. Figure 6 shows the �rst 50

input locations the active learner selects as K varies from 5 to 9, for a �xed data noise level of

�s = 0:1. One possible explanation for this clustering behavior is that it takes only K + 1 data

points to recover a Kth degree target polynomial in the absence of noise.

Second, as the data noise level �s increases, although the number of data clusters remains �xed,

the clusters tend to be distributed away from the input origin. Figure 7 displays the �rst 50 input

locations the active strategy selects for a 9th degree polynomial approximation function class, as �s
increases from 0.1 to 5.0. One can explain the observed behavior as follows: For higher noise levels,

there is less pressure on the active learner to �t the data closely. Consequently, the prior assumption

favoring polynomials with small coe�cients dominates. For such \lower order" polynomials, one

gets better \leverage" from data by sampling away from the origin. In the extreme case of linear

regression, one gets best \leverage" by sampling data at the extreme ends of the input space.

4.3 Gaussian Radial Basis Functions

18

Figure 7: Distribution of the �rst 50 data points the active learner selects for a 9th degree

polynomial approximation function class (i.e. K = 9), as the assumed data output noise level

�s varies from 0.1 to 5.0. At higher noise levels, there is less pressure for the active learner to

�t the data closely, and so it favors polynomials with small coe�cients. For such \lower order"

polynomials, one gets better \leverage" from data by sampling away from the origin.

Figure 8: Gaussian radial basis function (RBF) model with K �xed centers. The learner's task

is to recover the weight coe�cients ~a = [a1 a2 � � � aK]T.

19

Our �nal example looks at an approximation function class F of d-dimensional Gaussian radial

basis functions with K �xed centers. Let Gi be the ith basis function with a �xed center ~ci and

a �xed covariance Si. The model parameters to be learnt are the weight coe�cients denoted by

~a = [a1 a2 � � � aK]T. An arbitrary function r 2 F in this class can thus be represented as:

r(~x;~a) =
KX
i=1

aiGi(~x)

=
KX
i=1

ai
1

(2�)d=2jSij1=2
exp(�

1

2
(~x� ~ci)TS�1i (~x� ~ci))

We impose a prior PF() on the approximation function class F by putting a zero-centered Gaussian

distribution with covariance �F on the model parameters ~a. Thus, for an arbitrary function r(�;~a):

PF(r(�;~a)) = PF(~a) =
1

(2�)K=2j�F j1=2
exp(�

1

2
~aT��1F ~a):

Lastly, the learner has access to noisy data of the form Dn = f(~xi; yi = g(~xi) + �) : i = 1; : : : ; ng,
where g is an unknown target function and � is a zero-mean additive Gaussian noise term with

variance �2s . Thus for every candidate approximation function r(�;~a) 2 F , P(Dnjr(�;~a)) has the
form:

P(Dnjr(�;~a)) / exp

�

1

2�2s

nX
i=1

(yi � r(~xi;~a))
2

!

= exp

0
@� 1

2�2s

nX
i=1

(yi �
KX
t=1

at
exp

�
�1

2
(~xi � ~ct)

TS�1t (~xi � ~ct)
�

(2�)d=2jStj1=2
)2

1
A

= exp

�

1

2�2s

nX
i=1

(yi �
KX
t=1

atGt(~xi))2
!

Given a set of n data points Dn, one can obtain a maximum a-posteriori (MAP) solution

to the learning problem by �nding a set of model parameters ~̂a that maximizes P(r(�;~a)jDn) =

PF(r(�;~a))P(Dnjr(�;~a)). Let:

�zi = [G1(~xi) G2(~xi) : : : GK(~xi)]T

be a vector of RBF kernel output values for the ith input value. One can show (see Appendix A.2.1),

as in the polynomial case, that the a-posteriori RBF approximation function class distribution

P(r(�;~a)jDn) is a multivariate Gaussian centered at ~̂a with covariance �n, where:

��1n = ��1F +
1

�2s

nX
i=1

(�zi �zi
T) (15)

~̂a = �n (
1

�2s

nX
i=1

�ziyi) (16)

20

Notice that ~̂a of Equation 16 is also the MAP solution the learner proposes on the basis of the

data set Dn, regardless of how the data points are selected. We now describe an active strategy for

selecting the data optimally.

4.3.1 The Active Strategy

Recall that our goal is to derive an analytical expression for U(^gn+1jDn; ~xn+1) in Equation 7,

the total output uncertainty cost function to minimize that yields the optimal location for sampling

next. As before, we go through the general active learning procedure outlined in Section 3.4 to

derive an exact expression for ^xn+1, the optimal next query point.

The �rst derivation step is to obtain an analytical expression for P(~ajDn), the a-posteriori RBF

approximation function class distribution. This is exactly P(r(�;~a)jDn) which we introduced in the

series of equations above leading to Equation 16.

Deriving the RBF total output uncertainty cost function U(^gn+1jDn; ~xn+1) requires several steps

(see Appendix A.2.2 and A.2.3). We eventually get:

U(^gn+1jDn; ~xn+1) / j�n+1j: (17)

�n+1 has the same form as �n in Equation 16 and depends on the previous data sample locations

f~xi : i = 1; : : : ; ng, the model priors �F , the data noise variance �2s , and the next sample location

~xn+1. When minimized over ~xn+1, we get ~̂xn+1 as the maximum utility location where the active

learner should next sample the unknown target function.

Like the polynomial class example, our RBF approximation function class F is also linear in its

model parameters. As such, the optimal new sample location ~̂xn+1 does not depend on the y data

values in Dn, but only on the previously sampled ~x values.

4.3.2 Simulations | Error Rate versus Number of Examples

Does the active strategy for our RBF approximation function class take fewer examples to

learn an unknown target than a passive learner that draws random samples according to a uniform

distribution on the input domain? We compare sample complexities for the active and passive

learners under the following two conditions:

1. The approximation and target function classes have identical priors. For simplicity,

we perform our simulations in a one-dimensional input domain [xLO; xHI] = [�5; 5]. The

approximation and target function classes are RBF networks with K = 8 �xed centers,

arbitrarily located within the input domain. Each RBF kernel has a �xed 1-dimensional

Gaussian \covariance" of Si = 1:0. Finally, we assume identical independent Gaussian priors

on the model parameters ~a, i.e. �F = IK = I8, where IK stands for a K �K identity

covariance matrix.

2. The approximation and target function classes have slightly di�erent priors. We

use a similar RBF approximation function class with K = 8 �xed centers and a similar 1-

dimensional Gaussian kernel \covariances" of Si = 1:0 for the centers. Each center is slightly

displaced from its true location (i.e. its location in the target function class) by a random

distance with Gaussian standard deviation � = 0:1. The learner's priors on model parameters

(�F = 0:9I8) are also slightly di�erent from that of the target class (�F = I8).

The two simulations proceed as follows: We randomly generate 5000 target RBF functions

according to the target model priors described above. For each target function, we collect data

sets with noisy y values (�s = 0:1) ranging from 3 to 50 samples in size, using both the active

21

Figure 9: Comparing active and passive learning average error rates for Gaussian RBF approx-

imators with K = 8 centers. Top graph: We use the same priors on the target and approxi-

mation function classes. Bottom graph: The target and approximation function classes have

slightly di�erent center locations and priors on model parameters. In both cases, the active

learner has a lower average error rate than the passive learner for the same number of data

points.

22

and passive sampling strategies. We then obtain a regularized estimate of the target function for

each data set using Equation 16, and �nally, we compute the actual integrated squared di�erence

between the target and its estimate as an approximation error measure. The graphs in Figure 9

plot the average error rates (over the 5000 di�erent target functions) for both the active and passive

learners as a function of data sample size. The upper graph shows the learner using exact priors,

i.e, that of the target class, while the lower graph is for the case of slightly incorrect priors. In

both cases, the active learner has a lower average error rate than the passive learner for the same

number of data points. This is especially true for small data sets.

5 Su�ciency Conditions for Pre-Computing a Data Sampling Sequence

It is noteworthy that both for learning RBF weights as well as polynomial coe�cients, the new

optimal sample location, ^xn+1, does not depend on the yi data values previously observed but only

on the xi values sampled. Thus, if the learner were to collect n data points, it can pre-compute

the exact sequence of n points at which to sample from the start, even before receiving any data

from the target function. This behavior has been observed by MacKay [10] for an active example

selection strategy that minimizes only a model parameter variance cost function. For such cost

functions, any class of approximation functions that are linear in their model parameters would

exhibit such behavior.

In our framework, we minimize an output uncertainty cost function that includes both bias and

variance terms. The following theorem provides su�ciency conditions on the learning problem for

which our active learning formulation leads to a data selection strategy that does not depend on

previously observed yi data values.

Theorem 2 Suppose F is a class of real-valued functions parameterized by a 2 <k: On the basis

of a data set Dn = f(xi; yi) : i = 1; : : : ; ng, let the MAP solution to the learning problem be given

by â = argmina2<k P (g(ajDn)). Then the following three conditions guarantee that the choice of

x̂n+1 will be independent of the previously observed yi's in Dn.

1. P (g(a)jDn) can be expressed as Q((a� â(Dn)); fxi : i = 1 : : :ng) where Q is some arbitrary

function that does not depend on the data, Dn. In other words, the yi terms of Dn do not

appear anywhere else in P (g(a)jDn) = Q((a� â(Dn)); fxi : i = 1 : : :ng) other than in â.

2. F is linear in its parameters a, i.e.: ga1+a2(x) = ga1(x) + ga2(x).

3. The prior distribution on model parameters a must have support equal to <k:

As it turns out, if the conditions of the above theorem are met, the output uncertainty function

U of our active learning formulation can also be analytically solved. Note that these conditions

are su�cient to guarantee analytical tractability. They are by no means necessary and it would be

useful to shed stronger light on the kinds of function classes and probability distributions for which

exact active algorithms exist.

6 Active Example Selection and the \Boot-strap" Paradigm

Recall from Section 3.3 that our active learning strategy chooses its next sample location by

minimizing the total output uncertainty cost function in Equation 7. For convenience, we reproduce

the relevant expressions below:

U(ĝn+1jDn; ~xn+1) =

Z 1

�1
P(yn+1j ~xn+1;Dn)EF [�(^gn+1; g)jDn [(~xn+1; yn+1)]dyn+1: (18)

23

where:

EF [�(ĝ; g)jDn] =

Z
g2F

P(gjDn)�(ĝ; g)dg =

Z
g2F

PF(g)P(Dnjg)�(ĝ; g)dg:

and:

P(yn+1j ~xn+1;Dn) /
Z
f2F

P (Dn [(~xn+1; yn+1)jf)PF(f)df:

Clearly, from the three equations above, the cost function U(ĝn+1jDn; ~xn+1) may not have a simple

analytical form for many approximation function classes. The current active learning formula-

tion may therefore be computationally intractable for arbitrary approximation function classes in

general.

One way of making the active learning task computationally tractable is to de�ne simpler but

less \complete" cost functions for measuring the potential utility of new sample locations. To

conclude this paper, we look at one such simpli�cation approach and show how it leads to the

\boot-strap" example selection strategy we used for training object and pattern detection systems.

We also show empirically that even though the \boot-strap" strategy may be \sub-optimal" in its

choice of new examples, it still outperforms random sampling in training a frontal face detection

system. As such, we maintain that the \boot-strap" strategy is still an e�ective means of sifting

through unmanageably large data sets that would otherwise make learning intractable.

6.1 A Simpler Example Utility Measure

Let g be an unknown target function that we want to estimate by means of an approxima-

tion function in F , Dn = f(~xi; yi) 2 <d � <ji = 1; : : : ; ng be the set of n data points seen so

far, and ĝn 2 F be the current regularized estimate for g. Recall from Section 3.3 that our

learning goal is to minimize an expected mis�t notion between g and its regularized solution, and

our optimal sampling strategy chooses the next input location ~xn+1 2 <d that best minimizes

EF [�(^gn+1; g)jDn [(~xn+1; yn+1)], the EISD between g and its new estimate ^gn+1.

We now describe a di�erent example selection heuristic, based on a simpler but less comprehen-

sive example utility measure, that also attempts to e�ciently reduce the expected mis�t between g

and ^gn+1. Let L(ĝnjDn; ~x) be a local \uncertainty" measure for the current estimate ĝn at ~x:

L(ĝnjDn; ~x) =

Z
g2F

P(gjDn)(ĝn(~x)� g(~x))2dg (19)

Notice that unlike the EISD which globally characterizes an entire approximation function, L(ĝnjDn; ~x)

is just a local \error bar" measure between g and ĝn only at ~x. In a loose sense, one can view the

local \error bar" L(ĝnjDn; ~x) as information that the learner lacks at input location ~x for an ex-

act solution. Given such an interpretation, one can also regard L(ĝnjDn; ~x) as an example utility

measure, because the learner essentially gains the information it lacks at ~x by sampling there. The

new example selection heuristic can thus be formulated as choosing the next sample where the new

example's utility value is greatest, i.e., sampling next where the learner lacks most information:

~xn+1 = argmax
~x2<d

L(ĝnjDn; ~x) = argmax
~x2<d

Z
g2F

P(gjDn)(ĝn(~x)� g(~x))2dg (20)

24

We stress again that the new example selection heuristic di�ers from our original active learning

formulation only in the example utility cost function it uses. The new heuristic uses a simpler

example utility measure, based on the current estimate's local uncertainty properties instead of

the new estimate's expected global uncertainty properties. In doing so, it implicitly assumes the

following:

1. The learning goal is still to minimize the expected mis�t, i.e., the total output uncertainty

between g and its estimate ĝ.

2. One can bring about a proportionate decrease in the new estimate's global output uncertainty

level by locally reducing the current estimate's output uncertainty at some arbitrary location.

3. There is a better chance of signi�cantly reducing the local output uncertainty at a point whose

current uncertainty level is high. Furthermore, one can best reduce the local uncertainty level

at a point by sampling directly at the point.

4. It follows from the previous assumptions that one can most e�ciently minimize the new

estimate's global uncertainty level by gathering new data where the current estimate's local

output uncertainty level is highest.

Although the above assumptions appear intuitively reasonable, one should still be able to �nd

approximation function classes that do not meet the above assumptions. This suggests that in

general, the new heuristic may still be a \sub-optimal" sampling strategy with respect to the active

learning goal of maximally reducing the expected mis�t between g and ĝ with each new data point.

Nevertheless, Equation 19 is clearly a much simpler example utility cost function than Equation 18,

which makes the new heuristic computationally tractable for a much larger range of approximation

function classes.

Are there approximation function classes for which the new heuristic and the original active

example selection strategy are functionally equivalent? MacKay [10] has shown that if one ap-

proximates the current a-posteriori model parameter distribution, i.e. P(~ajDn) � P(g(�;~a)jDn),

as a multi-dimensional Gaussian probability density centered at ~̂a, the optimal model parameter

estimate, then minimizing the new estimate's global uncertainty level reduces to sampling where the

current estimate's \error bars" are greatest. MacKay has also observed that for linear approxima-

tion function classes (i.e., one for which g(~x;~a) =
PK

i=1 ai i(~x)) with quadratic penalty functions,

P(~ajDn) is exactly a multi-dimensional Gaussian probability density centered at ~̂a, which in turn

suggests that the two sampling strategies are computationally equivalent for such approximation

function classes. We refer the interested reader to MacKay's work [10] for further details.

6.2 Example Selection in a Real Pattern Detection Training Scenario

We now discuss a variant of the simpli�ed example selection heuristic, used for training a frontal

view human face detection system. In order to train a face detection system with �nite computation

resource, one must �rst acquire a comprehensive but tractably small database of \face" and \non-

face" example patterns. For \face" patterns, one can simply collect all frontal face views from

mugshot databases and other image archives, and still have a manageably small data set. For

\non-face" patterns, the task is more tricky. In essence, any normalized window pattern that does

not tightly contain a frontal human face is a valid \non-face" training example. Clearly, our \non-

face" example set can grow intractably large if we should include every available \non-face" image

patch in our training database.

Notice that our learning scenario for face detection di�ers slightly from the original active

learning scenario presented earlier. In the original setting, one assumes that data measurements

are relatively expensive or slow, and we seek the next sample location that best maximizes the

25

expected amount of information gained. In our current scenario, we have an immense amount of

available \non-face" data from which we wish to select a small training sample most useful for our

learning task. The learner in our face detection scenario also has an added advantage: it already

knows the actual output value (i.e., class label) of every candidate \non-face" data point even

before they are selected.

Clearly, the current learning scenario reduces to the original active learning setting if we ignore

output values (i.e., class labels) of the candidate data points when deciding which new patterns to

select. Despite apparent di�erences in form, both learning scenarios address the same central issue,

namely how a learner can select new examples intelligently by estimating the utility of candidate

data points. In fact, we shall see shortly that one can still borrow ideas developed for the original

active learning scenario to approach example selection in the face detection scenario.

6.3 The \Boot-strap" Paradigm

To constrain the number of \non-face" patterns in our training database, we introduce a \boot-

strap" paradigm that incrementally selects \non-face" patterns highly relevant to the learning

problem. The \boot-strap" strategy reduces the number of \non-face" patterns needed to train a

highly robust face detector. We outline the idea below:

1. Start with a small and possibly highly non-representative set of \non-face" examples in the

training database.

2. Train a face classi�er to output a value of `1' for face examples and `0' for non-face examples

using patterns from the current example database.

3. Run the trained face detector on a sequence of images with no faces. Collect all (or a random

subset of) the \non-face" patterns that the current system wrongly classi�es as \faces" (i.e.,

an output value of > 0:5). Add these \non-face" patterns to the training database as new

negative examples.

4. Return to Step 2.

More generally, one can use the \boot-strap" paradigm to select useful training examples from

either pattern class in an arbitrary pattern detection problem:

1. Start with a small and possibly highly non-representative example set in the training database.

2. Train a pattern classi�er to output a value of `1' for positive examples and `0' for negative

examples using patterns from the current example database.

3. Run the trained pattern classi�er on a sequence of images. Collect all (or a random subset

of) the wrongly classi�ed patterns and add them to the training database as new correctly

labeled examples.

4. Return to Step 2.

At the end of each iteration, the \boot-strap" paradigm augments the current data set with new

patterns that the current system classi�es wrongly. We argue that this strategy of collecting

wrongly classi�ed patterns as new training examples is reasonable, because one can expect these

new examples to improve the classi�er's performance by steering it away from its current mistakes.

One can reason about the \boot-strap" paradigm as a variant of the previously discussed sim-

pli�ed example selection heuristic. First, as in the original active learning spirit, \boot-strapping"

attempts to select only high utility examples for training. During, each example selection step, if

26

\boot-strapping" were to follow the active learning procedure exactly, then it should select only the

highest utility example available and continue the training process. Instead, we make the \boot-

strap" paradigm less restrictive by allowing the learner to select one or more \high utility" examples

between training cycles. Notice that the highest utility example may not even be among those se-

lected. Second, the simpli�ed heuristic estimates an example's utility by computing L(ĝnjDn; ~x),

the local \error bar" measure of Equation 19. In \boot-strapping", we take advantage of the already

available output value (i.e., class label) at each candidate location to implement a coarse but very

simple local \error bar" measure for selecting new examples. Points that are classi�ed correctly

have low actual output errors. We assume that these points also have low uncertainty \error bars"

and so we ignore them as examples containing little new information. Conversely, points that are

wrongly classi�ed have high actual output errors. We conveniently assume that these points also

have high local uncertainty \error bars" and are therefore \high utility" examples suitable for the

learning task. We stress again that we are assuming actual output errors and local uncertainty

\error bars" are highly correlated measurements, which may not always be a valid assumption.

6.4 Sample Complexity of \Boot-strapping"

Does the \boot-strap" strategy yield better classi�cation results with fewer training examples

than a passive learner that receives randomly drawn patterns? We show empirically that this is

indeed the case for our frontal face detection learning scenario. Using a Radial Basis Function-like

network architecture for pattern classi�cation, we trained a frontal view face detection system (see

[20] for details). This was done in two \boot-strap" cycles. The �nal training database contains

4150 \face" patterns and over 40000 \non-face" patterns, of which about 6000 were selected during

the second \boot-strap" cycle. As a control, we trained a second system without \boot-strapping".

The second training database contains the same 4150 \face" patterns and another 40000 randomly

selected \non-face" patterns. We used the same \face" and \non-face" Gaussian clusters from the

�rst system to model the target and near-miss pattern distributions in the second system.

We ran both systems on a test database of 23 cluttered images with 147 frontal faces. The �rst

system missed 23 faces and produced 13 false detects, while the second system had 15 missed faces

and 44 false alarms. Notice that the �rst system trained with \boot-strapping" has a lower total

mis-classi�cation rate than the control trained without \boot-strapping". The \boot-strap" system

misses more faces but has a much smaller false alarm rate for non-faces. This is because we have

used \boot-strapping" to only select better \non-face" patterns while leaving the total number of

\face" patterns unchanged. Consequently, the system is better able to reject non-face patterns at

a slight expense of correctly detecting faces.

Our comparison suggests that even though the \boot-strap" strategy may be \sub-optimal" in

choosing new training patterns, it is still a very simple and e�ective technique for sifting through

unmanageably large data sets for useful examples.

7 Conclusion

We have developed a framework for choosing examples usefully and investigated its plausibility

as a reasonable paradigm for active learning. This framework rests on techniques from Optimal

Experiment Design, generalizes the work of MacKay in a Bayesian setting and is similar to the

work of Sollich in a non-Bayesian one. We then show how precise algorithms can be derived for

certain function classes and explore the improved perfomance of these algorithms.

There are a number of useful directions to explore further. First, it is useful to understand

what sort of function classes would yield tractable solutions to the objective function criteria set

up in our framework. We have attempted a partial answer to this, but the analysis is by no means

complete. Another useful direction is to consider forms of activity other than example selection

27

Figure 10: Comparing face detection results for two systems: one trained without \boot-strapping" and the

other with \boot-strapping". The system trained without \boot-strapping" does a poorer job at discarding non-

face patterns. Top pair: The system without \boot-strapping" �nds the frontal face correctly but also makes

four false detects | three near the top-left image corner and one near Mia Hamm's left knee. Bottom pair:
The system without \boot-strapping" makes two false detects in the complex background, left of Iolaus' face.

28

that might be useful in practice. We have made no attempt to discuss this issue in the current

paper.

There have been some previous attempts to develop theoretical frameworks and analyses of

active learning situations. It is crucial that these frameworks eventually translate into some sort of

working algorithms that can be used to solve complex learning problems. As an attempt to bridge

the gap between theory and practice, we have argued how the bootstrap paradigm can be derived

from our framework and implemented with some success in a sophisticated face detection system.

A The Active Learning Procedure

This appendix derives the active example selection procedures for polynomial approximators

and Gaussian radial basis functions. Speci�cally, we show the steps leading to Equations 11 and 17,

i.e., the total output uncertainty cost functions U(ĝn+1jDn; ~xn+1) for polynomial approximators and

Gaussian RBFs respectively.

A.1 Polynomial Approximators

Let F be a univariate polynomial approximation function concept class with maximum degree

K:

F = fg(x;~a) = g(x; a0; : : : ; aK) =
KX
i=0

aix
ig:

The model parameters to be learnt are ~a = [a0 a1 : : : aK]
T and x 2 [xLO; xHI] is the input variable .

The prior distribution on F is a zero-mean Gaussian distribution with covariance �F on the model

parameters ~a:

PF(g(�;~a)) = PF(~a) =
1

(2�)(K+1)=2j�F j1=2
exp(�

1

2
~aT��1F ~a): (21)

Our task is to approximate an unknown target function g 2 F within the input range [xLO; xHI] on

the basis of noisy sampled data: Dn = f(xi; yi = g(xi) + �)ji = 1; : : : ; ng, where � is an additive

zero-mean Gaussian noise term with variance �2s .

A.1.1 The A-Posteriori Function Class Distribution

We �rst derive the a-posteriori distribution on function class F given data Dn, i.e., P(~ajDn) /
PF(~a)P(Dnj~a). Since Dn is sampled under additive zero-mean Gaussian noise with variance �2s , we

have:

P(Dnj~a) / exp

0
@� 1

2�2s

nX
j=1

(yj � g(xj;~a))
2

1
A

= exp

0
@� 1

2�2s

nX
j=1

(yj �
KX
t=0

atx
t
j)

2

1
A (22)

Let �xj = [1 xj x
2
j : : : x

K
j]

T be a power vector of the jth input value. One can expand the exponent

term in Equation 22 as follows:

29

yj �

KX
t=0

atx
t
j

!2

= y2j +

KX
t=0

atx
t
j

!2

� 2yi

KX
t=0

atx
t
j

= y2j + ~a
T(�xj �xj

T)~a� yj �xj
T~a � ~aT �xjyj

So:

1

�2s

nX
j=1

yj �

KX
t=0

atx
t
j

!2

=
1

�2s

nX
j=1

y2j + ~a
T

0
@ 1

�2s

nX
j=1

(�xj �xj
T)

1
A~a

� (
1

�2s

nX
j=1

yj �xj
T)~a� ~aT(

1

�2s

nX
j=1

�xjyj)

The polynomial prior distribution PF (~a) is given in Equation 21. The a-posteriori distribution

is thus:

P(~ajDn) / PF (~a)P(Dnj~a)

/ exp

�
�
1

2
~aT��1F ~a

�
exp

0
@� 1

2�2s

nX
j=1

(yj �
KX
t=0

atx
t
j)

2

1
A

= exp

2
4�1

2

0
@~aT��1F ~a+

1

�2s

nX
j=1

y2j + ~a
T

0
@ 1

�2s

nX
j=1

(�xj �xj
T)

1
A~a

�(
1

�2s

nX
j=1

yj �xj
T)~a� ~aT(

1

�2s

nX
j=1

�xjyj)

1
A
3
5

= exp

2
4�1

2

0
@ 1

�2s

nX
j=1

y2j + ~a
T

0
@��1F +

1

�2s

nX
j=1

(�xj �xj
T)

1
A~a

�(
1

�2s

nX
j=1

yj �xj
T)~a� ~aT(

1

�2s

nX
j=1

�xjyj)

1
A
3
5 (23)

Completing the square in Equation 23 yields:

P(~ajDn) / exp

2
4�1

2

0
@(~a� ~̂a)T��1n (~a� ~̂a)� ~̂a

T

��1n ~̂a+
1

�2s

nX
j=1

y2j

1
A
3
5 (24)

where:

��1n = ��1F +
1

�2s

nX
j=1

(�xj �xj
T) (25)

~̂a = �n(
1

�2s

nX
j=1

�xjyj) (26)

30

Notice that neither of the two terms ~̂a
T

��1n ~̂a and 1
�2
s

Pn
j=1 y

2
j in Equation 24 depend on the

polynomial model parameters ~a. This means that we can rewrite Equation 24 as:

P(~ajDn) / exp

�
�
1

2

�
(~a� ~̂a)T��1n (~a� ~̂a)

��
(27)

Clearly, Equation 27 is multivariate Gaussian in form. To express P(~ajDn) as a standard proba-

bility distribution on ~a that integrates to 1, we simply introduce into Equation 27 the appropriate

normalizing constants:

P(~ajDn) =
1

(2�)(K+1)=2j�nj1=2
exp

�
�
1

2

�
(~a� ~̂a)T��1n (~a� ~̂a)

��
(28)

Thus, the polynomial a-posteriori function class distribution is a multivariate Gaussian centered

at ~̂a (Equation 26) with covariance �n (Equation 25).

A.1.2 The Polynomial EISD Measure

Recall from Section 3.3 that the total output uncertainty cost functions U(ĝn+1jDn; ~xn+1) is

simply the expected EISD measure between g and its new estimate ^gn+1, if the learner samples next

at ~xn+1. We now derive an expression for the EISD between g and its current estimate ĝn given

Dn. We shall use this result later to derive an expression for U(ĝn+1jDn; ~xn+1).

The expected integrated squared di�erence (EISD) between an unknown target g and its estimate

ĝ given Dn is:

EF [�(ĝ; g)jDn] =

Z
g2F

P(gjDn)�(ĝ; g)dg

where �(ĝ; g) is a standard integrated squared di�erence measure between two functions over the

input space <d or some appropriate region of interest:

�(ĝ; g) =

Z
~x2<d

(g(~x)� ĝ(~x))2d~x:

For our polynomial approximation function class, the optimal estimate for g given Dn has

model parameters ~̂a (Equation 26), since this is where P(~ajDn) has a global maximum. Let

~̂a = [â0 â1 : : : âK]
T and �x = [1 x x2 : : : xK]T, one can rewrite �(ĝ; g) in terms of polynomial model

parameters as:

�(~̂a;~a) =

Z x
HI

x
LO

[g(x;~a)� g(x; ~̂a)]2dx =
Z x

HI

x
LO

"
(
KX
i=0

aix
i)� (

KX
i=0

âix
i)

#2
dx

=

Z xHI

xLO

"
KX
i=0

(ai � âi)xi
#2
dx =

Z xHI

xLO

(~a� ~̂a)T�x�xT(~a� ~̂a)dx

= (~a� ~̂a)T
 Z xHI

xLO

�x�xTdx

!
(~a� ~̂a)

= (~a� ~̂a)TA(~a� ~̂a) (29)

31

where A is a constant (K + 1)� (K + 1) matrix of numbers whose (i; j)th element is:

A(i; j) =

Z xHI

xLO

x(i+j�2)dx

Substituting Equations 28 and 29 into the EISD expression, we get:

EF [�(ĝ; g)jDn] = EF [�(~̂a;~a)jDn] =

Z
~a2<K+1

P(~ajDn)�(~̂a;~a)d~a

=

Z
~a2<K+1

1

(2�)(K+1)=2j�nj1=2
exp

�
�
1

2

�
(~a� ~̂a)T��1n (~a� ~̂a)

��

(~a� ~̂a)TA(~a� ~̂a) d~a (30)

Making the following change of variables: ~q = A
1

2 (~a� ~̂a), and noting that the integration bounds

on ~q is still <K+1, Equation 30 becomes:

EF [�(ĝ; g)jDn] = EF [�(~̂a;~a)jDn]

=

Z
~q2<K+1

1

(2�)(K+1)=2jAj1=4j�nj1=2jAj1=4

exp

�
�
1

2

�
~q TA� 1

2��1n A� 1

2 ~q
��
~q T~q d~q

=

Z
~q2<K+1

1

(2�)(K+1)=2j�nAj1=2

exp

�
�
1

2

�
~q TA� 1

2��1n A� 1

2 ~q
��
~q T~q d~q

= j�nAj / j�nj (31)

since A is just a constant matrix of numbers.

Notice from Equation 25 that �n depends only on the polynomial function class priors �F , the

output noise variance �2s and the previously sampled input locations fx1; x2; : : : ; xng. It does not
depend on the previous y data values actually observed. In other words, the previously observed

y data values in Dn do not a�ect the EISD measure (Equation 31) for this polynomial function

concept class!

A.1.3 The Total Output Uncertainty Measure

The total output uncertainty cost function resulting from sampling next at ~xn+1 is given by

Equation 7. We rewrite the expression below in terms of our polynomial model parameters:

U(ĝn+1jDn; xn+1) =

Z
yn+12<

P(yn+1jxn+1;Dn)EF [�(~̂a;~a)jDn [(xn+1; yn+1)] dyn+1: (32)

where:

32

P(yn+1jxn+1;Dn) /
Z
~a2<K+1

P(Dn [(xn+1; yn+1)j~a)PF(~a) d~a:

It is clear from Equation 32 that U(ĝn+1jDn; xn+1) is merely the expected EISD value between

g and its new estimate, weighted and averaged over all possible values of yn+1 at xn+1. Recall from

Equation 25 however, that for this polynomial function class, the EISD between g and its estimate

ĝ depends only on the input xi values in Dn and not on the observed yi values. This means that

EF [�(~̂a;~a)jDn[(xn+1; yn+1)], the new EISD resulting from sampling next at xn+1, does not depend

on yn+1! Equation 32 can therefore be further simpli�ed, which leads to the following closed form

expression for the total output uncertainty cost function, given also in Equation 11:

U(ĝn+1jDn; xn+1) = EF [�(~̂a;~a)jDn [(xn+1; yn+1)]

Z
yn+12<

P(yn+1jxn+1;Dn) dyn+1

= EF [�(~̂a;~a)jDn [(xn+1; yn+1)]

= j�n+1Aj / j�n+1j (33)

Here, �n+1 has exactly the same form as �n in Equation 25, and depends only on the polynomial

function class priors �F , the output noise variance �
2
s and the data input locations fx1; x2; : : : ; xn; xn+1g.

A.1.4 The Polynomial Smoothness Prior

For our polynomial function class, we have assumed the following multi-dimensional Gaussian

prior distribution on model parameters ~a = [a0 a1 : : : aK]
T:

PF(~a) =
1

(2�)(K+1)=2j�F j1=2
exp(�

1

2
~aT��1F ~a);

where �F is a (K + 1) � (K + 1) covariance matrix. If one assumes an independent Gaussian

distribution with variance �2i on each parameter ai, then �F is simply a diagonal matrix with the

independent variance terms f�2i ji = 0; : : : ; Kg on its principal diagonal.

Let p 2 F be a polynomial function in the approximation concept class. We consider here a

slightly di�erent prior distribution on F based on a global \smoothness" measure:

PF(~a) / exp(�Q(p(�;~a))) exp(�
a20
2�20

)

= exp

"
�
1

2

2Q(p(�;~a)) +

a20
�20

!#
(34)

where the \smoothness" term is:

Q(p(�;~a)) =
Z xHI

xLO

�
dp(x;~a)

dx

�2
dx:

33

We shall show that despite the apparent di�erence in general form, PF(~a) still simpli�es to a multi-

dimensional Gaussian distribution, whose new covariance term �F is given by Equation 14. First

we express Q(p(�;~a)) in terms of the polynomial model parameters ~a:

p(x) =
KX
t=0

atx
t

d p(x)

dx
=

KX
t=1

attx
t�1

�
d p(x)

dx

�2

=

2
6666664

a1
a2
a3
...

aK

3
7777775

T
2
66666664

1 2x 3x2 � � � KxK�1

2x 4x2 6x3 2KxK

3x2 6x3 9x4
...

...
. . .

KxK�1 2KxK � � � K2x2K�2

3
77777775

2
6666664

a1
a2
a3
...

aK

3
7777775

Q(p(�;~a)) =

Z xHI

x
LO

�
d p(x)

dx

�2
dx = [a1 a2 : : : aK]N [a1 a2 : : : aK]

T

N is a constant K �K matrix of numbers whose (i; j)th element is:

N(i; j) =
ij

i+ j � 1
(x

i+j�1
HI

� xi+j�1
LO

)

Next, we substitute the above result into the exponent of Equation 34. We get:

2Q(p(�;~a)) +
a20
�20

= [a0 a1 : : : aK]

"
1=�20 ~0

T

~0 2N

#
[a0 a1 : : : aK]

T (35)

= ~aT��1F ~a

PF(~a) / exp

"
�
1

2

2Q(p(�;~a)) +

a20
�20

!#

= exp

�
�
1

2
~aT��1F ~a

�
(36)

where the K � K matrix N is as de�ned above. Thus, from Equation 36, we see that the new

prior distribution PF(~a) is indeed multi-dimensional Gaussian in form with covariance �F as given

below and in Equation 14:

��1F (i; j) =

8><
>:

1=�20 if i = j = 1

2
(i�1)(j�1)
i+j�3 (x

i+j�3
HI

� xi+j�3
LO

) if 2 � i � K + 1 and 2 � j � K + 1

0 otherwise

(37)

34

A.2 Gaussian Radial Basis Functions

Our next example is a d-dimensional Gaussian Radial Basis Function class F with K �xed cen-

ters. The analysis here is very similar to the polynomial case presented in the previous section. Let

Gi be the ith basis function with a �xed center ~ci and a �xed covariance Si. The model parameters

to be learnt are the RBF weight coe�cients denoted by ~a = [a1 a2 : : : aK]
T. An arbitrary function

r 2 F in this class can be represented as:

r(~x;~a) =
KX
i=1

aiGi(~x)

=
KX
i=1

ai
1

(2�)d=2jSij1=2
exp(�

1

2
(~x� ~ci)TS�1i (~x� ~ci))

The prior distribution on F is a zero-mean Gaussian distribution with covariance �F on the model

parameters:

PF(r(�;~a)) = PF(~a) =
1

(2�)K=2j�F j1=2
exp(�

1

2
~aT��1F ~a): (38)

Lastly, the learner has access to noisy data of the form Dn = f(~xi; yi = g(~xi) + �) : i = 1; : : : ; ng,
where g 2 F is an unknown target function and � is a zero-mean additive Gaussian noise term with

variance �2s . The learning task is to recover g from Dn.

A.2.1 The A-Posteriori Function Class Distribution

We �rst derive the a-posteriori distribution on function class F given data Dn, i.e., P(~ajDn) /
PF(~a)P(Dnj~a). Since Dn is sampled under additive zero-mean Gaussian noise with variance �2s , we

have:

P(Dnj~a) / exp

0
@� 1

2�2s

nX
j=1

(yj � r(~xj;~a))
2

1
A

= exp

0
@� 1

2�2s

nX
j=1

(yj �
KX
t=1

at
exp

�
�1

2
(~xj � ~ct)

TS�1t (~xj � ~ct)
�

(2�)d=2jStj1=2
)2

1
A

= exp

0
@� 1

2�2s

nX
j=1

(yj �
KX
t=1

atGt(~xj))2
1
A (39)

Let �zj = [G1(~xj) G2(~xj) : : : GK(~xj)]T be a vector of kernel output values for the jth input value.

One can expand the exponent term in Equation 39 as follows:

(yj �
KX
t=1

atGt(~xj))2 = y2j +

KX
t=1

atGt(~xj)

!2

� 2yj

KX
t=1

atGt(~xj)

= y2j + ~a
T(�zj �zj

T)~a� yj �zj
T~a� ~aT �zjyj

35

So:

1

�2s

nX
j=1

yj �

KX
t=1

atGt(~xj)

!2

=
1

�2s

nX
j=1

y2j + ~a
T

0
@ 1

�2s

nX
j=1

(�zj �zj
T)

1
A~a

� (
1

�2s

nX
j=1

yj �zj
T)~a� ~aT(

1

�2s

nX
j=1

�zjyj)

The Gaussian RBF prior distribution PF (~a) is as given in Equation 38. The a-posteriori distri-

bution is thus:

P(~ajDn) / PF(~a)P(Dnj~a)

/ exp

�
�
1

2
~aT��1F ~a

�
exp

0
@� 1

2�2s

nX
j=1

(yj �
KX
t=1

atGt(~xj))2
1
A

= exp

2
4�1

2

0
@~aT��1F ~a +

1

�2s

nX
j=1

y2j + ~a
T

0
@ 1

�2s

nX
j=1

(�zj �zj
T)

1
A~a

� (
1

�2s

nX
j=1

yj �zj
T)~a� ~aT(

1

�2s

nX
j=1

�zjyj)

1
A
3
5

= exp

2
4�1

2

0
@ 1

�2s

nX
j=1

y2j + ~a
T

0
@��1F +

1

�2s

nX
j=1

(�zj �zj
T)

1
A~a

� (
1

�2s

nX
j=1

yj �zj
T)~a� ~aT(

1

�2s

nX
j=1

�zjyj)

1
A
3
5 (40)

Completing the square in Equation 40 yields:

P(~ajDn) / exp

2
4�1

2

0
@(~a� ~̂a)T��1n (~a� ~̂a)� ~̂a

T

��1n ~̂a+
1

�2s

nX
j=1

y2j

1
A
3
5 (41)

where:

��1n = ��1F +
1

�2s

nX
j=1

(�zj �zj
T) (42)

~̂a = �n (
1

�2s

nX
j=1

�zjyj) (43)

Notice that as in the polynomial case (see Appendix A.1.1), neither of the two terms ~̂a
T

��1n ~̂a

and 1
�2s

Pn
j=1 y

2
j in Equation 41 depend on the RBF model parameters ~a. This means we can simply

36

remove the two \constant" terms from the exponent and introduce into Equation 41 the appropriate

normalizing constants so P(~ajDn) becomes a standard probability distribution on ~a:

P(~ajDn) =
1

(2�)K=2j�nj1=2
exp

�
�
1

2

�
(~a� ~̂a)T��1n (~a� ~̂a)

��
(44)

Thus, the RBF a-posteriori distribution is a multivariate Gaussian centered at ~̂a (Equation 43)

with covariance �n (Equation 42).

A.2.2 The RBF EISD Measure

We now derive an expression for the expected integrated squared di�erence (EISD) between an

unknown RBF target g and its current estimate given Dn. We shall use this result later to derive

U(ĝn+1jDn; ~xn+1), the total output uncertainty cost function for RBF approximators.

The expected integrated squared di�erence (EISD) between an unknown target g and its estimate

ĝ given Dn is:

EF [�(ĝ; g)jDn] =

Z
g2F

P(gjDn)�(ĝ; g)dg

where �(ĝ; g) is a standard integrated squared di�erence measure between two functions over the

input space <d or some appropriate region of interest:

�(ĝ; g) =

Z
~x2<d

(g(~x)� ĝ(~x))2d~x:

For our RBF approximation function class, the optimal estimate for g given Dn has model

parameters ~̂a (Equation 43), since this is where the a-posteriori distribution P(~ajDn) has a global

maximum. Let ~̂a = [â0 â1 : : : âK]
T and �z = [G1(~x) G2(~x) : : : GK(~x)]T, one can rewrite �(ĝ; g) in

terms of RBF model parameters as:

�(~̂a;~a) =

Z
~x2<d

[r(x;~a)� r(x; ~̂a)]2 d~x =
Z
~x2<d

"
(
KX
i=1

aiGi(~x))� (
KX
i=1

âiGi(~x))

#2
d~x

=

Z
~x2<d

"
KX
i=1

(ai � âi)Gi(~x)

#2
d~x =

Z
~x2<d

(~a� ~̂a)T�z�zT(~a� ~̂a) d~x

= (~a� ~̂a)T
�Z

~x2<d
�z�zT d~x

�
(~a� ~̂a)

= (~a� ~̂a)TA(~a� ~̂a) (45)

where A is a constant K �K matrix of numbers whose (i; j)th element is:

A(i; j) =

Z
~x2<d

Gi(~x)Gj(~x) d~x

Substituting Equations 44 and 45 into the EISD expression, we get:

37

EF [�(ĝ; g)jDn] = EF [�(~̂a;~a)jDn] =

Z
~a2<K

P(~ajDn)�(~̂a;~a) d~a

=

Z
~a2<K

1

(2�)K=2j�nj1=2
exp

�
�
1

2

�
(~a� ~̂a)T��1n (~a� ~̂a)

��

(~a� ~̂a)TA(~a� ~̂a) d~a (46)

Making the following change of variables as in the polynomial case: ~q = A
1

2 (~a � ~̂a), and noting

that the integration bounds on ~q is still <K , Equation 46 becomes:

EF [�(ĝ; g)jDn] = EF [�(~̂a;~a)jDn]

=

Z
~q2<K

1

(2�)K=2jAj1=4j�nj1=2jAj1=4

exp

�
�
1

2

�
~q TA� 1

2��1n A� 1

2 ~q
��
~q T~q d~q

=

Z
~q2<K

1

(2�)K=2j�nAj1=2

exp

�
�
1

2

�
~q TA� 1

2��1n A� 1

2 ~q
��
~q T~q d~q

= j�nAj / j�nj (47)

since A is just a constant matrix of numbers.

Notice from Equation 42 that �n depends only on the RBF function class priors �F , the K

�xed Gaussian RBF kernels fGi(�)ji = 1; : : : ; Kg, the output noise variance �2s and the previously

sampled input locations fx1; x2; : : : ; xng. Like the polynomial case, it does not depend on the

previous y data values actually observed. In other words, the previously observed y data values in

Dn do not a�ect the EISD measure (Equation 47) for this Gaussian RBF concept class!

A.2.3 The RBF Total Output Uncertainty Measure

The total output uncertainty cost function is simply the expected EISD between g and its new

estimate ^gn+1, if the learner samples next at ~xn+1. The cost function is given by Equation 7. We

rewrite the expression below in terms of our RBF model parameters:

U(ĝn+1jDn; ~xn+1) =

Z
yn+12<

P(yn+1j ~xn+1;Dn)EF [�(~̂a;~a)jDn [(~xn+1; yn+1)] dyn+1: (48)

where:

P(yn+1j ~xn+1;Dn) /
Z
~a2<K

P(Dn [(~xn+1; yn+1)j~a)PF(~a) d~a:

It is clear from Equation 48 that U(ĝn+1jDn; ~xn+1) is merely the new EISD weighted and

averaged over all possible values of yn+1 at ~xn+1. Recall from Equation 42 however, that for

this RBF concept class, the EISD between g and its estimate ĝ depends only on the input ~xi

38

values in Dn and not on the observed yi values. This means that EF [�(~̂a;~a)jDn [(~xn+1; yn+1)],

the new EISD resulting from sampling next at ~xn+1, does not depend on yn+1! Equation 48 can

therefore be further simpli�ed, which leads to the following closed form expression for the total

output uncertainty cost function, given also in Equation 17:

U(ĝn+1jDn; ~xn+1) = EF [�(~̂a;~a)jDn [(~xn+1; yn+1)]

Z
yn+12<

P(yn+1j ~xn+1;Dn) dyn+1

= EF [�(~̂a;~a)jDn [(~xn+1; yn+1)]

= j�n+1Aj / j�n+1j (49)

Here, �n+1 has exactly the same form as �n in Equation 42, and depends only on the polynomial

function class priors �F , the K �xed Gaussian RBF kernels fGi(�)ji = 1; : : : ; Kg, the output noise
variance �2s and the data input locations

f ~x1; ~x2; : : : ; ~xn; ~xn+1g.

References

[1] S. Ahmad and S. Omohundro. A Network for Extracting the Locations of Point Clusters using

Selective Attention. Technical Report TR 90-011, International Computer Science Institute,

University of California, Berkeley, 1990.

[2] D. Angluin. Learning k-term DNF Formulas using Queries and Counterexamples. Technical

Report YALU/DCS/RR-559, Yale University, Department of Computer Science, 1987.

[3] D. Angluin. Queries and Concept Learning. Machine Learning, 2(4):319{342, April 1988.

[4] M. Bertero. Regularization Methods for Linear Inverse Problems. In C. Talenti, editor, Inverse

Problems. Springer-Verlag, Berlin, 1986.

[5] D. Cohn. A Local Approach to Optimal Queries. In D. Touretzky, editor, Proc. of 1990

Connectionist Summer School, San Mateo, CA, 1991. Morgan Kaufmann Publishers.

[6] V. Fedorov. Theory of Optimal Experiments, page 35. Academic Press, New York, 1972.

[7] Stuart Geman and Don Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian

Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

6:721{741, 1984.

[8] J. Hadamard. La Theorie des Equations aux Derivees Partielles. Editions Scienti�que, Pekin,

1964.

[9] J. Hwang, J. Choi, S. Oh, and R. Marks. Query Learning based on Boundary Search and

Gradient Computation of Trained Multi-layer Perceptrons. In Proceedings IJCNN, San Diego,

CA, 1990. IEEE Press.

[10] D. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, California Institute of Tech-

nology, Pasadena, CA, 1992.

[11] J. Marroquin, S. Mitter, and Tomaso Poggio. Probabilistic Solution of Ill-posed Problems in

Computational Vision. In Proceedings Image Understanding Workshop, pages 293{309, Miami

Beach, FL, December 1985.

39

[12] V. Morozov. Methods of Solving Incorrectly posed Problems. Springer-Verlag, Berlin, 1984.

[13] M. Plutowski and H. White. Active Selection of Training Examples for Network Learning in

Noiseless Environments. Technical Report CS91-180, Department of Computer Science and

Engineering, University of California, San Diego, 1991.

[14] T. Poggio and F. Girosi. A Theory of Networks for Approximation and Learning. Technical

Report AIM{1140, Arti�cial Intelligence Laboratory, Massachusetts Institute of Technology,

1989.

[15] T. Poggio and F. Girosi. Extensions of a Theory of Networks for Approximation and Learning:

Outliers and Negative Examples. Technical Report AIM{1220, Arti�cial Intelligence Labora-

tory, Massachusetts Institute of Technology, 1990.

[16] D. Rumelhart and J. McClelland. Parallel Distributed Processing, volume 1. MIT Press,

Cambridge, Massachusetts, 1986.

[17] C. Sammut and R. Banerji. Learning Concepts by Asking Questions. In J. Carbonell R. Michal-

ski and T. Mitchell, editors, Machine Learning: An Arti�cial Intelligence Approach (Vol. 2).

Morgan Kaufmann, Los Altos, CA, 1986.

[18] E. Shapiro. Algorithmic Program Debugging. MIT Press, Cambridge, MA, 1983.

[19] P. Sollich. Query Construction, Entropy, Generalization in Neural Network Models. Physical

Review E, 49:4637{4651, 1994.

[20] K. Sung and T. Poggio. Example-based Learning for View-based Human Face Detection.

In Proceedings Image Understanding Workshop, volume II, pages 843{850, Monterey, CA,

November 1994.

[21] A. Tikhonov. Solution of Incorrectly Formulated Problems and the Regularization Method.

Soviet Math. Dokl., 4:1035{1038, 1963.

[22] A. Tikhonov and V. Arsenin. Solutions of Ill-Posed Problems. W. H. Winston, Washington,

DC, 1977.

[23] L. Valiant. A Theory of Learnable. Proc. of the 1984 STOC, pages 436{445, 1984.

[24] L. Valiant. Learning Disjunctions of Conjunctions. In Proceedings IJCAI, pages 560{566, Los

Angeles, CA, 1985.

40

