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Abstract

Global temperature variations between 1861 and 1984 are forecast using regularization network, mul-
tilayer perceptrons, linear autoregression, and a local model known as the simplex projection method.
The simplex projection method is applied to characterize complexities in the time series in terms of the
dependence of prediction accuracy on embedding dimension and on prediction-time interval. Nonlinear
forecasts from the library patterns between 1861 and 1909 reveal that prediction accuracies are optimal
at the embedding dimension of 4 and deteriorate with prediction-time interval. Regularization network,
backpropagation, and linear autoregression are applied to make short term predictions of the meteorolog-
ical time series from 1910 to 1984. The regularization network, optimized by stochastic gradient descent
associated with colored noise, gives the best forecasts. For all the models, prediction errors noticeably
increase after 1965. These results are consistent with the hypothesis that the climate dynamics is charac-
terized by low-dimensional chaos and that the it may have changed at some point after 1965, which is also
consistent with the recent idea of climate change. However, care must be taken of such an interpretation
in that a time series of colored noise with few data points that has zero mean and many degrees of freedom
can also show a similar behavior.
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1 Introduction

In this paper we will apply some linear and nonlinear
regression techniques to the analysis of the time series of
global temperature variations between 1861 and 1984.
We use a data set published by Jones et al. (1986),
who synthesized global mean surface air temperature
differences between successive years by correcting non-
climatic factors in near-surface temperature data over
the land and the oceans of both hemispheres. As pointed
out by Jones et al., this time series has the interesting
feature of having a long timescale warming trend that is
remarkable in the 1980s, and that is in the right direction
and of the correct magnitude in terms of recent ideas of
global warming (see figure 1). Tt has been recently con-
jectured that it exists a global climate dynamical system,
that is chaotic and whose attractor has a low dimension-
ality (4-7). If this is the case it should be possible to
model the time series of global temperature variations
with a model of the type

e(t+1)= flx(t),2(t—1),...,z(t—n)+& (1)

where f 1s some unknown function, the time ¢ is ex-
pressed in years, n is a small number (of the order of
the dimension of the chaotic attractor) called embedding
dimension, and &; are random independent variables rep-
resenting uncertainty in the measurements. In this paper
we want to investigate how well a model of type (1) can
fit and predict the data, and will use different techniques
to reconstruct the unknown function f, representing the
dynamics underlying the data.

The paper is organized as follows. In section 2 we
introduce the general problem of time series prediction,
and discuss the particular case of the global temperature
time series, pointing out where the major difficulties are.
In section 3 we use a technique by Sugihara and May
(1990) to estimate the minimal embedding dimension
for the global temperature time series (the number n in
eq. 1) and to test the hypothesis of chaotic dynamics. In
section 4 we present some experimental results obtained
applying regularization networks, linear autoregression
and multilayer perceptrons to the prediction of this time
series. In section 5 we discuss the results and describe
some future work. In the appendices we describe the dif-
ferent forecasting techniques that we used for our anal-
ysis.

2 Basic time series analysis

Making predictions is one of the basic subjects in science.
Building a model for forecasting a time series is one of
the tools that we can use to analyize the mechanism that
generated the data. Given the time series {z(t)}L, of
observations of the variable x at differents points in time
there are two extreme situations that we can happen to
encounter in its analysis:

1. the value of the variable x at time ¢ + 7 is uniquely
determined by the values of the variable at certain
times in the past. For example a relation of the
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Figure 1: The global temperature variation as reported

by Jones et al. (1986).

e+ 71)= fle@t), 2zt —7),...,2(t —n1))

could hold for some integer n and some function
f. In this case the system is fully deterministic,
and, in principle, its behaviour is predictable. One
could derive the mapping f from first principles,
provided that all the interactions between elements
in the system are clearly known, or reconstruct its
shape from the data {z(¢)}5¥;.

2. the values of #(t) are independent random vari-
ables, so that the past values of # do not influence
at all its future values. There is no deterministic
mechanism underlying the data, and prediction is
not possible at all.

In most practical and interesting cases one has to deal
with time series with properties that lie in between these
two extremes. For example, one could have a series of ob-
servations of a variable whose time evolution is governed
by a deterministic set of equations, but the measurement
are affected by noise. In this case a more appropriate
model for the time series would be:

e+ 71)=fle@t), 2t —7),...,2t—nT))+ & (2)

where {£;} is a set of random variables. If one could
exactly model the function f the state of the system at
time ¢ + 7 could be predicted within an accuracy that
depends only the variance of the random variables {&;}.
A system of this type is therefore intrinsically determin-
istic but some stochasticity enters at the measurement
level.

In other cases, as for the time series generated by the
noise in a semiconductor device, the system could be
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intrinsically stochastic. However, since the observation
are correlated in time, it might be still predictable to
some extent.

It is usually very difficult to discover, from a time se-
ries, what kind of mechanism generated the data, but
building models of the type (1) is often useful to under-
stand the relevant variables of the system and its de-
gree of randomness. Until not many years ago most of
the models used to analyze time series were linear, and
therefore limited to succeed on the class of linear prob-
lems. However, recent progress in theoretical and com-
putational aspects in nonlinear problems has enabled us
to characterize the degrees of randomness in nonlinear
systems and to forecast nonlinear dynamical behavior. A
number of authors, among which Farmer and Sidorowich
(1987), Casdagli (1989), Sugihara and May (1990), have
applied and developed novel nonlinear regression tech-
niques to predict chaotic time series, and shown that
short-term predictability can often be achieved with a
good degree of accuracy. They have also demonstrated
that low-dimensional chaos can be distinguished from
white noise according to nonlinear forecasts of the dy-
namical behavior.

One could find the minimal embedding dimension and
valid prediction-time interval through applying a vari-
ety of network structures by trial and error of cross-
validation techniques. Such procedure, however, is likely
to be computationally expensive, and one of the ways to
circumvent such problem is to resort to local approxima-
tion such as the algorithm of Sugihara and May (1990).
In local approximation, predictions are made from only
nearby states in the past, so that it consumes less com-
putational time. The local approximation, however, has
shortcomings that the mapping is discontinuous, which
results in less sufficient prediction accuracy than global
approximation such as neural networks. Thus the asso-
ciation of the local approximation with neural networks
is an effective way for building a model to make predic-
tions of complex time series. One could find the min-
imal embedding dimension and the valid prediction in-
terval using the local approximation without consuming
a lot of computational time and forecast the time series
with good prediction accuracy using neural networks the
structures of which are determined according to the fore-
casts by the local approximation.

2.1 Global temperature time series and the

climate attractor

It has been controversial whether the climate is low-
dimensional chaos or not (Nicolis and Nicolis, 1984;
Grassberger, 1984; FKEssex, Lookman and Nerenberg,
1987; Lorenz, 1991). Nicolis and Nicolis (1984) first
claimed the existence of a low-dimensional climate at-
tractor in terms of the correlation dimension of the
time series synthesized by interpolations from an isotope
record of deep-sea cores. Grassberger (1984), however,
argued that their estimate may reflect not the actual
climatic dynamics but the artifact due to the interpola-
tion. Meanwhile, Essex et al. (1987) published a calcu-
lation on the correlation dimension for non-filtered time
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series of daily geopotential observations. They agreed
with the existence of such climate attractor. Recently
Lorenz (1991) expressed doubts on the interpretations
of the previous calculations. He claimed hat a low-
dimensional attractor is unlikely to exist for the global
climate, although the climatic subsystems could be low-
dimensional chaos.

3 Is there a global climatic attractor?

In this section we first discuss the plausibility of the
hypothesis that there is low-dimensional chaotical sys-
tem underlying the global temperature time series, and
then present some results about its short-term predic-
tions with a number of methods. We use a data set
published by Jones et al. (1986), who synthesized global
mean surface air temperature differences between suc-
cessive years by correcting non-climatic factors in near-
surface temperature data over the land and the oceans of
both hemispheres. Although some questions such as the
influence of urbanization effect are raised about the sig-
nificance of the data (Wu, Newell and Hsuing, 1990) we
still think it is of interest to see what kind of information
can be extracted from this data set.

3.1 Testing for chaos

We have used the technique proposed by Sugihara and
May (1990) to understand the nature of the time se-
ries we decided to analyze. The technique consists in
studying the behaviour of the correlation coefficient be-
tween the prediction and the target as a function of how
many steps in the future we are trying to predict, and
of the embedding dimension. Sugihara and May argued
that looking at the rate of decrease to zero of the cor-
relation coefficient it is possible to distinguish chaotic
systems from non-chaotic ones. In our experiments, fol-
lowing Sugihara and May, predictions have been done
according to the simplex projection technique described
in appendix (A.4).

Figures (2) and (3) show the Sugihara-May technique
applied to a number of synthetic time series. Figure (2)
shows a plot of the correlation coefficient as a function of
embedding dimension for predictions of: a) white noise
(open triangles and dashed line); b) f=!“-noise (solid
triangles and dotted line); ¢) Hénon mapping superim-
posed on white noise (solid squares and short-dashed
line), d) sine wave superimposed on white noise (open
circles and long-dashed line). The white random noise
has been synthesized using equation (8) in appendix (B)
with o« = 0. In Figure (2), predictions have been made
on a test set of 150 vectors from a data set of 150 exam-
ples.

Figure (3) shows a plot of the correlation coefficient
as a function of prediction-time step for the time series
shown in figure (2). In figure (3), predictions have been
done assuming an embedding dimension n = 3, in similar
way to Figure (2).

The results in figure (2) and figure (3) reveal charac-
teristics of complexities in each time series. The Hénon
mapping superimposed on white noise has a peak em-
bedding dimension and its prediction accuracy deterio-
rates quickly with prediction-time step. This 1s typical of



low-dimensional chaos. The sine wave superimposed on
white noise has long-term predictability independently of
embedding dimension. White noise is unpredictable at
all. Tt should be noticed that the f~!%-noise has short-
term predictability independently of embedding dimen-
sion. According to some recent work (Miyano, 1994;
Miyano et al. 1992), such characteristics are also found
for an actual colored noise observed for a semiconductor
device. The flat relation between the correlation coeffi-
cient and embedding dimension is an important indica-
tor in distinguishing low-dimensional chaos from colored
noise.

We applied the same techniques described above to the
time series observed by Jones et al. (1986). The time
series has been obtained by hand-scanning the original
figures on the paper. Therefore, the present time series
includes some read error. We use the first 45 input vec-
tors, i.e., the data from 1861 to 1915, as training data,
being motivated by the idea that a climate change may
have occurred around the mid 20th-century by factors
such as increasing energy consumption and environmen-
tal pollution. The correlation coefficient as a function of
the embedding dimension for predictions of the meteo-
rological time series is presented in Figure (4). Forecasts
up to 1944 and up to 1984 are shown by solid circles
and solid line, and by open circles and dashed line, re-
spectively. Notice that the plot has a peak at n = 4,
suggesting that this time series has been generated by
a dynamical system with a low dimensional attractor of
dimension 4.

A plot the correlation coefficient versus the
prediction-time step is shown in Figure (5), where the
embedding dimension has been set to 4, according to
the results of figure (4). Forecasts from 1910 to 1944
and from 1910 to 1984 are indicated by solid circles and
solid line, and by open circles and dashed line, respec-
tively. The prediction accuracy deteriorates rapidly with
increasing time step in both cases. This indicates that
the time series has only short-term predictability. The
plots shown in Figure (4) and Figure (5) appear to be
typical of a low-dimensional chaotic time series. Such di-
agnosis, however, is dangerous, since colored noise with
many degrees of freedom can also provide a similar trend
in prediction, when handling relatively small number of
data points.

Figure (6) and Figure (7) show a plot of the corre-
lation coefficient versus the embedding dimension and
prediction-time step respectively for f~!® (Miyano,
1994; Miyano et al. 1992). The fractal dimension
was estimated using the algorithm developed by Higuchi
(1988). The power spectrum of the random noise can be
described as f~'® with respect to frequency f, accord-
ing to the relation between the fractal dimension D and
the power law index o of f=%: D = (5 — «)/2. In both
Figure (6) and Figure (7), solid circles and solid line cor-
respond to training and testing set size of 50, while open
circles and dashed line correspond to training and test
size of 500. Notice the sensitivity to the number of data.
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4 Forecasting the global temperature
time series

We tested three different approximation techniques to
make predictions one step ahead, with an embedding
dimension equal to 4:

1. Gaussian Hyper Basis Functions with a linear term.
A network of 5 Gaussian units has been used, to
which a linear term has been added. The linear
term has been computed first, and then the residu-
als have been approximated with the gaussian net-
work. Minimization of the mean square error was
run over the coefficients, the centers and the vari-
ances of the gaussians, for a total of 30 free param-
eters.

2. Multilayer Perceptron with one hidden layer. A
standard Multilayer Perceptron network was used
for the prediction, with 4 hidden sigmoidal units,
for a total of 24 parameters.

3. linear regression. A linear regression model was fit-
ted to the data, using the statistical package Splus
(Becker, Chambers and Wilks, 1988).

We use the first 45 data points, i.e., the time series
from 1861 to 1909, as training set, and tested the re-
sulting approximation on three different test sets: 1910-
1944, 1910-1964, 1910-1984. For each experiment we
measured the root mean square error ¢:

where the sum runs over the elements of the set being
tested, x, are test values and %, are the values predicted
by the model. We also measured for each test set the
variance

k

Z(ma— <z >)?

a=1

o=

where < & > is the average value of the test set. Notice
that the quantity £ is particularly significant, because
if it has value zero then predictions are perfect, while if
it 1s equal to 1 then predictions are no better that the
average of the targets.

The experimental results for ¢ and ¢ have been reported
in table (1), while the forecasts are shown in figures (8),
(9) and (10) respectively. In the upper part of the figures
we displayed the observed time series, represented by a
dashed line, and the trained model, represented by the
solid line. Solid circles have been used for the test set
and white circles for the training set. In the lower part of
the figures the residuals of the approximation have been
shown.

It is clear that the Hyper Basis Function model makes
best forecasts and that the linear regression makes the
worst. This suggest that the dynamical behavior of the
time series is nonlinear. It should be noticed, however,
that prediction error increases remarkably after 1965 for
all the models, although it is more pronounced in the



Linear | HBF | MLP
e (training) 0.10 0.09 | 0.90
e (1910-1944) 0.14 0.10 | 0.12
e (1910-1964) 0.14 0.10 | 0.13
e (1910-1984) 0.16 0.12 | 0.15
e/o (training) 0.84 0.83 | 0.81
e/o (1910-1944) | 1.13 0.82 | 1.01
e/o (1910-1964) | 1.25 0.88 | 1.11
e/o (1910-1984) | 1.31 0.98 | 1.18

Table 1: Root-mean-squared prediction error (e) and
normalized Root-mean-squared prediction error (e/o)
for the 3 technique we tested. See text for explanation

Multilayer Perceptron and linear regression. This is not
inconsistent with the idea of global warming suggested
by Jones et al. In fact, assume that a model is success-
ful in learning the dynamics underlying the meteorologi-
cal time series that correspond to the period 1861-1909.
Then, one possible interpretation for the increase in the
prediction error after 1965 is that a change in the climate
dynamics took place at some point after 1965.

Such straightforward interpretation could be, how-
ever, a misdiagnosis, since the trend in prediction error
could be due to failure in generalizing the underlying dy-
namics. In fact, according to our recent work (Miyano,
1994), a similar trend in prediction error can also be
present in forecasting colored noise with relatively few
data points. Figure (11) shows the f~!-8-noise observed
for a semiconductor device (Miyano et al. 1992). In Fig-
ure (12), we present results of learning and predictions
of the random noise by regularization network with 3
input nodes and 5 hidden nodes without linear terms.
Figure (13) shows residuals obtained by subtracting the
corresponding target from each prediction. We use first
250 points in the training set. In this case, the opti-
mal embedding dimension is assumed to be 3 accord-
ing to the results shown in Figure (7). The predictions
agree well with the targets except for the portion from
time = 300 to 350 during which the network forecasts
lower values than observed. From Figures (12) and (13),
one would make a misdiagnose that the time series was
low-dimensional chaos and that the discrepancy between
time = 300 and 350 indicated some change in the dy-
namics. The discrepancy is, however, clearly due to fail-
ure in generalization.

5 Discussion and open problems

The present considerations on the meteorological time
series leads to two possible interpretations of the global
climate: one is that a low-dimensional climate attrac-
tor may exist and that the climate dynamics may have
altered at some point after 1965; the other i1s that the
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temperature variations may be colored noise with many
degrees of freedom. The latter interpretation would lead
to the following forecast of the future trend in the cli-
mate: the global temperature would begin to decrease at
some point in the future, since colored noise has a zero
mean in a long time period. Within the framework of
the present study we can dismiss neither of the interpre-
tations. The present work is still in a preliminary stage.
In a future paper, we plan to forecast non-hand-scanned
meteorological time series with more data points and to
clarify whether the climate is low-dimensional chaos or
not.
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A Regression techniques

In this section we describe the different regression tech-
niques that we have used to forecast and analyze the
global temperature time series. The first three are based
on the assumption that the data can be well approxi-
mated by a parametric function of the form

n

Z coH(x;Wq)

a=1

f(x) =

where the ¢, and the w, are considered free parameters
and are found by a least squares technique. Models of
this type are usually called “neural networks”, because
they can be represented by a network with one layer
of hidden units. The last technique is a local technique,
similar in spirit to nearest neighbor models and to kernel
regression.

A.1 Linear model

The simplest model of the form (1) that we can build is
one in which the function f is linear, and therefore the
relation between the past values of x and the future ones
is of the type:

x(t) = a0+a1x(t—1)—|—azl‘(t—2)+' : '+anx(t_n)+€t (3)

This is the so called AR (autoregressive) model, and is
one of the many linear models that have been developed
in time series analysis. There is clearly a huge litera-
ture about linear models (see for example Myers, 1986;
Draper and Smith, 1981; Searle, 1971) and we will not
spend more time on this topic in this paper. In our ex-
periments the coefficients of the model have been com-
puted according to standard least square routines,; that
correspond to assuming that the random variables & in
eq. (3) are independent and have Gaussian distribution
with zero mean. The statistical package Splus (Becker,
Chambers and Wilks, 1988) has been used to perform

this calculation.



A.2 Gaussian Hyper Basis Functions with a
linear term

One of the parametrizations we used for the prediction
task had the following form:

n
flx) = ane_w"llx_t"‘HQ +a-x+d. (4)
a=1

The coefficients ¢4, a, d, the centers t,, the widths w, of
the gaussians were considered as free parameters. Tech-
niques of this type are quite common in the neural net-
work literature (Moody and Darken, 1989; Poggio and
Girosi, 1990), although the linear term has not beed
used very often. When the widths of gaussians have
all the same value the technique is a particular case of
i1s a particular case of a general class of approximation
techniques, called regularization networks, that share the
property that they can be justified in the framework of
regularization theory (Girosi, Jones and Poggio, 1993)
and can be represented by a network with one layer of
hidden units.

Usually the parameters of the network are found by
minimizing the mean square error by some numerical
minimization technique. In our case, since the number
of data points available is very small, we do not expect to
be able to model surfaces much more complicated than
an hyperplane. Therefore, we first fit an hyperplane to
the data (the term a - x + d), and then estimate the
parameters of the rest of the expansion by fitting the
residuals of the hyperplane approximation, choosing a
small number n of basis functions. The gaussian basis
functions are therefore to be considered as a “correc-
tive term” to a linear approximation technique. The
minimization technique we used for estimating the pa-
rameters of the gaussian basis functions is a stochastic
gradient descent algorithm, described in appendix B.

A.3 Multilayer perceptrons

Multilayer perceptrons (MLP) are an approximation
technique that is based, in i1ts most common form, on
the following parametric representation:

n
flx) = Zcm(x -wi + 6;)

i=1
where ¢ is a sigmoidal function, that in our case we
set to H—%’ that 1s one the most common choices. In
our computations the parameters of the network have
been estimated using backpropagation and the general-
ized delta rule (Rumelhart, Hinton and Williams, 1986;
Hecht-Nielsen, 1989), that is a form of stochastic gradi-
ent descent.

A.4 Simplex projection method

The simplex projection method, that has been used by
Sugihara and May (1990) to tell chaotic time series from
non chaotic ones, is a local approximation method, very
close to the k-nearest neighbour technique and kernel
regression. Suppose that a data set of N data points in
d dimensions has been given, consisting of input-output

sampling an unknown function f in presence of noise.
When the value of f at a point x that does not belong
to the data set has to be computed, first its closest d + 1
points x;,,...X;,,, in the data set are found. Then the
value of the function at x is estimated by a weighted
average of the values of the function at the data points
Xiy, - -Xigy,, that is the values y;,, .. .y;,,,. Points that
are more far from x receive a smaller weight, according to
an exponential decay. In formulas, the estimated value
of f at x 1s

d+1 —odea
Za:l Yin € 7

100 =i =i
where we have defined
do = |Ix — x4, ||

and ¢ 1s a parameter that define the locality of the tech-
nique, and can be set with cross-validation techniques.
This technique can be considered as an approximation
of kernel regression with e~ as a kernel. In fact in this
case kernel regression would have the form:

Zjlv—l yie_o-llx_xl”
Yoiny e Ix-xd

The method we use in this paper is equivalent to take
only the closest d + 1 points in the expansion (5).

f(x)

()

B Stochastic gradient descent

Let H(&) be a function that has to be minimized with
respect to the set of parameters £. The standard gradi-
ent descent algorithm is an iterative algorithm in which
the set of parameters & evolves toward the minimum ac-
cording to the following law:

¢ JH()
at Y o (6)

where t is a time parameter in the iteration loop of the
optimization process and w > 0 is called learning rate.
One of the many inconveniences of this algorithm is that,
if converges, it converges to a local minimum. Since in
the optimization problems arising from the training of a
neural network 1t 1s known that multiple local minima
are present, it 1s important to have a technique that is
able to escape at least some of the local minima and get
close to the global minimum. A simple way to achieve
this consists in adding a stochastic term in eq. (6), that
becomes:

€ _
dt

2 @

where 7(t) is random noise. As an effect of the addition
of the noise term 7 the set of parameters £ will not always
follow the direction of the gradient, and will sometime
go uphill instead of downhill, having a chance to escape
some local minima. In our case the random noise 7(t)

pairs {(x;, )}, that have been obtained by randomly 5 Was synthesized by the following equation:



n(t) = Z (Qch)_%[Acos(Qﬂ'ckt) + Bsin(2wckt)] (8)

where ¢ and X are set to 0.01 and 20000, respectively,
and A and B random numbers lying between 0 and 1.
The power spectrum of n(t) is given as f~% with respect
to the frequency f. In order to verify the validity of
the algorithm, we adapt it to optimizing the regulariza-
tion network to predict a chaotic time series synthesized
by Hénon mapping (embedding dimension is set to 2.
White noise (i.e., « = 0), f~!-noise (pink noise), and
f~2-noise are used as perturbation. It is found that f~!-
noise works as well as white noise, while f~2-noise does
not. The value of the normalized root mean square er-
ror £/o for a test set of 1000 points and a training set of
1000 examples was 0.097 for a network with 5 basis func-
tions and no linear term, in the case in which f~!-noise
on 1000 examples. This good result confirmed that the
stochastic gradient descent algorithm worked correctly
and achieved some good local minimum.
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Figure 2: Plot of the correlation coefficient as a function
of embedding dimension for various synthetic time series:
white noise (open triangles and dashed line); f~1-%-noise
(solid triangles and dotted line); Hénon mapping super-
imposed on white noise (solid squares and short-dashed
line); and sine wave superimposed on white noise (open
circles and long-dashed line). Predictions on a test set
of 150 points were made from a training set of 150 ex-

amples.
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Figure 3: Plot of the correlation coefficient as a function
of prediction-time steps for various synthetic time series;
white noise (open triangles and dashed line); f~1-%-noise
(solid triangles and dotted line); Hénon mapping super-
imposed on white noise (solid squares and short-dashed
line); and sine wave superimposed on white noise (open
circles and long-dashed line). Predictions on a test set
of 150 points were made from a training set of 150 ex-
amples. The embedding dimension is set to 3.
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Figure 4: Plot of the correlation coefficient as a function
of embedding dimension for the meteorological time se-
ries. Predictions are made from the first 45 data points,
i.e., the data from 1861 to 1915. Forecasts up to 1944
and up to 1984 are shown by solid circles and solid line,
and by open circles and dashed line, respectively.
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Figure 5: Plot of the correlation coefficient as a function
of prediction-time step for the meteorological time series.
Forecasts are made from the first 45 data points, 1.e., the
data from 1861 to 1909. Forecasts from 1910 to 1944 and
from 1910 to 1984 are shown by solid circles and solid
line, and by open circles and dashed line, respectively.
The embedding dimension has been set to 4, according
to the results of fig. (4).
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Figure 6: Plot of the correlation coefficient as a function
of embedding dimension for colored noise with fractal
dimension of 1.603. The random noise i1s not synthetic
but a leakage-current fluctuations observed for a semi-
conductor device (Miyano et al., 1992). Solid circles and
solid line: Predictions on a test set of 50 points are made
from a training set of 50 examples. Open cicles dashed
line: Predictions on a test set of 500 points and a training
set of b00 examples.
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Figure 7: Plot of the correlation coefficient as a function
of prediction-time step for the random noise observed in
a semiconductor device. The embedding dimension is
set to 3. Solid circles and solid line: Predictions on a
test set of b0 points are made from a training set of 50
examples. Open cicles dashed line: Predictions on a test
set of b00 points and a training set of 500 examples.
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Figure 8: Forecasts of the meteorological time series by
regularization network: forecasts(upper part); and resid-
uals obtained by subtracting the corresponding target
from each prediction (lower part). The network has been
trained on the first 45 data points, 1.e., the time series
from 1861 to 1909. Solid circles and solid line indicate
predictions on the input vectors that the network has
not seen. Open circles and solid line indicate results of
training. The observed time series 1s shown by dashed
lines.
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Figure 9: Forecasts of the meteorological time series
by backpropagation network: forecasts(upper part); and
residuals obtained by subtracting the corresponding tar-
get from each prediction (lower part). The network has
been trained on the first 45 data points, i.e., the time
series from 1861 to 1909. Solid circles and solid line in-
dicate predictions on the input vectors that the network
has not seen. Open circles and solid line indicate results

of training. The observed time series is shown by dashed
lines.
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Figure 10: Forecasts of the meteorological time series by
linear autoregression: forecasts(upper part); and residu-
als (lower part). The model has been trained on the first
45 data points, i.e., the time series from 1861 to 1909.
Solid circles and solid line indicate predictions on the in-
put vectors that the network has not seen. Open circles
and solid line indicate results of fitting. The observed
time series 1s shown by dashed lines.
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Figure 11: The f~'®-noise observed for a semiconductor
device (Miyano, 1994; Miyano et al., 1992).
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Figure 12: Results of training (from 0 to 249)and pre-
dictions (from 250 to 500) of the f~!-%-noise using Gaus-
sian Hyper Basis Functions without linear terms. The
embedding dimension is set to 3. The network is trained
for first 250 library patterns, i.e., the time series from
time = 0 to 250. The predictions agree well with the
targets except for the portion from ¢time = 300 to 350
during which the network forecasts lower values than ob-
served.
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Figure 13: Residuals of the approximation of f~!®-noise
by a Gaussian Hyper Basis Functions.



