
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

and

CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING

DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES

A.I. Memo No. 1440 August 6, 1993

C.B.C.L. Memo No. 83

Hierarchical Mixtures of Experts and the EM
Algorithm

Michael I. Jordan and Robert A. Jacobs

Abstract

We present a tree-structured architecture for supervised learning. The statistical model underlying the

architecture is a hierarchical mixture model in which both the mixture coe�cients and the mixture com-

ponents are generalized linear models (GLIM's). Learning is treated as a maximum likelihood problem;

in particular, we present an Expectation-Maximization (EM) algorithm for adjusting the parameters of

the architecture. We also develop an on-line learning algorithm in which the parameters are updated

incrementally. Comparative simulation results are presented in the robot dynamics domain.

Copyright c
 Massachusetts Institute of Technology, 1993

This report describes research done at the Dept. of Brain and Cognitive Sciences, the Center for Biological and

Computational Learning, and the Arti�cial Intelligence Laboratory of the Massachusetts Institute of Technology.

Support for CBCL is provided in part by a grant from the NSF (ASC{9217041). Support for the laboratory's
arti�cial intelligence research is provided in part by the Advanced Research Projects Agency of the Dept. of

Defense. The authors were supported by a grant from the McDonnell-Pew Foundation, by a grant from ATR

Human Information Processing Research Laboratories, by a grant from Siemens Corporation, by by grant IRI-

9013991 from the National Science Foundation, by grant N00014-90-J-1942 from the O�ce of Naval Research,

and by NSF grant ECS-9216531 to support an Initiative in Intelligent Control at MIT. Michael I. Jordan is a

NSF Presidential Young Investigator.

Introduction

The principle of divide-and-conquer is a principle with wide applicability throughout applied

mathematics. Divide-and-conquer algorithms attack a complex problem by dividing it into

simpler problems whose solutions can be combined to yield a solution to the complex problem.

This approach can often lead to simple, elegant and e�cient algorithms. In this paper we explore

a particular application of the divide-and-conquer principle to the problem of learning from

examples. We describe a network architecture and a learning algorithm for the architecture,

both of which are inspired by the philosophy of divide-and-conquer.

In the statistical literature and in the machine learning literature, divide-and-conquer ap-

proaches have become increasingly popular. The CART algorithm of Breiman, Friedman, Ol-

shen, and Stone (1984), the MARS algorithm of Friedman (1991), and the ID3 algorithm of

Quinlan (1986) are well-known examples. These algorithms �t surfaces to data by explicitly

dividing the input space into a nested sequence of regions, and by �tting simple surfaces (e.g.,

constant functions) within these regions. They have convergence times that are often orders of

magnitude faster than gradient-based neural network algorithms.

Although divide-and-conquer algorithms have much to recommend them, one should be

concerned about the statistical consequences of dividing the input space. Dividing the data can

have favorable consequences for the bias of an estimator, but it generally increases the variance.

Consider linear regression, for example, in which the variance of the estimates of the slope and

intercept depend quadratically on the spread of data on the x-axis. The points that are the

most peripheral in the input space are those that have the maximal e�ect in decreasing the

variance of the parameter estimates.

The foregoing considerations suggest that divide-and-conquer algorithms generally tend to

be variance-increasing algorithms. This is indeed the case and is particularly problematic in

high-dimensional spaces where data become exceedingly sparse (Scott, 1992). One response to

this dilemma|that adopted by CART, MARS, and ID3, and also adopted here|is to utilize

piecewise constant or piecewise linear functions. These functions minimize variance at a cost

of increased bias. We also make use of a second variance-decreasing device; a device familiar in

the neural network literature. We make use of \soft" splits of data (Bridle, 1989; Nowlan, 1991;

Wahba, Gu, Wang, & Chappell, 1993), allowing data to lie simultaneously in multiple regions.

This approach allows the parameters in one region to be in
uenced by data in neighboring

regions. CART, MARS, and ID3 rely on \hard" splits, which, as we remarked above, have

particularly severe e�ects on variance. By allowing soft splits the severe e�ects of lopping o�

distant data can be ameliorated. We also attempt to minimize the bias that is incurred by using

piecewise linear functions, by allowing the splits to be formed along hyperplanes at arbitrary

orientations in the input space. This lessens the bias due to high-order interactions among

the inputs and allows the algorithm to be insensitive to the particular choice of coordinates

used to encode the data (an improvement over methods such as MARS and ID3, which are

coordinate-dependent).

The work that we describe here makes contact with a number of branches of statistical

theory. First, as in our earlier work (Jacobs, Jordan, Nowlan, & Hinton, 1991), we formulate

the learning problem as a mixture estimation problem (cf. Cheeseman, et al, 1988; Duda &

Hart, 1973; Nowlan, 1991; Redner & Walker, 1984; Titterington, Smith, & Makov, 1985). We

show that the algorithm that is generally employed for the unsupervised learning of mixture

parameters|the Expectation-Maximization (EM) algorithm of Dempster, Laird and Rubin

(1977)|can also be exploited for supervised learning. Second, we utilize generalized linear

model (GLIM) theory (McCullagh & Nelder, 1983) to provide the basic statistical structure

1

for the components of the architecture. In particular, the \soft splits" referred to above are

modeled asmultinomial logit models|a speci�c form of GLIM. We also show that the algorithm

developed for �tting GLIM's|the iteratively reweighted least squares (IRLS) algorithm|can

be usefully employed in our model, in particular as the M step of the EM algorithm. Finally,

we show that these ideas can be developed in a recursive manner, yielding a tree-structured

approach to estimation that is reminiscent of CART, MARS, and ID3.

The remainder of the paper proceeds as follows. We �rst introduce the hierarchical mixture-

of-experts architecture and present the likelihood function for the architecture. After describing

a gradient descent algorithm, we develop a more powerful learning algorithm for the architecture

that is a special case of the general Expectation-Maximization (EM) framework of Dempster,

Laird and Rubin (1977). We also describe a least-squares version of this algorithm that leads

to a particularly e�cient implementation. Both of the latter algorithms are batch learning

algorithms. In the �nal section, we present an on-line version of the least-squares algorithm

that in practice appears to be the most e�cient of the algorithms that we have studied.

Hierarchical mixtures of experts

The algorithms that we discuss in this paper are supervised learning algorithms. We explicitly

address the case of regression, in which the input vectors are elements of <m and the output

vectors are elements of <n. We also consider classi�cation models and counting models in

which the outputs are integer-valued. The data are assumed to form a countable set of paired

observations X = f(x(t);y(t))g. In the case of the batch algorithms discussed below, this set is

assumed to be �nite; in the case of the on-line algorithms, the set may be in�nite.

We propose to solve nonlinear supervised learning problems by dividing the input space into

a nested set of regions and �tting simple surfaces to the data that fall in these regions. The

regions have \soft" boundaries, meaning that data points may lie simultaneously in multiple

regions. The boundaries between regions are themselves simple parameterized surfaces that are

adjusted by the learning algorithm.

The hierarchical mixture-of-experts (HME) architecture is shown in Figure 1.1 The ar-

chitecture is a tree in which the gating networks sit at the nonterminals of the tree. These

networks receive the vector x as input and produce scalar outputs that are a partition of unity

at each point in the input space. The expert networks sit at the leaves of the tree. Each expert

produces an output vector �ij for each input vector. These output vectors proceed up the tree,

being blended by the gating network outputs.

All of the expert networks in the tree are linear with a single output nonlinearity. We

will refer to such a network as \generalized linear," borrowing the terminology from statistics

(McCullagh & Nelder, 1983). Expert network (i; j) produces its output �ij as a generalized

linear function of the input x:

�ij = f(Uijx); (1)

where Uij is a weight matrix and f is a �xed continuous nonlinearity. The vector x is assumed

to include a �xed component of one to allow for an intercept term.

For regression problems, f(�) is generally chosen to be the identity function (i.e., the ex-

perts are linear). For binary classi�cation problems, f(�) is generally taken to be the logistic

function, in which case the expert outputs are interpreted as the log odds of \success" under a

1To simplify the presentation, we restrict ourselves to a two-level hierarchy throughout the paper. All of the

algorithms that we describe, however, generalize readily to hierarchies of arbitrary depth. See Jordan and Xu

(1993) for a recursive formalism that handles arbitrary hierarchies.

2

Gating
Network

Expert
Network

Expert
Network

µ1211µ 21µ 22µ

Expert
Network

Expert
Network

Gating
Network

µ

Gating
Network

µ1 µ2

xx

x

x x

x

x

g1

g 12|

1 1|g

1| 2g

2 2|g

2g

Figure 1: A two-level hierarchical mixture of experts. To form a deeper tree, each expert is

expanded recursively into a gating network and a set of sub-experts.

Bernoulli probability model (see below). Other models (e.g., multiway classi�cation, counting,

rate estimation and survival estimation) are handled by making other choices for f(�). These

models are smoothed piecewise analogs of the corresponding GLIM models (cf. McCullagh &

Nelder, 1983).

The gating networks are also generalized linear. De�ne intermediate variables �i as follows:

�i = v
T

i x; (2)

where vi is a weight vector. Then the i
th output of the top-level gating network is the \softmax"

function of the �i (Bridle, 1989; McCullagh & Nelder, 1983):

gi =
e
�iP
k
e
�k
: (3)

Note that the gi are positive and sum to one for each x. They can be interpreted as providing

a \soft" partitioning of the input space.

Similarly, the gating networks at lower levels are also generalized linear systems. De�ne �ij
as follows:

�ij = v
T

ijx: (4)

3

Then

gjji =
e
�ijP
k
e
�ik

(5)

is the output of the jth unit in the ith gating network at the second level of the architecture.

Once again, the gjji are positive and sum to one for each x. They can be interpreted as

providing a nested \soft" partitioning of the input space within the partitioning providing by

the higher-level gating network.

The output vector at each nonterminal of the tree is the weighted output of the experts

below that nonterminal. That is, the output at the ith nonterminal in the second layer of the

two-level tree is:

�i =
X
j

gjji�ij

and the output at the top level of the tree is:

� =
X
i

gi�i:

Note that both the g's and the �'s depend on the input x, thus the total output is a nonlinear

function of the input.

Regression surface

Given the de�nitions of the expert networks and the gating networks, the regression surface

de�ned by the hierarchy is a piecewise blend of the regression surfaces de�ned by the experts.

The gating networks provide a nested, \soft" partitioning of the input space and the expert

networks provide local regression surfaces within the partition. There is overlap between neigh-

boring regions. To understand the nature of the overlap, consider a one-level hierarchy with

two expert networks. In this case, the gating network has two outputs, g1 and g2. The gating

output g1 is given by:

g1 =
e
�1

e
�1 + e

�2
(6)

=
1

1 + e
�(v1�v2)Tx

; (7)

which is a logistic ridge function whose orientation is determined by the direction of the vector

v1�v2. The gating output g2 is equal to 1�g1. For a given x, the total output � is the convex

combination g1�1 + g2�2. This is a weighted average of the experts, where the weights are

determined by the values of the ridge function. Along the ridge, g1 = g2 =
1
2 , and both experts

contribute equally. Away from the ridge, one expert or the other dominates. The amount of

smoothing across the ridge is determined by the magnitude of the vector v2 � v1. If v2 � v1

is large, then the ridge function becomes a sharp split and the weighted output of the experts

becomes piecewise (generalized) linear. If v2 � v1 is small, then each expert contributes to a

signi�cant degree on each side of the ridge, thereby smoothing the piecewise map. In the limit

of a zero di�erence vector, g1 = g2 =
1
2 for all x, and the total output is the same �xed average

of the experts on both sides of the �ctitious \split."

In general, a given gating network induces a smoothed planar partitioning of the input space.

Lower-level gating networks induce a partition within the partition induced by higher-level

gating networks. The weights in a given gating network determine the amount of smoothing

4

across the partition at that particular level of resolution: large weight vectors imply sharp

changes in the regression surface across a ridge and small weights imply a smoother surface. In

the limit of zero weights in all gating networks, the entire hierarchy reduces to a �xed average

(a linear system in the case of regression).

A probability model

The hierarchy can be given a probabilistic interpretation. We suppose that the mechanism

by which data are generated by the environment involves a nested sequence of decisions that

terminates in a regressive process that maps x to y. The decisions are modeled as multinomial

random variables. That is, for each x, we interpret the values gi(x;v
0
i
) as the multinomial

probabilities associated with the �rst decision and the gjji(x;v
0
ij
) as the (conditional) multino-

mial probabilities associated with the second decision, where the superscript \0" refers to the

\true" values of the parameters. The decisions form a decision tree. We use a statistical model

to model this decision tree; in particular, our choice of parameterization (cf. Equations 2, 4, 3

and 5) corresponds to a multinomial logit probability model at each nonterminal of the tree (see

Appendix 2). A multinomial logit model is a special case of a GLIM that is commonly used for

\soft" multiway classi�cation (McCullagh & Nelder, 1983). Under the multinomial logit model,

we interpret the gating networks as modeling the input-dependent, multinomial probabilities

associated with decisions at particular levels of resolution in a tree-structured model of the

data.

Once a particular sequence of decisions has been made, resulting in a choice of regressive

process (i; j), output y is assumed to be generated according to the following statistical model.

First, a linear predictor �ij is formed:

�
0
ij
= U

0
ij
x:

The expected value of y is obtained by passing the linear predictor through the link function

f :2

�
0
ij = f(�0ij):

The output y is then chosen from a probability density P , with mean �
0
ij
and \dispersion"

parameter �0
ij . We denote the density of y as:

P (yjx; �0ij);

where the parameter vector �0ij includes the weights U
0
ij
and the dispersion parameter �0

ij :

�
0
ij
=

"
U
0
ij

�
0
ij

#
:

We assume the density P to be a member of the exponential family of densities (McCullagh &

Nelder, 1983). The interpretation of the dispersion parameter depends on the particular choice

of density. For example, in the case of the n-dimensional Gaussian, the dispersion parameter

is the covariance matrix �0
ij
.3

2We utilize the neural network convention in de�ning links. In GLIM theory, the convention is that the link
function relates � to �; thus, � = h(�), where h is equivalent to our f�1.

3Not all exponential family densities have a dispersion parameter; in particular, the Bernoulli density discussed

below has no dispersion parameter.

5

Given these assumptions, the total probability of generating y from x is the mixture of the

probabilities of generating y from each of the component densities, where the mixing proportions

are multinomial probabilities:

P (yjx; �0) =
X
i

gi(x;v
0
i
)
X
j

gjji(x;v
0
ij
)P (yjx; �0

ij
); (8)

Note that �0 includes the expert network parameters �0
ij
as well as the gating network parame-

ters v0
i
and v

0
ij
. Note also that we have explicitly indicated the dependence of the probabilities

gi and gjji on the input x and on the parameters. In the remainder of the paper we drop the

explicit reference to the input and the parameters to simplify the notation:

P (yjx; �0) =
X
i

g
0
i

X
j

g
0
jjiP

0
ij
(y); (9)

We also utilize Equation 9 without the superscripts to refer to the probability model de�ned

by a particular HME architecture, irrespective of any reference to a \true" model.

Example (regression)

In the case of regression the probabilistic component of the model is generally assumed to

be Gaussian. Assuming identical covariance matrices of the form �
2
I for each of the experts

yields the following hierarchical probability model:

P (yjx; �) =
1

(2�)n=2�n

X
i

gi

X
j

gjjie
� 1

2�2
(y��ij)

T (y��ij)
:

Example (binary classi�cation)

In binary classi�cation problems the output y is a discrete random variable having possible

outcomes of \failure" and \success." The probabilistic component of the model is generally

assumed to be the Bernoulli distribution (Cox, 1970). In this case, the mean �ij is the condi-

tional probability of classifying the input as \success." The resulting hierarchical probability

model is a mixture of Bernoulli densities:

P (yjx; �) =
X
i

gi

X
j

gjji�
y

ij
(1� �ij)

1�y
:

Posterior probabilities

In developing the learning algorithms to be presented in the remainder of the paper, it will

prove useful to de�ne posterior probabilities associated with the nodes of the tree. The terms

\posterior" and \prior" have meaning in this context during the training of the system. We

refer to the probabilities gi and gjji as prior probabilities, because they are computed based

only on the input x, without knowledge of the corresponding target output y. A posterior

probability is de�ned once both the input and the target output are known. Using Bayes' rule,

we de�ne the posterior probabilities at the nodes of the tree as follows:

hi =
gi

P
j
gjjiPij(y)P

i
gi

P
j
gjjiPij(y)

(10)

6

and

hjji =
gjjiPij(y)P
j
gjjiPij(y)

: (11)

We will also �nd it useful to de�ne the joint posterior probability hij , the product of hi and

hjji:

hij =
gigjjiPij(y)P

i
gi

P
j
gjjiPij(y)

(12)

This quantity is the probability that expert network (i; j) can be considered to have generated

the data, based on knowledge of both the input and the output. Once again, we emphasize

that all of these quantities are conditional on the input x.

In deeper trees, the posterior probability associated with an expert network is simply the

product of the conditional posterior probabilities along the path from the root of the tree to

that expert.

The likelihood and a gradient descent learning algorithm

Jordan and Jacobs (1992) presented a gradient descent learning algorithm for the hierarchical

architecture. The algorithm was based on earlier work by Jacobs, Jordan, Nowlan, and Hinton

(1991), who treated the problem of learning in mixture-of-experts architectures as a maximum

likelihood estimation problem. The log likelihood of a data set X = f(x(t);y(t))gN1 is obtained

by taking the log of the product of N densities of the form of Equation 9, which yields the

following log likelihood:

l(�;X) =
X
t

ln
X
i

g

(t)
i

X
j

g

(t)
jjiPij(y

(t)): (13)

Let us assume that the probability density P is Gaussian with an identity covariance matrix

and that the link function is the identity. In this case, by di�erentiating l(�;X) with respect

to the parameters, we obtain the following gradient descent learning rule for the weight matrix

Uij :

�Uij = �

X
t

h

(t)
i
h

(t)
jji(y

(t)� �
(t))x(t)T ; (14)

where � is a learning rate. The gradient descent learning rule for the ith weight vector in the

top-level gating network is given by:

�vi = �

X
t

(h
(t)
i
� g

(t)
i
)x(t); (15)

and the gradient descent rule for the jth weight vector in the ith lower-level gating network is

given by:

�vij = �

X
t

h

(t)
i
(h

(t)
jji � g

(t)
jji)x

(t)
; (16)

Updates can also be obtained for covariance matrices (Jordan & Jacobs, 1992).

The algorithm given by Equations 14, 15, and 16 is a batch learning algorithm. The corre-

sponding on-line algorithm is obtained by simply dropping the summation sign and updating

the parameters after each stimulus presentation. Thus, for example,

U

(t+1)
ij

= U

(t)
ij

+ �h

(t)
i
h

(t)
jji(y

(t) � �
(t))x(t)T (17)

is the stochastic update rule for the weights in the (i; j)th expert network based on the t
th

stimulus pattern.

7

The EM algorithm

In the following sections we develop a learning algorithm for the HME architecture based on

the Expectation-Maximization (EM) framework of Dempster, Laird, and Rubin (1977). We

derive an EM algorithm for the architecture that consists of the iterative solution of a coupled

set of iteratively-reweighted least-squares problems.

The EM algorithm is a general technique for maximum likelihood estimation. In practice

EM has been applied almost exclusively to unsupervised learning problems. This is true of the

neural network literature and machine learning literature, in which EM has appeared in the

context of clustering (Cheeseman, et al. 1988; Nowlan, 1990) and density estimation (Specht,

1991), as well as the statistics literature, in which applications include missing data problems

(Little & Rubin, 1987), mixture density estimation (Redner &Walker, 1984), and factor analysis

(Dempster, Laird, & Rubin, 1977). Another unsupervised learning application is the learning

problem for Hidden Markov Models, for which the Baum-Welch reestimation formulas are a

special case of EM. There is nothing in the EM framework that precludes its application to

regression or classi�cation problems; however, such applications have been few.4

EM is an iterative approach to maximum likelihood estimation. Each iteration of an EM

algorithm is composed of two steps: an Estimation (E) step and a Maximization (M) step.

The M step involves the maximization of a likelihood function that is rede�ned in each itera-

tion by the E step. If the algorithm simply increases the function during the M step, rather

than maximizing the function, then the algorithm is referred to as a Generalized EM (GEM)

algorithm. The Boltzmann learning algorithm (Hinton & Sejnowski, 1986) is a neural network

example of a GEM algorithm. GEM algorithms are often signi�cantly slower to converge than

EM algorithms.

An application of EM generally begins with the observation that the optimization of the

likelihood function l(�;X) would be simpli�ed if only a set of additional variables, called \miss-

ing" or \hidden" variables, were known. In this context, we refer to the observable data X as

the \incomplete data" and posit a \complete data" set Y that includes the missing variables

Z . We specify a probability model that links the �ctive missing variables to the actual data:

P (y; zjx; �). The logarithm of the density P de�nes the \complete-data likelihood," lc(�;Y).

The original likelihood, l(�;X), is referred to in this context as the \incomplete-data likelihood."

It is the relationship between these two likelihood functions that motivates the EM algorithm.

Note that the complete-data likelihood is a random variable, because the missing variables Z

are in fact unknown. An EM algorithm �rst �nds the expected value of the complete-data

likelihood, given the observed data and the current model. This is the E step:

Q(�; �(p)) = E[lc(�;Y)jX];

where �(p) is the value of the parameters at the pth iteration and the expectation is taken with

respect to �(p). This step yields a deterministic function Q. The M step maximizes this function

with respect to � to �nd the new parameter estimates �(p+1):

�
(p+1) = argmax

�

Q(�; �(p)):

The E step is then repeated to yield an improved estimate of the complete likelihood and the

process iterates.

4An exception is the \switching regression" model of Quandt and Ramsey (1972). For further discussion of

switching regression, see Jordan and Xu (1993).

8

An iterative step of EM chooses a parameter value that increases the value of Q, the expec-

tation of the complete likelihood. What is the e�ect of such a step on the incomplete likelihood?

Dempster, et al. proved that an increase in Q implies an increase in the incomplete likelihood:

l(�(p+1);X) � l(�(p);X):

Equality obtains only at the stationary points of l (Wu, 1983). Thus the likelihood l increases

monotonically along the sequence of parameter estimates generated by an EM algorithm. In

practice this implies convergence to a local maximum.

Applying EM to the HME architecture

To develop an EM algorithm for the HME architecture, we must de�ne appropriate \missing

data" so as to simplify the likelihood function. We de�ne indicator variables zi and zjji, such

that one and only one of the zi is equal to one, and one and only one of the zjji is equal to one.

These indicator variables have an interpretation as the labels that correspond to the decisions

in the probability model. We also de�ne the indicator variable zij , which is the product of

zi and zjji. This variable has an interpretation as the label that speci�es the expert (the

regressive process) in the probability model. If the labels zi, zjji and zij were known, then the

maximum likelihood problem would decouple into a separate set of regression problems for each

expert network and a separate set of multiway classi�cation problems for the gating networks.

These problems would be solved independently of each other, yielding a rapid one-pass learning

algorithm. Of course, the missing variables are not known, but we can specify a probability

model that links them to the observable data. This probability model can be written in terms

of the zij as follows:

P (y(t); z
(t)
ij
jx(t); �) = g

(t)
i
g

(t)
jjiPij(y

(t)) (18)

=
Y
i

Y
j

fg
(t)
i
g

(t)
jjiPij(y

(t))gz
(t)

ij
; (19)

using the fact that z
(t)
ij

is an indicator variable. Taking the logarithm of this probability model

yields the following complete-data likelihood:

lc(�;Y) =
X
t

X
i

X
j

z

(t)
ij

lnfg
(t)
i
g

(t)
jjiPij(y

(t))g (20)

=
X
t

X
i

X
j

z

(t)
ij
fln g

(t)
i

+ ln g
(t)
jji + lnPij(y

(t))g: (21)

Note the relationship of the complete-data likelihood in Equation 21 to the incomplete-data

likelihood in Equation 13. The use of the indicator variables zij has allowed the logarithm to

be brought inside the summation signs, substantially simplifying the maximization problem.

We now de�ne the E step of the EM algorithm by taking the expectation of the complete-data

likelihood:

Q(�; �(p)) =
X
t

X
i

X
j

h

(t)
ij
fln g

(t)
i

+ ln g
(t)
jji + ln Pij(y

(t))g; (22)

where we have used the fact that:

E[z
(t)
ij
jX] = P (z

(t)
ij

= 1jy(t);x(t); �(p)) (23)

9

=
P (y(t)jz

(t)
ij

= 1;x(t); �(p))P (z
(t)
ij

= 1jx(t); �(p))

P (y(t)jx(t); �(p))
(24)

=
P (y(t)jx(t); �ij

(p))g
(t)
i
g

(t)
jjiP

i
g

(t)
i

P
j
g

(t)
jjiP (y

(t)jx(t); �ij
(p))

(25)

= h

(t)
ij
: (26)

(Note also that E[z
(t)
i
jX] = h

(t)
i

and E[z
(t)
jji jX] = h

(t)
jji .)

The M step requires maximizing Q(�; �(p)) with respect to the expert network parameters

and the gating network parameters. Examining Equation 22, we see that the expert network

parameters in
uence the Q function only through the terms h
(t)
ij
ln Pij(y

(t)), and the gating

network parameters in
uence the Q function only through the terms h
(t)
ij
ln g

(t)
i

and h

(t)
ij
ln g

(t)
jji .

Thus the M step reduces to the following separate maximization problems:

�
(p+1)
ij

= argmax
�ij

X
t

h

(t)
ij
ln Pij(y

(t)); (27)

v
(p+1)
i

= argmax
vi

X
t

X
k

h

(t)
k
ln g

(t)
k
; (28)

and

v
(p+1)
ij

= argmax
vij

X
t

X
k

h

(t)
k

X
l

h

(t)
ljk ln g

(t)
ljk : (29)

Each of these maximization problems are themselves maximum likelihood problems. Equa-

tion 27 is simply the general form of a weighted maximum likelihood problem in the probability

density Pij . Given our parameterization of Pij , the log likelihood in Equation 27 is a weighted

log likelihood for a GLIM. An e�cient algorithm known as iteratively reweighted least-squares

(IRLS) is available to solve the maximum likelihood problem for such models (McCullagh &

Nelder, 1983). We discuss IRLS in Appendix A.

Equation 28 involves maximizing the cross-entropy between the posterior probabilities h
(t)
k

and the prior probabilities g
(t)
k
. This cross-entropy is the log likelihood associated with a multi-

nomial logit probability model in which the h
(t)
k

act as the output observations (see Appendix

B). Thus the maximization in Equation 28 is also a maximum likelihood problem for a GLIM

and can be solved using IRLS. The same is true of Equation 29, which is a weighted maximum

likelihood problem with output observations h
(t)
ljk and observation weights h

(t)
k
.

In summary, the EM algorithm that we have obtained involves a calculation of posterior

probabilities in the outer loop (the E step), and the solution of a set of IRLS problems in the

inner loop (the M step). We summarize the algorithm as follows:

10

Algorithm 1

1. For each data pair (x(t);y(t)), compute the posterior probabilities h
(t)
i

and h

(t)
jji using the

current values of the parameters.

2. For each expert (i; j), solve an IRLS problem with observations f(x(t);y(t))gN1 and obser-

vation weights fh
(t)
ij
gN1 .

3. For each top-level gating network, solve an IRLS problem with observations f(x(t); h
(t)
k
)gN1 .

4. For each lower-level gating network, solve a weighted IRLS problem with observations

f(x(t); h
(t)
ljk)g

N

1 and observation weights fh
(t)
k
gN1 .

5. Iterate using the updated parameter values.

A least-squares algorithm

In the case of regression, in which a Gaussian probability model and an identity link function

are used, the IRLS loop for the expert networks reduces to weighted least squares, which can

be solved (in one pass) by any of the standard least-squares algorithms (Golub & van Loan,

1989). The gating networks still require iterative processing. Suppose, however, that we �t the

parameters of the gating networks using least squares rather than maximum likelihood. In this

case, we might hope to obtain an algorithm in which the gating network parameters are �t by a

one-pass algorithm. To motivate this approach, note that we can express the IRLS problem for

the gating networks as follows. Di�erentiating the cross-entropy (Equation 28) with respect to

the parameters vi (using the fact that @gi=@�j = gi(�ij � gj), where �ij is the Kronecker delta)

and setting the derivatives to zero yields the following equations:

X
t

(h
(t)
i
� gi(x

(t)
;vi))x

(t) = 0; (30)

which are a coupled set of equations that must be solved for each i. Similarly, for each gating

network at the second level of the tree, we obtain the following equations:

X
t

h

(t)
i
(h

(t)
jji � gjji(x

(t)
;vij))x

(t) = 0; (31)

which must be solved for each i and j. There is one aspect of these equations that renders them

unusual. Recall that if the labels z
(t)
i

and z

(t)
jji were known, then the gating networks would be

essentially solving a set of multiway classi�cation problems. The supervised errors (z
(t)
i
� g

(t)
i
)

and (z
(t)
jji�g

(t)
jji) would appear in the algorithm for solving these problems. Note that these errors

are di�erences between indicator variables and probabilities. In Equations 30 and 31, on the

other hand, the errors that drive the algorithm are the di�erences (h
(t)
i
� g

(t)
i
) and (h

(t)
jji � g

(t)
jji),

which are di�erences between probabilities. The EM algorithm e�ectively \�lls in" the missing

labels with estimated probabilities hi and hjji. These estimated probabilities can be thought

of as targets for the gi and the gjji. This suggests that we can compute \virtual targets" for

the underlying linear predictors �i and �jji, by inverting the softmax function. (Note that this

11

option would not be available for the zi and zjji, even if they were known, because zero and

one are not in the range of the softmax function.) Thus the targets for the �i are the values:

ln h
(t)
i
� lnC;

where C =
P

k
e
�k is the normalization constant in the softmax function. Note, however, that

constants that are common to all of the �i can be omitted, because such constants disappear

when �i are converted to gi. Thus the values ln h
(t)
i

can be used as targets for the �i. A similar

argument shows that the values ln h
(t)
ljk can be used as targets for the �ij , with observation

weights h
(t)
k
.

The utility of this approach is that once targets are available for the linear predictors �i
and �ij , the problem of �nding the parameters vi and vij reduces to a coupled set of weighted

least-squares problems. Thus we obtain an algorithm in which all of the parameters in the

hierarchy, both in the expert networks and the gating networks, can be obtained by solving

least-squares problems. This yields the following learning algorithm:

Algorithm 2

1. For each data pair (x(t);y(t)), compute the posterior probabilities h
(t)
i

and h

(t)
jji using the

current values of the parameters.

2. For each expert (i; j), solve a weighted least-squares problem with observations

f(x(t);y(t))gN1 and observation weights fh
(t)
ij
gN1 .

3. For each top-level gating network, solve a least-squares problem with observations

f(x(t); ln h
(t)
k
)gN1 .

4. For each lower-level gating network, solve a weighted least-squares problem with obser-

vations f(x(t); ln h
(t)
ljk)g

N

1 and observation weights fh
(t)
k
gN1 .

5. Iterate using the updated parameter values.

It is important to note that this algorithm does not yield the same parameter estimates as

Algorithm 1; the gating network residuals (h
(t)
i
� g

(t)
i
) are being �t by least squares rather than

maximum likelihood. The algorithm can be thought of as an approximation to Algorithm 1,

an approximation based on the assumption that the di�erences between h

(t)
i

and g

(t)
i

are small.

This assumption is equivalent to the assumption that the architecture can �t the underlying

regression surface (a consistency condition) and the assumption that the noise is small. In

practice we have found that the least squares algorithm works reasonably well, even in the early

stages of �tting when the residuals can be large. The ability to use least squares is certainly

appealing from a computational point of view. One possible hybrid algorithm involves using

the least squares algorithm to converge quickly to the neighborhood of a solution and then

using IRLS to re�ne the solution.

Simulation results

We tested Algorithm 1 and Algorithm 2 on a nonlinear system identi�cation problem. The

data were obtained from a simulation of a four-joint robot arm moving in three-dimensional

12

Architecture Relative Error # Epochs

linear .31 1

backprop .09 5,500

HME (Algorithm 1) .10 35

HME (Algorithm 2) .12 39

CART .17 NA

CART (linear) .13 NA

MARS .16 NA

Table 1: Average values of relative error and number of epochs required for convergence for the

batch algorithms.

space (Fun & Jordan, 1993). The network must learn the forward dynamics of the arm; a state-

dependent mapping from joint torques to joint accelerations. The state of the arm is encoded

by eight real-valued variables: four positions (rad) and four angular velocities (rad/sec). The

torque was encoded as four real-valued variables (N � m). Thus there were twelve inputs to

the learning system. Given these twelve input variables, the network must predict the four

accelerations at the joints (rad/sec2). This mapping is highly nonlinear due to the rotating

coordinate systems and the interaction torques between the links of the arm.

We generated 15,000 data points for training and 5,000 points for testing. For each epoch

(i.e., each pass through the training set), we computed the relative error on the test set. Relative

error is computed as a ratio between the mean squared error and the mean squared error that

would be obtained if the learner were to output the mean value of the accelerations for all data

points.

We compared the performance of a binary hierarchy to that of a backpropagation network.

The hierarchy was a four-level hierarchy with 16 expert networks and 15 gating networks.

Each expert network had 4 output units and each gating network had 1 output unit. The

backpropagation network had 60 hidden units, which yields approximately the same number of

parameters in the network as in the hierarchy.

The HME architecture was trained by Algorithms 1 and 2, utilizing Cholesky decomposition

to solve the weighted least-squares problems (Golub & van Loan, 1989). Note that the HME

algorithms have no free parameters. The free parameters for the backpropagation network (the

learning rate and the momentum term) were chosen based on a coarse search of the parameter

space. (Values of 0.00001 and 0.15 were chosen for these parameters.) There were di�culties

with local minima (or plateaus) using the backpropagation algorithm: Five of ten runs failed

to converge to \reasonable" error values. (As we report in the next section, no such di�culties

were encountered in the case of on-line backpropagation). We report average convergence times

and average relative errors only for those runs that converged to \reasonable" error values. All

ten runs for both of the HME algorithms converged to \reasonable" error values.

Figure 2 shows the performance of the hierarchy and the backpropagation network. The hor-

izontal axis of the graph gives the training time in epochs. The vertical axis gives generalization

performance as measured by the average relative error on the test set.

Table 1 reports the average relative errors for both architectures measured at the minima

of the relative error curves. (Minima were de�ned by a sequence of three successive increases

in the relative error.) We also report values of relative error for the best linear approximation,

the CART algorithm, and the MARS algorithm. Both CART and MARS were run four times,

13

Epochs

R
el

at
iv

e
er

ro
r

1 10 100 1000

0.
0

0.
4

0.
8

1.
2

Backpropagation
HME (Algorithm 2)

Figure 2: Relative error on the test set for a backpropagation network and a four-level HME

architecture trained with batch algorithms. The standard errors at the minima of the curves

are 0.013 for backprop and 0.002 for HME.

once for each of the output variables. We combined the results from these four computations to

compute the total relative error. Two versions of CART were run; one in which the splits were

restricted to be parallel to the axes and one in which linear combinations of the input variables

were allowed.

The MARS algorithm requires choices to be made for the values of two structural parame-

ters: the maximum number of basis functions and the maximum number of interaction terms.

Each basis function in MARS yields a linear surface de�ned over a rectangular region of the

input space, corresponding roughly to the function implemented by a single expert in the HME

architecture. Therefore we chose a maximum of 16 basis functions to correspond to the 16

experts in the four-level hierarchy. To choose the maximum number of interactions (mi), we

compared the performance of MARS for mi = 1, 2, 3, 6, and 12, and chose the value that

yielded the best performance (mi = 3).

For the iterative algorithms, we also report the number of epochs required for convergence.

Because the learning curves for these algorithms generally have lengthy tails, we de�ned con-

vergence as the �rst epoch at which the relative error drops within �ve percent of the minimum.

All of the architectures that we studied performed signi�cantly better than the best linear

approximation. As expected, the CART architecture with linear combinations performed better

than CART with axis-parallel splits.5 The HME architecture yielded a modest improvement

5It should be noted that CART is at an advantage relative to the other algorithms in this comparison, because

no structural parameters were �xed for CART. That is, CART is allowed to �nd the best tree of any size to �t

the data.

14

Epoch 0 Epoch 9

Epoch 19 Epoch 29

Figure 3: A sequence of histogram trees for the HME architecture. Each histogram displays

the distribution of posterior probabilities across the training set at each node in the tree.

over MARS and CART. Backpropagation produced the lowest relative error of the algorithms

tested (ignoring the di�culties with convergence).

These di�erences in relative error should be treated with some caution. The need to set free

parameters for some of the architectures (e.g., backpropagation) and the need to make structural

choices (e.g., number of hidden units, number of basis functions, number of experts) makes

it di�cult to match architectures. The HME architecture, for example, involves parameter

dependencies that are not present in a backpropagation network. A gating network at a high

level in the tree can \pinch o�" a branch of the tree, rendering useless the parameters in that

branch of the tree. Raw parameter count is therefore only a very rough guide to architecture

capacity; more precise measures are needed (e.g., VC dimension) before de�nitive quantitative

comparisons can be made.

The di�erences between backpropagation and HME in terms of convergence time are more

de�nitive. Both HME algorithms reliably converge more than two orders of magnitude faster

than backpropagation.

As shown in Figure 3, the HME architecture lends itself well to graphical investigation.

This �gure displays the time sequence of the distributions of posterior probabilities across the

training set at each node of the tree. At Epoch 0, before any learning has taken place, most of

the posterior probabilities at each node are approximately 0.5 across the training set. As the

training proceeds, the histograms
atten out, eventually approaching bimodal distributions in

15

Figure 4: A deviance tree for the HME architecture. Each plot displays the mean squared

error (MSE) for the four output units of the clipped tree. The plots are on a log scale covering

approximately three orders of magnitude.

which the posterior probabilities are either one or zero for most of the training patterns. This

evolution is indicative of increasingly sharp splits being �t by the gating networks. Note that

there is a tendency for the splits to be formed more rapidly at higher levels in the tree than at

lower levels.

Figure 4 shows another graphical device that can be useful for understanding the way in

which a HME architecture �ts a data set. This �gure, which we refer to as a \deviance tree,"

shows the deviance (mean squared error) that would be obtained at each level of the tree if

the tree were clipped at that level. We construct a clipped tree at a given level by replacing

each nonterminal at that level with a matrix that is a weighted average of the experts below

that nonterminal. The weights are the total prior probabilities associated with each expert

across the training set. The error for each output unit is then calculated by passing the test set

through the clipped tree. As can be seen in the �gure, the deviance is substantially smaller for

deeper trees (note that the ordinate of the plots is on a log scale). The deviance in the right

branch of the tree is larger than in the left branch of the tree. Information such as this can be

useful for purposes of exploratory data analysis and for model selection.

16

An on-line algorithm

The batch least-squares algorithm that we have described (Algorithm 2) can be converted

into an on-line algorithm by noting that linear least squares and weighted linear least squares

problems can be solved by recursive procedures that update the parameter estimates with each

successive data point (Ljung & S�oderstr�om, 1986). Our application of these recursive algorithms

is straightforward; however, care must be taken to handle the observation weights (the posterior

probabilities) correctly. These weights change as a function of the changing parameter values.

This implies that the recursive least squares algorithm must include a decay parameter that

allows the system to \forget" older values of the posterior probabilities.

In this section we present the equations for the on-line algorithm. These equations involve

an update not only of the parameters in each of the networks,6 but also the storage and updating

of an inverse covariance matrix for each network. Each matrix has dimensionality mxm, where

m is the dimensionality of the input vector. (Note that the size of these matrices depends on the

square of the number of input variables, not the square of the number of parameters. Note also

that the update equation for the inverse covariance matrix updates the inverse matrix directly;

there is never a need to invert matrices.)

The on-line update rule for the parameters of the expert networks is given by the following

recursive equation:

U

(t+1)
ij

= U

(t)
ij

+ h

(t)
i
h

(t)
jji(y

(t)� �
(t)
ij
)x(t)TR

(t)
ij
; (32)

where Rij is the inverse covariance matrix for expert network (i; j). This matrix is updated via

the equation:

R

(t)
ij

= �
�1
R

(t�1)
ij

� �
�1

R

(t�1)
ij

x
(t)
x
(t)T

R

(t�1)
ij

�[h
(t)
ij
]�1 + x(t)TR

(t�1)
ij

x(t)
; (33)

where � is the decay parameter.

It is interesting to note the similarity between the parameter update rule in Equation 32 and

the gradient rule presented earlier (cf. Equation 14). These updates are essentially the same,

except that the scalar � is replaced by the matrix R

(t)
ij
. It can be shown, however, that R

(t)
ij

is an estimate of the inverse Hessian of the least-squares cost function (Ljung & S�oderstr�om,

1986), thus Equation 32 is in fact a stochastic approximation to a Newton-Raphson method

rather than a gradient method.7

Similar equations apply for the updates of the gating networks. The update rule for the

parameters of the top-level gating network is given by the following equation (for the ith output

of the gating network):

v
(t+1)
i

= v
(t)
i

+ S

(t)
i
(ln h

(t)
i
� �

(t)
i
)x(t); (34)

where the inverse covariance matrix Si is updated by:

S

(t)
i

= �
�1
S

(t�1)
i

� �
�1S

(t�1)
i

x
(t)
x
(t)T

S

(t�1)
i

�+ x(t)TS
(t�1)
i

x(t)
: (35)

Finally, the update rule for the parameters of the lower-level gating network are as follows:

v
(t+1)
ij

= v
(t)
ij

+ S

(t)
ij
h

(t)
i
(ln h

(t)
jji � �

(t)
ij
)x(t); (36)

6Note that in this section we use the term \parameters" for the variables that are traditionally called \weights"

in the neural network literature. We reserve the term \weights" for the observation weights.
7This is true for �xed values of the posterior probabilities. These posterior probabilities are also changing over

time, however, as required by the EM algorithm. The overall convergence rate of the algorithm is determined

by the convergence rate of EM, not the convergence rate of Newton-Raphson.

17

Epochs

R
el

at
iv

e
er

ro
r

1 5 10 50 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Backpropagation
HME

Figure 5: Relative error on the test set for a backpropagation network and a four-level hierarchy

trained with on-line algorithms. The standard errors at the minima of the curves are 0.008 for

backprop and 0.009 for HME.

where the inverse covariance matrix Si is updated by:

S

(t)
ij

= �
�1
S

(t�1)
ij

� �
�1

S

(t�1)
ij

x
(t)
x
(t)T

S

(t�1)
ij

�[h
(t)
i
]�1 + x(t)TS

(t�1)
ij

x(t)
: (37)

Simulation results

The on-line algorithm was tested on the robot dynamics problem described in the previous

section. Preliminary simulations convinced us of the necessity of the decay parameter (�). We

also found that this parameter should be slowly increased as training proceeds|on the early

trials the posterior probabilities are changing rapidly so that the covariances should be decayed

rapidly, whereas on later trials the posterior probabilities have stabilized and the covariances

should be decayed less rapidly. We used a simple �xed schedule: � was initialized to 0.99 and

increased a �xed fraction (0.6) of the remaining distance to 1.0 every 1000 time steps.

The performance of the on-line algorithm was compared to an on-line backpropagation

network. Parameter settings for the backpropagation network were obtained by a coarse search

through the parameter space, yielding a value of 0.15 for the learning rate and 0.20 for the

momentum. The results for both architectures are shown in Figure 5. As can be seen, the on-

line algorithm for backpropagation is signi�cantly faster than the corresponding batch algorithm

(cf. Figure 2). This is also true of the on-line HME algorithm, which has nearly converged

within the �rst epoch.

18

Architecture Relative Error # Epochs

linear .32 1

backprop (on-line) .08 63

HME (on-line) .12 2

HME (gradient) .15 104

Table 2: Average values of relative error and number of epochs required for convergence for the

on-line algorithms.

The minimum values of relative error and the convergence times for both architectures are

provided in Table 2. We also provide the corresponding values for a simulation of the on-line

gradient algorithm for the HME architecture (Equation 17).

We also performed a set of simulations which tested a variety of di�erent HME architectures.

We compared a one-level hierarchy with 32 experts to hierarchies with �ve levels (32 experts),

and six levels (64 experts). We also simulated two three-level hierarchies, one with branching

factors of 4, 4, and 2 (proceeding from the top of the tree to the bottom), and one with branching

factors of 2, 4, and 4. (Each three-level hierarchy contained 32 experts.) The results are shown

in Figure 6. As can be seen, there was a signi�cant di�erence between the one-level hierarchy

and the other architectures. There were smaller di�erences among the multi-level hierarchies.

No signi�cant di�erence was observed between the two di�erent 3-level architectures.

Model selection

Utilizing the HME approach requires that choices be made regarding the structural parameters

of the model, in particular the number of levels and the branching factor of the tree. As with

other
exible estimation techniques, it is desirable to allow these structural parameters to be

chosen based at least partly on the data. This model selection problem can be addressed in a

variety of ways. In this paper we have utilized a test set approach to model selection, stopping

the training when the error on the test set reaches a minimum. As is the case with other neural

network algorithms, this procedure can be justi�ed as a complexity control measure. As we

have noted, when the parameters in the gating networks of an HME architecture are small, the

entire system reduces to a single \averaged" GLIM at the root of the tree. As the training

proceeds, the parameters in the gating networks begin to grow in magnitude and splits are

formed. When a split is formed the parameters in the branches of the tree on either side of

the split are decoupled and the e�ective number of degrees of freedom in the system increases.

This increase in complexity takes place gradually as the values of the parameters increase and

the splits sharpen. By stopping the training of the system based on the performance on a test

set, we obtain control over the e�ective number of degrees of freedom in the architecture.

Other approaches to model selection can also be considered. One natural approach is to use

ridge regression in each of the expert networks and the gating networks. This approach extends

naturally to the on-line setting in the form of a \weight decay." It is also worth considering

Bayesian techniques of the kind considered in the decision tree literature by Buntine (1991), as

well as the MDL methods of Quinlan and Rivest (1989).

19

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1-level
3-level (a)
3-level (b)
5-level
6-level

Epochs

R
el

at
iv

e
er

ro
r

Figure 6: Relative error on the test set for HME hierarchies with di�erent structures. \3-level

(a)" refers to a 3-level hierarchy with branching factors of 4, 4, and 2, and \3-level (b)" refers

to a 3-level hierarchy with branching factors of 2, 4, and 4. The standard errors for all curves

at their respective minima were approximately 0.009.

Related work

There are a variety of ties that can be made between the HME architecture and related work

in statistics, machine learning, and neural networks. In this section we brie
y mention some of

these ties and make some comparative remarks.

Our architecture is not the only nonlinear approximator to make substantial use of GLIM's

and the IRLS algorithm. IRLS also �gures prominently in a branch of nonparametric statistics

known as generalized additive models (GAM's; Hastie & Tibshirani, 1990). It is interesting to

note the complementary roles of IRLS in these two architectures. In the GAM model, the IRLS

algorithm appears in the outer loop, providing an adjusted dependent variable that is �t by a

back�tting procedure in the inner loop. In the HME approach, on the other hand, the outer

loop is the E step of EM and IRLS is in the inner loop. This complementarity suggests that it

might be of interest to consider hybrid models in which a HME is nested inside a GAM or vice

versa.

We have already mentioned the close ties between the HME approach and other tree-

structured estimators such as CART and MARS. Our approach di�ers from MARS and related

architectures|such as the basis-function trees of Sanger (1990)|by allowing splits that are

oblique with respect to the axes. We also di�er from these architectures by using a statistical

model|the multinomial logit model|for the splits. We believe that both of these features can

play a role in increasing predictive ability|the use of oblique splits should tend to decrease

20

bias, and the use of smooth multinomial logit splits should generally decrease variance. Oblique

splits also render the HME architecture insensitive to the particular choice of coordinates used

to encode the data. Finally, it is worth emphasizing the di�erence in philosophy behind these

architectures. Whereas CART and MARS are entirely nonparametric, the HME approach has

a strong
avor of parametric statistics, via its use of generalized linear models, mixture models

and maximum likelihood.

Similar comments can be made with respect to the decision tree methodology in the machine

learning literature. Algorithms such as ID3 build trees that have axis-parallel splits and use

heuristic splitting algorithms (Quinlan, 1986). More recent research has studied decision trees

with oblique splits (Murthy, Kasif & Salzberg, 1993; Utgo� & Brodley, 1990). None of these

papers, however, have treated the problem of splitting data as a statistical problem, nor have

they provided a global goodness-of-�t measure for their trees.

There are a variety of neural network architectures that are related to the HME architec-

ture. The multi-resolution aspect of HME is reminiscent of Moody's (1989) multi-resolution

CMAC hierarchy, di�ering in that Moody's levels of resolution are handled explicitly by sepa-

rate networks. The \neural tree" algorithm (Str�omberg, Zrida, & Isaksson, 1991) is a decision

tree with multi-layer perceptions (MLP's) at the non-terminals. This architecture can form

oblique (or curvilinear) splits, however the MLP's are trained by a heuristic that has no clear

relationship to overall classi�cation performance. Finally, Hinton and Nowlan (see Nowlan,

1991) have independently proposed extending the Jacobs et al. (1991) modular architecture to

a tree-structured system. They did not develop a likelihood approach to the problem, however,

proposing instead a heuristic splitting scheme.

Conclusions

We have presented a tree-structured architecture for supervised learning. We have developed

the learning algorithm for this architecture within the framework of maximum likelihood esti-

mation, utilizing ideas from mixture model estimation and generalized linear model theory. The

maximum likelihood framework allows standard tools from statistical theory to be brought to

bear in developing inference procedures and measures of uncertainty for the architecture (Cox

& Hinkley, 1974). It also opens the door to the Bayesian approaches that have been found to

be useful in the context of unsupervised mixture model estimation (Cheeseman, et al., 1988).

Although we have not emphasized theoretical issues in this paper, there are a number of

points that are worth mentioning. First, the set of exponentially-smoothed piecewise linear

functions that we have utilized are clearly dense in the set of piecewise linear functions on com-

pact sets in <m, thus it is straightforward to show that the hierarchical architecture is dense

in the set of continuous functions on compact sets in <m. That is, the architecture is \univer-

sal" in the sense of Hornik, Stinchcombe, and White (1989). From this result it would seem

straightforward to develop consistency results for the architecture (cf. Geman, Bienenstock, &

Doursat, 1992; Stone, 1977). We are currently developing this line of argument and are study-

ing the asymptotic distributional properties of �xed hierarchies. Second, convergence results

are available for the architecture. We have shown that the convergence rate of the algorithm is

linear in the condition number of a matrix that is the product of an inverse covariance matrix

and the Hessian of the log likelihood for the architecture (Jordan & Xu, 1993).

Finally, it is worth noting a number of possible extensions of the work reported here. Our

earlier work on hierarchical mixtures of experts utilized the multilayer perceptron as the prim-

itive function for the expert networks and gating networks (Jordan & Jacobs, 1992). That

21

option is still available, although we lose the EM proof of convergence (cf. Jordan & Xu, 1993)

and we lose the ability to �t the sub-networks e�ciently with IRLS. One interesting example

of such an application is the case where the experts are auto-associators (Bourlard & Kamp,

1988), in which case the architecture �ts hierarchically-nested local principal component de-

compositions. Another area in unsupervised learning worth exploring is the non-associative

version of the hierarchical architecture. Such a model would be a recursive version of classical

mixture-likelihood clustering and may have interesting ties to hierarchical clustering models.

Finally, it is also of interest to note that the recursive least squares algorithm that we utilized

in obtaining an on-line variant of Algorithm 2 is not the only possible on-line approach. Any

of the fast �lter algorithms (Haykin, 1991) could also be utilized, giving rise to a family of

on-line algorithms. Also, it is worth studying the application of the recursive algorithms to

PRESS-like cross-validation calculations to e�ciently compute the changes in likelihood that

arise from adding or deleting parameters or data points.

Acknowledgements: We want to thank Geo�rey Hinton, Tony Robinson, Mitsuo Kawato, and Daniel

Wolpert for helpful comments on the manuscript.

References

Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular

value decomposition. Biological Cybernetics, 59, 291-294.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classi�cation and Regres-

sion Trees. Belmont, CA: Wadsworth International Group.

Bridle, J. (1989). Probabilistic interpretation of feedforward classi�cation network outputs, with

relationships to statistical pattern recognition. In F. Fogelman{Soulie & J. H�erault (Eds.),

Neuro-computing: Algorithms, Architectures, and Applications. New York: Springer-

Verlag.

Buntine, W. (1991). Learning classi�cation trees. NASA Ames Technical Report FIA-90-12-

19-01, Mo�ett Field, CA.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. (1988). Autoclass:

A Bayesian classi�cation system. In Proceedings of the Fifth International Conference on

Machine Learning, Ann Arbor, MI.

Cox, D. R. (1970). The Analysis of Binary Data. London: Chapman-Hall.

Cox, D. R., & Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman-Hall.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, B, 39, 1-38.

Duda, R. O., & Hart, P. E. (1973). Pattern Classi�cation and Scene Analysis. New York: John

Wiley.

Finney, D. J. (1973). Statistical Methods in Biological Assay. New York: Hafner.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19,

1-141.

22

Fun, W. & Jordan, M. I. (1993). The moving basin: E�ective action search in forward models.

MIT Computational Cognitive Science Tech Report 9205, Cambridge, MA.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance

dilemma. Neural Computation, 4, 1-52.

Golub, G. H., & Van Loan, G. F. (1989). Matrix Computations. Baltimore, MD: The Johns

Hopkins University Press.

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized Additive Models. London: Chapman and

Hall.

Haykin, S. (1991). Adaptive Filter Theory. Englewood Cli�s, NJ: Prentice-Hall.

Hinton, G. E. & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines.

In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Volume 1,

282-317. Cambridge, MA: MIT Press.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are uni-

versal approximators. Neural Networks, 2, 359-366.

Jacobs, R. A, Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of local

experts. Neural Computation, 3, 79-87.

Jordan, M. I., & Jacobs, R. A. (1992). Hierarchies of adaptive experts. In J. Moody, S. Hanson,

& R. Lippmann (Eds.), Advances in Neural Information Processing Systems 4. San Mateo,

CA: Morgan Kaufmann. pp. 985-993.

Jordan, M. I., & Xu, L. (1993). Convergence properties of the EM approach to learning in

mixture-of-experts architectures. Computational Cognitive Science Tech. Rep. 9301, MIT,

Cambridge, MA.

Little, R. J. A., & Rubin, D. B. (1987). Statistical Analysis with Missing Data. New York:

John Wiley.

Ljung, L. & S�oderstr�om, T. (1986). Theory and practice of recursive identi�cation. Cambridge:

MIT Press.

McCullagh, P. & Nelder, J.A. (1983). Generalized Linear Models. London: Chapman and Hall.

Moody, J. (1989). Fast learning in multi-resolution hierarchies. In D.S. Touretzky (Ed.),

Advances in Neural Information Processing Systems. San Mateo, CA: Morgan Kaufmann

Publishers.

Murthy, S. K., Kasif, S., & Salzberg, S. (1993). OC1: A randomized algorithm for building

oblique decision trees. Technical Report, Department of Computer Science, Johns Hopkins

University.

Nowlan, S.J. (1990). Maximum likelihood competitive learning. In D.S. Touretzky (Ed.),

Advances in Neural Information Processing Systems 2. San Mateo, CA: Morgan Kaufmann

Publishers.

Nowlan, S.J. (1991). Soft competitive adaptation: Neural network learning algorithms based on

�tting statistical mixtures. Tech. Rep. CMU-CS-91-126, CMU, Pittsburgh, PA.

23

Quandt, R.E., & Ramsey, J.B. (1972). A new approach to estimating switching regressions.

Journal of the American Statistical Society, 67, 306-310.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.

Quinlan, J. R., & Rivest, R. L. (1989). Inferring decision trees using the Minimum Description

Length Principle. Information and Computation, 80, 227-248.

Redner, R. A., & Walker, H. F. (1984). Mixture densities, maximum likelihood and the EM

algorithm. SIAM Review, 26, 195-239.

Sanger, T. D. (1991). A tree-structured adaptive network for function approximation in high

dimensional spaces. IEEE Transactions on Neural Networks, 2, 285-293.

Scott, D. W. (1992). Multivariate Density Estimation. New York: John Wiley.

Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural

Networks, 2, 568-576.

Stone, C. J. (1977). Consistent nonparametric regression. The Annals of Statistics, 5, 595-645.

Str�omberg, J. E., Zrida, J., & Isaksson, A. (1991). Neural trees|using neural nets in a tree

classi�er structure. IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, pp. 137-140.

Titterington, D. M., Smith, A. F. M., & Makov, U. E. (1985). Statistical Analysis of Finite

Mixture Distributions. New York: John Wiley.

Utgo�, P. E., & Brodley, C. E. (1990). An incremental method for �nding multivariate splits

for decision trees. In Proceedings of the Seventh International Conference on Machine

Learning, Los Altos, CA.

Wahba, G., Gu, C., Wang, Y., & Chappell, R. (1993). Soft classi�cation, a.k.a. risk estimation,

via penalized log likelihood and smoothing spline analysis of variance. Tech. Rep. 899,

Department of Statistics, University of Wisconsin, Madison.

Wu, C. F. J. (1983). On the convergence properties of the EM algorithm. The Annals of

Statistics, 11, 95-103.

Appendix A { Iteratively reweighted least squares

The iteratively reweighted least squares (IRLS) algorithm is the inner loop of the algorithm that

we have proposed for the HME architecture. In this section, we describe the IRLS algorithm,

deriving it as a special case of the Fisher scoring method for generalized linear models. Our

presentation derives from McCullagh and Nelder (1983).

IRLS is an iterative algorithm for computing the maximum likelihood estimates of the

parameters of a generalized linear model. It is a special case of a general algorithm for maximum

likelihood estimation known as the Fisher scoring method (Finney, 1973). Let l(�;X) be a log

likelihood function|a function of the parameter vector �|and let (@l=@�@�T) denote the

Hessian of the log likelihood. The Fisher scoring method updates the parameter estimates �

as follows:

�r+1 = �r � fE[
@l

@�@�
T
]g�1

@l

@�
; (38)

24

where �
r
denotes the parameter estimate at the rth iteration and @l=@� is the gradient vector.

Note that the Fisher scoring method is essentially the same as the Newton-Raphson algorithm,

except that the expected value of the Hessian replaces the Hessian. There are statistical reasons

for preferring the expected value of the Hessian|and the expected value of the Hessian is often

easier to compute|but Newton-Raphson can also be used in many cases.

The likelihood in generalized linear model theory is a product of densities from the expo-

nential family of distributions. This family is an important class in statistics and includes many

useful densities, such as the normal, the Poisson, the binomial and the gamma. The general

form of a density in the exponential family is the following:

P (y; �; �) = expf(�y� b(�))=�+ c(y; �)g; (39)

where � is known as the \natural parameter" and � is the dispersion parameter.8

Example (Bernoulli density)

The Bernoulli density with mean � has the following form:

P (y; �) = �
y(1� �)1�y

= expfln(
�

1� �

)y + ln(1� �)g

= expf�y � ln(1 + e
�)g; (40)

where � = ln(�=1� �) is the natural parameter of the Bernoulli density. This parameter has

the interpretation as the log odds of \success" in a random Bernoulli experiment.

In a generalized linear model, the parameter � is modeled as a linear function of the input

x:

� = �
T
x;

where � is a parameter vector. Substituting this expression into Equation 39 and taking the

product of N such densities yields the following log likelihood for a data set X = f(x(t); y(t))gN1 :

l(�;X) =
X
t

f(�T
x
(t)
y
(t) � b(�T

x
(t)))=�+ c(y(t); �)g:

The observations y
(t) are assumed to be sampled independently from densities P (y; �(t); �),

where �(t) = �
T
x
(t).

We now compute the gradient of the log likelihood:

@l

@�
=
X
t

(y(t) � b
0(�T

x
(t)))x(t)=� (41)

and the Hessian of the log likelihood:

@l

@�@�
T
= �

X
t

b
00(�T

x
(t))x(t)x(t)T=�: (42)

These quantities could be substituted directly into Equation 38, however there is additional

mathematical structure that can be exploited. First note the following identity, which is true

of any log likelihood:

E[
@l

@�
] = 0:

8We restrict ourselves to scalar-valued random variables to simplify the presentation, and describe the

(straightforward) extension to vector-valued random variables at the end of the section.

25

(This fact can be proved by di�erentiating both sides of the identity
R
P (y;�; �)dy = 1 with

respect to �). Because this identity is true for any set of observed data, including all subsets

of X , we have the following:

E[y(t)] = b
0(�T

x
(t));

for all t. This equation implies that the mean of y(t), which we denote as �(t), is a function of

�
(t). We therefore include in the generalized linear model the link function, which models � as

a function of �:

�
(t) = f(�(t)):

Example (Bernoulli density)

Equation 40 shows that b(�) = ln(1 + e
�) for the Bernoulli density. Thus

� = b
0(�) =

e
�

1 + e
�
;

which is the logistic function. Inverting the logistic function yields � = ln(�=1 � �); thus, �

equals �, as it must.

The link function f(�) = b
0(�) is known in generalized linear model theory as the canonical

link. By parameterizing the exponential family density in terms of � (cf. Equation 39), we

have forced the choice of the canonical link. It is also possible to use other links, in which

case � no longer has the interpretation as the natural parameter of the density. There are

statistical reasons, however, to prefer the canonical link (McCullagh & Nelder, 1983). Moreover,

by choosing the canonical link, the Hessian of the likelihood turns out to be constant (cf.

Equation 42), and the Fisher scoring method therefore reduces to Newton-Raphson.9

To continue the development, we need an additional fact about log likelihoods. By di�er-

entiating the identity
R
P (y;�)dy = 1 twice with respect to �, the following identity can be

established:

E[
@l

@�@�
T
] = �E[

@l

@�
][
@l

@�
]T :

This identity can be used to obtain a relationship between the variance of � and the function

b(�) in the exponential family density. Beginning with Equation 42, we have:

�E[
X
t

b
00(�T

x
(t))xtx(t)T=�] = E[

@l

@�@�
T
]

= �E[
@l

@�
][
@l

@�
]T

= �
1

�
2
E[
X
t

(y(t)� b
0(�T

x
(t)))x(t)

X
s

(y(s) � b
0(�T

x
(s)))x(s)T]

= �
1

�
2
E[
X
t

(y(t)� b
0(�T

x
(t)))2x(t)x(t)T]

= �
1

�
2

X
t

Var[y(t)]x(t)x(t)T ;

9Whether or not the canonical link is used, the results presented in the remainder of this section are correct

for the Fisher scoring method. If noncanonical links are used, then Newton-Raphson will include additional

terms (terms that vanish under the expectation operator).

26

where we have used the independence assumption in the fourth step. Comparing Equation 42

with the last equation, we obtain the following relationship:

Var[y(t)] = �b
00(�T

x
(t)):

Moreover, because f(�) = b
0(�), we have

Var[y(t)] = �f
0(�T

x
(t)): (43)

We now assemble the various pieces. First note that Equation 43 can be utilized to express

the Hessian (Equation 42) in the following form:

@l

@�@�
T
= �

X
t

x
(t)
x
(t)T

w
(t)
;

where the weight w(t) is de�ned as follows:

w
(t) =

f
0(�(t))2

Var[y(t)]
:

In matrix notation we have:
@l

@�@�
T
= �XT

WX; (44)

where X is the matrix whose rows are the input vectors x(t) and W is a diagonal matrix whose

diagonal elements are w(t). Note also that the Hessian is a constant, thus the expected value

of the Hessian is also XT
WX .

Similarly, Equation 43 can be used to remove the dependence of the gradient (Equation 41)

on �:
@l

@�
=
X
t

(y(t) � �
(t))x(t)w(t)

=f
0(�(t)):

This equation can be written in matrix notation as follows:

@l

@�
= X

T
We; (45)

where e is the vector whose components are:

e
(t) = (y(t) � �

(t))=f 0(�(t)):

Finally, substitute Equation 44 and Equation 45 into Equation 38 to obtain:

�r+1 = �r + (XT
WX)�1XT

We (46)

= (XT
WX)�1XT

Wz; (47)

where z = X�r + e.10 These equations are the normal equations for a weighted least squares

problem with observations f(x(t); z(t))gN1 and observation weights w(t). The weights change

from iteration to iteration, because they are a function of the parameters �r. The resulting

iterative algorithm is known as iteratively reweighted least squares (IRLS).

10As McCullagh and Nelder (1983) note, z has the interpretation as the linearization of the link function

around the current value of the mean.

27

It is easy to generalize the derivation to allow additional �xed observation weights to be

associated with the data pairs. Such weights simply multiply the iteratively varying weights

w
(t), leading to an iteratively reweighted weighted least squares algorithm. Such a generalization

is in fact necessary in our application of IRLS: The EM algorithm de�nes observation weights

in the outer loop that IRLS must treat as �xed during the inner loop.

Finally, it is also straightforward to generalize the derivation in this section to the case of

vector outputs. In the case of vector outputs, each row of the weight matrix (e.g., U for the

expert networks) is a separate parameter vector corresponding to the vector � of this section.

These row vectors are updated independently and in parallel.

Appendix B { Multinomial logit models

The multinomial logit model is a special case of the generalized linear model in which the

probabilistic component is the multinomial density or the Poisson density. It is of particular

interest to us because the gating networks in the HME architecture are multinomial logit models.

Consider a multiway classi�cation problem on n variables y1; y2; : : : ; yn. A natural proba-

bility model for multiway classi�cation is the multinomial density:

P (y1; y2; : : : ; yn) =
m!

(y1!)(y2!) : : :(yn!)
p

y1

1 p

y2

2 : : : p
yn
n
;

where the pi are the multinomial probabilities associated with the di�erent classes and m =P
n

i=1 yi is generally taken to equal one for classi�cation problems. The multinomial density is

an member of the exponential family and can be written in the following form:

P (y1; y2; : : : ; yn) = expfln
m!

(y1!)(y2!) : : :(yn!)
+

nX
i=1

yi ln pig: (48)

Taking the logarithm of both sides, and dropping the terms that do not depend on the pa-

rameters pi, we see that the log likelihood for the multinomial logit model is the cross-entropy

between the observations yi and the parameters pi.

Implicit in Equation 48 is the constraint that the pi sum to one. This constraint can be

made explicit by de�ning pn as follows: pn = 1�
P

n�1
i

pi, and rewriting Equation 48:

P (y1; y2; : : : ; yn) = expfln
m!

(y1!)(y2!) : : :(yn!)
+

n�1X
i=1

yi ln
pi

pn

+ n ln png: (49)

The natural parameters in an exponential family density are those quantities that appear lin-

early in the yi (cf. Equation 39), thus we de�ne:

�i = ln
pi

pn

: (50)

Using pn = 1�
P

n�1
i

pi implies:

pn =
1

1 +
P

n�1
i=1 e

�i

and therefore Equation 50 can be inverted to yield:

pi =
e
�i

1 +
P

n�1
j=1 e

�j

=
e
�iP

n

j=1 e
�j

(51)

28

using �n = 0 from Equation 50. This latter expression is the \softmax" function (Bridle, 1989).

Finally, note that Equation 49 implies that b(�) must be de�ned as follows (cf. Equation 39):

b(�) = n ln(
nX

i=1

e
�i);

which implies:

�i =
@b(�)

@�i

=
ne

�iP
n

j=1 e
�j

= npi: (52)

The �tting of a multinomial logit model proceeds by IRLS as described in Appendix A,

using Equation 51 and Equation 52 for the link function and the mean, respectively.

29

