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Abstract

In arecent seninal paper, G bson and Wxler ([1], GW take i nportant steps to fornalizi ngthe notion of

l anguage l earning in a (finite) space whose grammars are characterized by a fini te nunber of parameters.
(ne of their ains is to characterize the conplexity of learning in such spaces. For exanple, they denon-
strate that evenin finite spaces, convergence nay be a problemsince it is possible under sone single-st
gradient ascent methods to remain at a local maxi mum Fromthe standpoint of learning theory, how
ever, GWleave open several questions that can be addressed by a nore precise fornalizationin terns of
Mirkov structures (a possible fornalization suggested but left unpursued in a footnote of GW. In this
paper we explicitly formalize learning in a finite paraneter space as a Mairkov structure whose states ar
parameter settings. Several important results that followdirectly fromthis characterization, 1nclude
corrected version of GWs central convergence proof; (2) anexplicit formulafor calculating the transit
probabilities between hypotheses and the existence of “problemstates” in addition tolocal naxinn; (3
an explicit calculation of the tine needed to converge, in terns of nunber of (positive) exanples; (:
the convergence and conparison of several variants of the GW earning procedure, e.g., randomwal k; (5)
bat ch- and PAG style learning bounds for the nodel.
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1 Introduction: The Triggering Model exanpl e sentence; at time ¢ (exanples drawn
as a Mrkov structure from the language of a single target grammar,
L(Gy)), froma uniformdistribution on the lan-
Recently, G bson and Wxler ([1], GW have begun to uage (we shall be able torelax this distributional
formalize the notion of language learning in a (finitedonstraint later on);

space whose granmmars (and languages) are character- o .
ized by a fini te nunber of parameters or 1-di nensional® [Learnability onerror detection] Step 3. If the cur-

Bool ean- val ued arrays, nlong. Agrammrinthis space r.ent g AlIIAL parses (generates}len go to Step
issinplyaparticular n-lengtharrayof 0’s and 1’s; hente Otherwise, continue.

there are™possible grammrs (languages). One of Gb- o [Single-step gradient-ascent] Select asingle param
son and Wxler’s ains is to establish that under sone eter at random uniformly with probability 1/n,
sinple hill-clinbinglearningregines, nanely, single-steMip fromits current setting, and change it (0
gradient ascent, sone linguisticallynatural, finite, spaggpedto 1, 1to 0) iff that change allows the cur-

are unl earnable, inthe sense that positive-onlyexanpl ¢gnt sentence to be analyzed; otherwise go to Step

lead to local mazima—incorrect hypotheses fromwhich 2.

alearner can never escape. Mre broadly, they wishto ) ) )

show that learnability in such spaces is still an i@;eq«ourse., this algorithmnever h?LlFS 1n the usual

esting problem in that there is a substantive le%88a GWaimto sh‘(‘).wunder Wh&}t ”COIldltl.OIlS this al-

theory concerning feasibility, convergence tine, &fd4 converges “in the llmt —that 1s, after sone

like, that mist be addressed beyond traditional 1imamber, n, of steps, V.vhere nis unknown, the correct

tic theory and that mi ght even choose between ot her idleget paraneter settings w 1.1 be selected an never be

adequate linguistic theories. changed. Their central claimis stated as their Theorem

Inthis paper, we choose as a convenient starting ﬁo(iléht 7intheir manuscri'pt).

.thelr j}lggerlng Learning Algorlt.hm('ILA) to focus’fﬁ%o m 1 As long as the probability is al unys greater

investigation of parameter learning. COur central Fesu .

. . . . htanlalower bound b (b >0) that the learner will 1) en-

1s that the performance of this al gorithmis conplete . .

nodel ed by a Mirkov chain. The remai nder of the Curc_ounter alocal trigger for sone i ncorrectly-set paraneter
) P and 2) thenreset P accordingly to the target value, it

rent paper is devotedtoexploring the basic consequﬁ%ﬂcness out that the target grammr can al ways be l earned
of this fact. get g y

Let us first reviewthe GWnodel and the TLA Fol - using the Triggering Learning Algorithm
lowing Gold [2] the basic framework is that of idepti fi, .
cationin the limt. The learner (child) starts ou 't]in ’e]L]ﬁe Markov formulation
arbitrary state= sone setting of the n paraneter KRalmthe standpoint of learning theory, howver, GW
ues. 'The learner (child) receives a (countably idfgave ppen several questions that can be addressed by
sequence of positive exanple sentences drawnfromsamore precise fornalization of this nodel in terns of
target l anguage;. IAfter eachpresentation, the |l earMarkov chains (a possible fornmlization suggested but
caneither (i) stayinthe sane state; or (ii) nove td afffewnpursued in footnote 9 of GW. W can picture
hypothesis state, using the al gori thmgiven bel ow.t hé hfpothesis space, of dizas2a set of points, each
ter sone fini t e nunber of exanples the learner convercggg esponding to one particular array of paraneter set-
to the correct target language (=paramneter settinggp (languages, grammars). Call each point a hypot he-
and never changes state, thenit has correctly i dewtsfrtdite or sinply state of this space. Asis conventional,
the target 1anguage; otherwise, it does not converge.define these |l anguages over sone al phabet ¥ as a sub-

In addition, in the GWnodel the language learmeat of £ One of themis the target | anguage (grammar).
obeys two fundanental constraints: (1) the single-"Waabitrarily place the (single) target gramar at the
constraint—the learner can change only 1 paraneteenter of this space. Since by the TLAthe learner is re-
value at a tine; and (2) the greediness constraintsitfricted tonovingat nost 1 binary valueinasinglestep,
the learner is given a positive exanple it cannot ftheogheoretically possible transitions betweenstates ca
nize (accept), and if the learner changes one parabhetdmawnas (directed) lines connecting paraneter arrays
val ue and finds that it can accept the exanple, thenf(lgpotheses) that differ by at nost 1 binary digit (a 0
learner retains that new paraneter value. Finaller awel in some corresponding position in their arrays).
alsorecall GWs defini tion of a local {rigger(m nor Bed¢all that this is the so-called Hammng distance.
tional changes aside): givenvalues for all paraneter#buhy further place wei ghts on the transitions from
one, alocal trigger for value v of parangtpfes )y is state i tostate j corresponding to the nonzero b’s nen-
asentence s fromthe target granmmer Gich that s is tioned in the theoremabove; these correspond to the
grammatical iffipv) =v. GWthen state their TLAas probabilities that the learner will nove fromhypothe-

follows: sis state 7 to state j. In fact, as we shall show bel ow,
C e .given a distributionover L(G), we can further carry out
o [Initialize] Step 1. Start at some randompm%ﬁelgalcul ation of the actual 6’s thensel ves. Thus, we

the (finite) space of possible paraneter settings,

i fyi ingle hypothesized 1 th—l—g‘ﬁ . . .
ig::ﬁ ¢ iyilngej:tselnlsl% Oil ang 1 aens luzae R .gr atmne W te that the notion of “trigger” does not enter into the
& guage; statemant of the TLAor the constraints the TLA enpl oys,
e [Process input sentence] Step 2. Receive a plosliut bMe into the statenent of the theorem



can picture the TLAlearning space as a directed, THeaefore (' i1s not learnable, a contradiction. In the
beled graph V wit *verticeés Mre precisely, we cansecond case, without loss of generality, assune there are
make the follow ng renmarks about the TLAsystemGWexactly two absorbing states, the first S corresponding
descri be. to the target paraneter setting, and the stcontde§

Renark. The TLAsystemis menoryless, that is, giveﬁpondipg to sone cher set.ti.ng. By t he .deﬁnition of an
a sequence s of sentences up to tj,ms He selectionabsorb}ng state, 1inthe limt CWlll Wlth.SOHB nonzer o
of hypothesis h depends only on sentencansl not probability entéy Snd never exi t'.SThen Cis not
(directly) on previous sentences, i.e., learn@ble, a contradiction. Hence our assunption that
there 1s not exactly 1 AS must be false.
=. Assune that there exists exactly 1 AS7 in the
pi{h(s) <wmle(t), t st} =P{z(t;) <z;lz(iq1)} Mirkov chain M Then, byt he defini tion of anabsorbing
In other words, the TLAsystemis a classical %tgm_te., after sone nu.nber of steps n, no @tter what thg
. . . . anting state, Mwll end upin state ¢, corresponding
crete stochastic process, inparticular, adiscrete a@/&ovt ¢ I
process or Markov chain. W can nowuse the theory o o thetargel graimnr. . . .
Mirkov chains to describe TLAparaneter spaces[ 3]. FOINOte .that .thls approach.avm ds a c?uc1al flawin the
p p .
exanple, as 1s well known, we can convert the graphp(lzgf)f givenin GM(pp. 7-8 inmnuscript):
represent ation of an n-dinensional Markov chain M to That 1s, 1f the learner never goes through
ann x nnatrix 7, where each matrix entry (¢, j) rep- thesane state twice, thensheis boundto end
resents the transition probability fromstate ¢ to stapein the target state at some point, because
j. Asingle step of the Mairkov process is conputed via the paraneter spaceis finiteinsize. Thus the
the mmtrixmltiplication? xTI'; nsteps is giVenby T probability of avoiding the target state for-
A“l” entryinanycell (¢, j) neans that the systemwillever is equivalent to the probability of cycling
converge withprobabilityltostate j, giventhat it stafbsever through sone ordered set of states (a
instate 7. cycle).
As nentioned, not all these transitions will be pos- W can divide the paraneter space into a
sible 1n general. For exanple, by the single value hyfinite set of mininal cycles, where each m n-
pothesis, the systemcan only nove 1 Hanmng bit at  inal cycle contains no cycles as a subpart.
atime. Also, by assunption, only differences insurfacBecause the paraneter space is finite, the set
strings canforce the learner fromone hypothesis state b6 mininal cycles in the paraneter space is
another. For instance, if state ¢ corresponds to a gramlso finite. For each minimal cycle, we can
nar that generates a language that is a proper subset nowcalcul ate the probability that the learner
of another granmar hypothesis j, there can never be a rennins in that cycle forever.. . the probabil-
transition (nonzero b) fromj to i, and there must beity of staying in the [mninal pnyrcb] cycle
one fromi to j. Further, by assunption and the TLA, inthelimt (forever)is zero. The same is true
1t is clear that once we reach the target granmar therefor all of the finitel y-nmany mi ninal cycles, so
is nothing that can nove the learner fromthis state,that the probabilityof stayingin any of these
since all remnmining positive evidence will not cause thgcles inthelimt is alsozero. Thus the prob-
learner to change its hypothesis. Thus, there nust be aability of ending up at the target state in the
loop fromthe target state to itself, with sone positidenit is one.
label’) andnoexit arcs. Inthe Mirkovchainliterature,, . -
this is known as an Asorbing State (AS). Ooviouslythaln brief, GWattenpt to showthat the probability of

state that onlyleads toan ASw 1l also drive the 1%%16#6??11”11?1” atV(Zlhdltngthe t.argetlforeiier 1§ 2€ero b}és.htov? ne
to that AS. Finally, if a state corresponds to a %1 & e rac ab sone M IllmL cycl e occurs 1nlinttely

nar that generates sone sentences of the target ¢ en nakes the probability of the infinite sequence zero.

ere . . .

i's al ways a loop fromany state toitself, that has Eoother words every way in which the learner avoids
S t he
nonzero probability. (Qearly, one can conclude at on

arget has probabilityzero. Thus they concl ude that
the followmng learnability result:

proﬁgbi lity of the event
Theorem?2 Given a Mirkov chain C corresponding to Event =Learner avoids target forever

a GW TLA learner, 3 exactly 1 AS (corresponding to

. , i isely, th | ai
the target grammr/language) iffC is learnable. L5 zeto, Hore prectsely, thcy clatin

Proof. <. By assunption, Cis learnable. Nowassune Priuw;] =0

for sake of contradiction that there is not exactly.pne. ch W is a path avoiding the target and UV

AS. Then there must be either 0 ASor >1 AS. Inthgg gef of all such paths. However, as is well known, this

ﬁrst case, by .the. deﬁI.lltIOIl of an abso.rbl ng St.ate’u‘ﬁ]il%]heconputationis true1ff1t is taken over a countable

is no hypothesis inwhichthe learner will remin foreysdy of el enents. Inthe exanpl e at hand, the crucial
2GW comstruct an identical tramsi tion di agramin the de- omssion in the argunent is that the there are an un-

scri ptionof their corpiter programfor cal cul ating Local Tax- count abl e nunber of ways in whichthe learner can avoid
im. Hbvever, this diagramis not explicitly presented as a the target. This is because there are an uncountable

Mrkovstructure; it does not i ncl ude transi tion probahilities. nunber of sequences of nunbers betwen 1 and M—1.
Of course, topologically both structures mst be identical . 9 The base M—1 expansion of any real nunber in the



interval [0, 1) would yieldsuch a sequence (e.g., conSudpose SOV(setting #55010]) is the target gram
anirrational expansionsuch as the square root of @9t (language). Wth the GW3-paraneter system
Since there are an uncountable nunber of ways there are32=28 possible hypotheses, so we can draw
which the event of avoiding the target forever calrhibe as an 8- point Mirkov configuration space, as shown
realized, the fact that eachsuch way has probabi |1 tiynzlehe figure above. The shaded rings represent increas-
does not inply that the total event has probabilitylzry danm ng distances fromthe target. Fach labeled
as well. To see this consider a randomvariable X withle is a Mirkov state, a possible array of paraneter
auniformdistributionon [0, 1]. Nowconsider the seéhipgs or grammmr, hence extensionally specifies a pos-
sible target language. FEach state is exactly 1 binary
Event: X<1/2 digit away fromits possible transition neighbors. Each

directed arc betwen the points is a possible (nonzero)

}(hirle/zr eXHa_nly/\évay)s( I_HOVV};13Zhett}1CI s %;ilﬁto(:fOItngsoeci\;rs T8nsition fromstate i tostate j; we shall showhowto
- C T y Y npute this immediately below. W assune that the

has probabilityzeroi.e., P[X=1/4] =0, P[X=1/ ‘get grammar, a double circle, lies at the center. This

0... and so on. However we knowthat the probabilith .
of the event X<1/2is 1/2 not zero. Thi spis beca’({l%{fesponds to the (English) SOVIanguage. Surround-

there are an uncountable nunber of ways in which { Hol8 the bul I s-eye target are the 3 other paraneter arrays

event X <1/2 coul d take place. Thus the proof as gi tg%t d}llﬂer from[O 1 0] by.onek‘f).l nary dfl g1t e}?ch; we pl.C—
in[1] is incorrect. One correct way to formul ate: | these as aring 1 Thming bi t avay fromthe target:

t . .
. . A 0, 1, 1], corresponding to GWs paraneter setting #
proof 1s by resorting to an explicit Markov formul Elgtnlgﬂéir figure 3 (Spec-first, Conp-final, V2, basic or-

as suggested but not executed in GWs footnote 9, aid i . .
as we established above. Asimlar conceptual di fﬁ&?ez/(tSVO-l—V?), [000], corresponding to GWs setting

seemnglyleads totheir failure to note that there g(%ec—ﬁrst, Conp-first, —V2), basic order SOV, and
e

other states besides l ocal maxima, for whichconvergence "’ s setting #1 (Spec-final, Gonp-final, V2],
asic order V(B.
nay not occur.

Around this inner ring lie 3 paranmeter setting hy-
Corollary 1 Guen a Mirkov chain corresponding to a potheses, all 2 binary digits away fromthe target: [0
(finite) famly of grammrs in a GM earning system ¢f0 1], [100], and [1 1 1] (grammars #2, 3, and 8 in GW
there exist 2 or more AS, then that family is not learfigure 3). Note that by the Single Value hypothesis that
abl e. the learner can onl y nove one grey ring towards or away
fromthe target at any one step. Finally, one more ring

E:z?anple. i out, three binary digits different fromthe target, is the
(onsider the GW3-paraneter system Its binary pﬁ’)?pog
e

A esis [10 1], corresponding to target grammmr 4.
raneters are: (1) Spec(ifier) first (0) or last (1 easy to see frominspection of the figure that

Conp(leman.t) first (0) or last (1); and Verb Second (tvl?ire are exactly 2 absorbing states inthis Markov chain,
does not exist (0) or does exist (1). By Specifier GWgly is, states that have no exit arcs. One AS is the
lowthe standard linguistic convention of whether ﬂ;é}leigt grammr (by definition). The other ASis state 2.

1s part of a phrase that “specifies” that phrase, ropgh Ply, state 4is also asink (aso-called “closed state
like the old 1,nthe ol d book; by Conplenent GWroughl y ) the Markov termi nol ogy) that leads only tostate 4 or
nean a phrase’s argunents, like anice-creamin John ¢h¢ate 2. These twostates correspond to the local maxina
an ice-creamor uilh envy in greenwith envy. ‘There argy (1o head of GWs figure 4. Hence this systemis not
also 7 possible “words” in this language: S, V, Op Qhnable. In addition to these local maxima, the next
@2, Adv, and Aux, corresponding to Subject, Verb, Qguction bel owshows that there are in fact other states

ject, Direct Gbject, Indirect Gbject, Adverb, and. Adhihi ch the learner can never reach the target.

jective. There are 12 possible surface strings for each
(‘VVQQ) granmar E{“%d 18 Postﬂblte Surf‘i‘ce Strlngsniordga‘:}])erivati on of Transition Probabilities
(+V2) grammar if we restrict oursel ves to unenbedde afl‘l(_)r the Mrkov TLA Structure

or “degree-0” exanples for reasons of psychol ogical pl

sib@lity (see GWfor discussion). Note that the “sUhfacmputationof the transition probabilities fromthe
strl.ngs” of these languages are actually phrases sWgh@sage fanily can be conputed by a direct extension
Subject, Verb, and bject. Figure (3) of GWsummaof the procedure givenin GW Let the target language

rizes the possible binary paraneter settings in thisct¥sist of the stripgs,s. . ie
tem For instance, parameter setting (5) corresponds to

the array [0 1 0] =Specifier first, Conp last, and V2, Li={s1, 9 8 ...}

whi ch works out to the possible basic English surlfedcthere be a probabilitydistribution Ponthese strings.
phrase order of Subject—Verb-(bject (SVO). As sho®mppose the learner is in a state corresponding to the
in GWs figure (3), the other possible arrangenentbamffuage L. Suppose it nowreceives the stpinkts
surface strings corresponding to this paraneter switltlh dg so with probability) P(Fhere are two cases to
include SV; SVOL Q2 (two objects, as in give John amxanine depending upon whether or not the styiimg s
ice-cream); S Aux V(as in Johnis a nice guy; S Aux Vanal yzabl e by t he grammar corresponding to the current

O S Aux VOl 2; Adv S V(where Advis an Adverb, paraneter setting.

like quickly; Adv SVQO Adv SVOL 2; Adv S Aux V; Case I. Suppose the learner cansyntactically anal yze
Adv S Aux VO, and Adv S Aux VOL 2. 3 the receivedstrijngBy the TLA, it will not changeits

Y Y



parameter values. In the Markov chain forml ation,ctthenowbe gi ven as,

learner renmains in the sane state. Renenber that thiT
state corresponds to the language Also note that Pls —s] =1- Z Pls —k]
this situation arises only yhenis the 1 anguage. L k1s a neighboring state of s

'IherefOITe the probability of the learner renaining lnF‘i}Ill%lly, gi ven any parameter space with n parame-
state s is B(s

ters, we have”2l anguages. Fixing one of themas the

Case II. Suppose the l earner cannot syntacticallytgp— . .
: get language e obtain the follow ng procedure for
alyze the string. Theggs,. By the TLA, the learner constructing the correspondi ng Mairkov chain. Note that

chooses a paraneter at random flips it, andif thetlhelvg 1s the GWprocedure for finding local maxina, with
paraneter setting mankes anal yzable, it retains thﬁiﬁ !

val e and noves to the corresponding state; othervwfsaefﬁac}lfhtl on of a probability neasure on the language
remains inits original state s. Let us exammne this situa- ) ) ) i o
tion using the Markov chain formul ation. The learner ps(Assign dlSt“bu.tlon) First fix a probability nea-
instate s. It has nneighboringstates eachat a Hanm ng Sure Pon the strings of the target language L
distance of 1 fromitself. The learner picks one of thegEnunerate states) Assignastate toeachlanguage
unifornly at random Inmgine thatofr these neigh- i.e., each L

boring states correspond to |l anguages which cpntain s

. . e (Normalize by the target language.) Intersect all
If the learner picks any one of thesates (which of ] anguages with the target |anguage to obtain for

course it does with probabilii/tg) nit would stay in b .
Fo the 1 =L ;NLy. Th th stat
that state. If the learner picks any of the other statfeasc L e | anguage iMbe us wah state

(with probability (n}/m) thenit rennins instate s. 1aansgsuoacgeatﬁedethlangualgevxénowassomate the
Note that pof course could be 0 whi chneans that none ) ]
of the nei ghboring states wouldallowthe string to be an( Take set differences.) Nowfor any two states 2
al yzed. The naxi mumval ue jncoul d take is n. Thus we and k, if they are or € t.han 1 Hanm ng distance
see that the probability that the learner remmins instadpart, the.n the.tranleon Pli —k] :.0~ If they
sis P(9((n—n)/n). The probability that it moves to are/l Ha/nmng distance apart then P[i —k] =
each of the other atates is B§1/n). P(L\ L) -

(earlythis allows us to conpute the probability tHhis nodel captures the dynanics of the TLA com
the learner will remaininits original state s as phetsaim.
of the probabilities of the above two cases, namalﬁzthel
foll owmi ng expression: anpte.

(onsider again the 3-paraneter systemin the pre-

P(s; 1 —n; P g p y P

2 (%) + ZZ;( nj/n) P(s) vious figure with target language 5. W can calcul ate
FaEe Sa e the following set differences to build the Markov figure

The above expressionis still alittle untidy becausettailghtforwardly.

then’sinit. Wwouldliketocleanit upalittle. TQ.dO[lng,I@(HOStI“ngS in common between And
this consider the way we woul d conpute the transition target 4).

probability of state s to some other neighboring state .
say k in the chain. Fromthe above anal ysis, we se?’ A%m\e(s)_ésAX \S/(gg%zs VoL @2, S Anx V, S
that such a transition will occur with probability 1/nX ’ x 1
for all the stringshat are in the 1 anguagebiit not 3. LNLs=0.
in the language; L The strings thensel ves occur withy LNLs={SV, SVO S Aux V}.
probability Pjseach and so the transition probabilit .
o . I;,ﬂLg,_L{g,.
Pls k] = 1/n) P 6. kNL;={SV, SVO SVOL 2, SAxV, S
[ ] 2 (1/m) P Aux VO, S Aux VOL (2}

Note that t he above summationis done over all stringsf LOLs={SV, AdvSV}
s;i €(LyN Ly) \ L where \ is the set difference synbol. 8. kNLs={SV, SVO S Aux V}.
It is easy tosee that Fromthese val ues al one, we can drawthe figure 111 us-
5 €(LinL)\ L & s e(LnLy) \(5NL) trated, and find the local nmaxina. For exanple, since
J ¢ k ¥ J ¢ k 5 the nornalized state set for state 1 1s the enptyset, the
Thus we can rewrite the transition probability as set difference betweenstates 1 and b gives all of the tar-
get language; so there is a (high) transition probabilit;
Pls —k] = Z (1/n) P(p fromstate 1 to state 5. Simlarly, since states 7 and 8
s ;€ (LA L\ Lin Lo) share sone target language strings in common, such as
SV, and do not share others, such as Adv Sand SVQ,

Since we have shown this in generality where for taleylearner can nove fromstate 7 to 8 and back agai n.
giventarget, we can conpute the transition probabilidhay additional properties of the triggering learning
between any two states in the Markov chain fornul at sgstemnow becone evi dent once the mathemntical for-
of the paraneter space, the self-transition przi)blaﬂ{)]iilz'myion has been given. It is easy to inagine other

s;j€Ly,s5/€dys;€ Ly



alternatives to the TLAthat will avoid the local waether any local maxima exist. One could alsolook at
ima problem For exanple, as it stands the learner othgr issues (like stationarity or ergodicity assunptions
changes a paraneter setting if that change all owst hdte m ght potentially affect convergence. Later we will
learner to anal yze the sentence it coul d not anal yzersda-der several variants to TLA and see howthese can
fore. If we relax this condition so that in thisakh theaformmlly anal yzed wi thin the Markov formul ation.
tion the learner picks a paraneter at randomto chai¥ewmi 11 also see that these variants do not suffer from
thenthe problemwi thlocal maxina di sappears, becatlse l ocal maxima probl emassociated wi th GWs TLA.
there can be only 1 Absorbing State, nanely the targeRerhaps the significant advant age of the Mirkov chain
grammar. All other states have exit arcs. Thus, byfonrmlationis that it allows us to also anal yze conver-
main theorem such asystemes learnable. gence tines. (G ven the transition matrix of a Mhrkov

Or consider for exanple the possibility of noisechhatn, the probl emof howlong it takes to converge has
1s, occasionally the learner gets strings that arberatwehl studied. This questionis of crucial inportance
the target language. GWstate (fn. 4, p. 5) thatitthiearnability. Followi ng GW we believe that it is not
is not a problem the learner need only pay attemdnomgh to showthat the learning problemis consistent
to frequent data. But this is of course a seriousiproh-that the learner will converge to the target in th
lemfor the model. Unless some kind of menory okimt. W also need to show, as GWpolnt out, that the
frequency-counting device is added, the learner claaamii ng problemis feasible, 1.e., thelearner will conver
know whet her the exanple it receives 1s noise or mot‘reasonable” tine. Thisis particularlytrueinthe case
This being so, then there is al ways sone finite probafinite paraneter spaces where consistency m ght not
bility, however small, of escaping a local naxinuime d¢ mich of a problemas feasibility. The Markov for-
appears that the 1dentificationinthelimt franewonk asion allows us to attack the feasibility question. I
given is sinply inconpatible with the notion of malise,allows us to clarify the assunptions about the be-

unl ess a nenory wi ndowof sone kindis added. havior of data and learner inherent in such an attack.
W nmay now proceed to ask the follow ng questi oM begin by considering a fewways in which one could
about the TLAnwre precisely: formul ate the question of convergence tines.
L. Toes it converge? 3.1 Sone Tansition Mtrices and Their

2. Howfast does it converge?” Howdoes this varywith C(bnvergence Grrves

distributional assunptions on the input exanplgs?yg begin by following the procedure detailed in the
3. Can we nowconpute the dynani cs for other “natuprevious sectionto actually obtaina fewtransition na-
ral” parameter systens, like the 10- parametertajsces. Consider the exanple which we looked at infor-
temfor the acquisitionof stress inlanguages delvky-in the previous section. Here the target grammar
oped by [4] 7 was grammar 5 and the Llanguages have already been
4. Variants of TLAwoul d correspond to ot her erkOovbtained. For sinplicity, let us first assune a uniform

structures. o thev converse? If so howfastr;listributiononthe stringg ind. , the probability the
) Y 8¢ ’ learner sees a particular sgrimggsis 1/12 because

5. Howdoes the convergence tine scale up with tfifere are 12 (degree-0) strings iW £an now com
nunber of paraneters? pute the transition matrix as the follow ng, where 0’s
6. Wiat is the conputational conplexity of learmfigrgupy matrix entries if not otherwse specified:
parametrized ]l anguage famlies?

7. Wat happens if we nove fromon-line to batch

learning? Can we get PAG-style bounds [6]7 Ly Ly Ls Ly Ls Lg L7 Lsg
T T T
8. Wiat does it nean to have non-stationary (noner- Lils 5 3
godic) Markovstructures? Howdoes this relate to Lo 1 3 1 X
assunptions about paraneter ordering and matu- L . 1 5
ration? Ly 3 =
9. Wat other paranetrizations can we consider? é‘r’ }
. . . 6 6 6
In the remninder of this paper we shall consider these . 15_8 2 LS
and other questions. W turn first to the question of Ls 1 1 ¥
convergence and conver gence tines. t2 869
3 Cbnvergence T mes for the Mrkov Notice that both 2 and 5 correspond to absorbing
Chai n Mdel states; thus this chain suffers fromthe local naxima

problem Note also (following the previous figure as
The Markov chain formmlation gives us sone distimet!l) that state 4 only exits to either itself or to stat
advantages in theoretically characterizing the | ahglmgre 1s also a local maximum Mre precisely, if T
acquisition problem First, we have already seen hidvhe transition probability matrix of a chajn, thent
given a Mirkov Chain one could investigate whetherioe. the elenent of T in the ¢th rowand jth colum is
not 1t has exactly one absorbing state corresponditilg tprobability that the learner noves fromstate ¢ to
the target grammar. This is equivalent tothe ques5tisd;mb£ j inone step. It is a well-known fact that if one



considers the corresponding ¢, j el en®nthefnThis 1s not clear, presumably the i ssue of learnability evenit
is the probability that the learner noves fromsttdie 3+ paraneter case deserves re-examnationinlight of
tostate j inm steps. For learnability to hold irtrleisppossibility.
tive of whichstate the learner starts in, the probalvitgusl y one can exam ne other details of this par-
that the learner reaches state 5 should tend to 1 tBcul ar system However, let us nowl ook at a case where
goes toinfinity. This neans that col uim Bothduld there is nolocal maxima problem This is the case when
containall 1’s, and the matrix should contain 0’s thertyarget |anguages have verb-second (V2) novenent
where else. Actually we find th® cbnverges to the in GWs 3-paraneter case. (Consider the transition na-
foll om ng matrix as mgoes to infinity: trix obtained when the target 1 anguage iAgdin we

assune a uniformdistribution onstrings of the target.

L Ls Ls Ly Ls Lg L7 Lg

L, % é Ly Ly, Ly Ly Ls Ls¢ L7 Lg

Ly 1 Lop b

Ls % % L E§ 5 1

Ly 1 L3 is ? g

Ls ! La 3% 3% o

Ls 1 Ls % % 1

L 1 Ls 5 i

L 1 L L 1

8 7 18 2 38
Ls 1 17

18 18

Examning this natrix we see that if the learner starts
out instates 2or 4, it will certainly end upin statdirienve find t hat T does i ndeed converge toamatrix
the limt. These two states correspond tolocal mawith 1’s in the first columm and 0’s el sewhere. (onsider
granmmars in the GWlramework. If the learner startsthe first col unm of™" It is of the form
either of these two states, it will never reach the target.

Fromthe matrix we also see that if the learner starts in [ pi(m
states b through8, it wmill certainly converge inthe limt pa(m)
to the target grammar. ps(m)
The situationregarding states 1 and 3is nore inter- pa(m
esting. If the learner starts in either of these states, it ps(m
will reach the target grammar with probability 2/3 and pe(m
reachstate 2, the other absorbing state with probability pr(m)
1/3. Thus we see that local nmaximm are not the only L ps(m) |

problemfor legrnability. GW(P: 26 in.HM.lUSCTiPtHere p denotes the probability of being in state 1
focuses exclusively onlocal maxima, and indirecthy § B2 end of mexanples in the case where the learner

plies that these are the only diffeult states: “megtafedinstate 7. Naturally we want
the source grammars have local triggers that enable the

learner to get to the target. . . however, there exist pairs niéompz(”? =1

of source andtarget granmars fromthe paraneter space ) o

given in the table in Figure 3, such that no data pRgphor this exanple this is indeed the case. The next

the target grammar will ever shift the learner out §8ufifeshows aplot of the follow ng quantityas afunction

source grammar. . . There are six such pairs of soureb I'p-the nunber of exanples.

cal maxi mumand target grammars” They then go on s )

tolist in their ﬁgfre 4g, two such local HRXigHR for the p(m =nin{pi(m}

target grammmar 5, corresponding tostates 2 and4.  The quantity p(m) is easy tointerpret. Thus p(m =
Wile this statenent i1s strictly true, it does fot9kmwans that for everyinitial state of the learner the

haust the set of source states that never leadto the prnopgability that it 1s in the target state after mexam

grammar. As we see fromthe transition matrix, whples is at least 0.95. Further thereis oneinitial state (f

it 1s true that states 2 and 4 will, with probabilwtythmnitial state mthrespect tothe target, whichinour

not converge to the target grammar, it is also trueetdaatple is d) for whichthis probabilityis exactly 0.95.

states 1 and 3 will not converge to the target. Thus\W¥tfiled on 1ooking at the curve that the learner con-

nunber of “bad” initial hypotheses is significantlyVarges with highprobability within 100 to 200 (degree-0)

than that presentedin Figure 4 of GW This differencexanple sentences, a psychologically plausible nunber.

again due to the newprobabilistic franeworkintrodu®re can nowof course proceed to exam ne actual tran-

in the current paper, and in fact is related to thecdhiffits of childinput to calcul ate convergence tines for

culty found earlier with the central convergence fimotfial” distributions of exanples, and we are currently

looking just at mininal paths and cycles in fact neageged in this effort.)

some possible learning paths. Inthe appendi x of this fm-one exanple of the power of this approach, we

per, we provide aconpletelist of all startingstatesawheetipare the convergence tine of TLAto other al-

m ght result innon-learnability. Wiile theinplicagarathfis. Perhaps the sinplest is randomwalk: start

the existence of additional non-learnable start%ngh@etheasner at a randompoint in the 3-paraneter space,



and then, if aninput sentence cannot be anal yzed, wewdion. This nmatrix has non-zero elenents (transition
randonly fromstate tostate. Note that this regi nepmanbabilities) exactly where the earlier matrix had non-
not suffer fromthe local maxinma problem since theero elenents. However, the value of each transition
1s al ways somne finite probability of exiting a non-pappability nowdepends upon a, b, ¢, and d. In particu-
state. lar if we choose a =1/12, b =2/12, ¢ =3/12, d =1/12

T satisfy the reader’s curiosity, we provide thethon-is equivalent to assumng a uniformdistribution)
vergence curves for a randomwal k al gorithm(RWM) ome obtain the appropriate transition matrix as before.
the 8 state space. W find that the convergence tieoking nore closely at the general transition matrix,
are actually faster than for the TLA, see figure 2. $Hensee that the transition probability fromstate 2 to
the RMis also superior inthat it does not suffer fetoahe 1is (1 —(a+b +¢))/3. Uearlyif we nake a arbi-
the same 1 ocal maxima probl emas TLA, the conceptuatlrarily close tol, thenthis transition probabilityis ar
support for the TLAis by no neans clear. (f courdearily close to 0 so that the nunber of sanples needed
1t may be that the TLA has enpirical support, in ttheconverge can be nade arbitrarily large. Thus choos-
sense of independent evidence that children do usd thilsarge val ues for a and snall values for b wmill result 11
procedure (givenby the patternof their errors, etd.argbutonvergence tines.
this evidence is lacking, as far as we know This neans that the sanple conplexity cannot be

Nowt hat we have nmade afirst attenpt to quantifythboundedin a distribution-free sense, because by choos-
convergence tine, several other questions can be rahged.highly unfavorable distribution the sanple com
How does convergence tine depend upon the distribplexity can be made as high as possible. For exam
tion of the data?” Howdoes it conpare with other kiplle, we nowgive the convergence curves calcul ated for
of Markov structures with the sane nunber of statedferent choices of a, b, c, d. W see that for a uni-
Howwill the convergence tine be affected i1f the nfmrmdistributionthe convergence occurs within200sam
ber of states increases, i.e the nunber of paranetqisdn- By choosing a distribution with a =0. 9999 and
creases? How does it depend upon the way in which =c¢ =d =0.000001, the convergence tine can be
the paraneters relate to the surface strings? Arepuldiel up to as mich as 50 mllionsanples. (X course,
other ways to characterize convergence tines? W ndiws distributionis presunably not psychologicallyreal
proceed to answer sone of these questions. istic.) For a =0.99, b =c =d =0.0001, the sanple

3.9 Distributional Ass ti ons conplexityis onthe order of 100, 000 positive exanples.
Inthe earlier section we assuned that the data was 3u8- Absorption T nes
fornly dls:trlbuted. W conputed the transition m ' Che previous sections, we conputedthe transition ma-
for aparticular target 1 anguage and showed t hat conver- X S0 .

gence tines were of the order of 100-200 sanpl es Inﬂﬁ(sfor a variety of distributions and showed the rate of

section we showthat the convergence tines depend cFppyersence. In particular we plotted p(m), (the prob-

ciallyupon the distribution. Inparticul ar we can%?loloi Ly of converging fromthe nost unfavorable initial
s

a distribution which will make the convergence tine %ge) against m(the nunber of sa.nples). However, .thls
l arge as we want. Thus the distribution-free converlgd it thg (.)nl.y vay to characperlze convergence {ines.
fine for the 3-paraneter systemis infinite. ven an initial state, the tine taken to reach the ab-

As before, we consider the situation where the tsoréattign state (known as the absorption time) .is a rah-
1 anguage is’lL There are no local naxina probl ensi0mVari able. One can conpute the nean and variance

for this choice. W begin by letting the distribut?f;)nt]?)ies randomvariable. For the case when the target

paranetrized by the variables a, b, ¢, d where l'anguage 1s1L we have seen that the transition matrix
has the form

a = P(AI{AdV VS}) 1 0

b = P(B={AdvVOS, Adv Aux VS}) T= ( R Q)

¢ = P(C={Av VOl ®S, Adv Aux VOS,
Adv Aux VOL 2 S}) Iere @Qis a 7-dinensional square matrix. 'The nean

d = P(D={VS} absorptiontines fromstates 2 through 8 is gi ven by the

Thus each of the sets 4 B, C'and Dcontain differe¥gctor (see I'saacson and Mdsen [3])
degree-0 sentences ¢f Llearly the probability of the 1
set L\ {AUBUCUD}is 1 —(a+b +c +d). The p=(1-Q 71
e@emants of each defined subset 1oﬁ.rb equall.y likel¥pere 115 a 7-dinensional colum vector of ones. The
with respect to each other. Setting positive V.al %%Sctfé)lrof second monents is gi ven by
a, b, c, dsuchthat a4+b +¢ +d <1 nowdefines a uni que
probability for each degree(0) sentepcefbn dxam =1 —Q ~Y(2u—1).
ple, the probability of AdvVOSis b/2, the probability of
Adv AuzVOSis ¢/3, that of VOSis (1-{a+b4c+d))/Gking this result, we can now conpute the nean and
and so on. standard devi ation of the absorptiontine fromthe nost
W can nowobtain the transitionnatrix correspomdfavorable initial state of the learner. (W note that
ing tothis distribution. This 1s shownin Table 1.the second nonent is fairly skewedinsuch cases and so
(Compare this matrix with that obtained wmith a ums not symmetric about the nean, as nay be seen from
formdistribution on the sentencesg iaf the earli%rthe previous curves. )



Learning Man abs. St. Dev. be represented as a subset "of . 3.

scenario t1me of abs. ting .
TCA (uni form 3.8 27,3 Li={wii, w2, . . . €%
TLA (a =0. 99) 45000 33000 The learner is provided with positive data (strings that
TLA (a =0.9999) | 4.5 x10 3.3 x10 belong to the language) drawn according to distribu-

RW 9.6 10. 1 tion P on the strings of a particular target language.
The learner 1s toidentify the target. It is quite possibl
3.4 FEigenval ue Rates of (bnvergence that the learner receives strings that are in nore than

In classical Mirkov chain theory, there are also® I}gngua.ge. lIn'cSluCh'? ca}sle the learner will not be
known convergence theorens derived froma consi d&™ © touniquely 1dentify the target. Hovxgvgr, as nore
ation of the eigenvalues of the transition Hatri)?.nd‘w)re data becones available, the probability of hav-

state without proof a convergence result for tramiggogel ved only anbi gious strings .becomas snallgr and
metrices stated interns of its ei genval ues. snmaller and eventuall ythe learner will be able toidentify

o ) ] the target uni quel y. Aninteresting questionto ask then

r—'heQPem?’ Lef T be ann xn transition mutriz with g hownany sanpl es does the l earner need to see so that

n lznea?”ly anel?endemf left eigenvectprs Xoxor- i th hi gh confidence it is able toidentify the target, i.e
respondzng to ergenvalues A . . p. A Letl % (an 7= the probability that after seeing that nany sanples, the

dimensional vector) represent the starting probabilityegfiner is still anbi gious about the target is less than 6

being in each state of the chain and m be the limtinge follow ng theoremprovi des a lower bound.
probability of being tn each state. Then after k transi-

tions, the probability of being in each silit ecan be ']heorem417he learner needs to draw at least M=
described by Haxj/j—ln(l/pj)ln(l/é) sanples (uherg g P(L;NL;))
tn order to be able to tdentify the target with confidence

n n
reater thanl —é.
| xoT"* = ||| Z;Aonyz'Xi 1< mx | %lké: | xoyixi || 7
1= =

Proof. Suppose the learner draws m (less than
, , , M sanples. Let k& =argmy—p;. This neans 1)
uhere the y’s are the right eigenvectors of T. M= ln(ll/pk)ln(l/(s) and 2) that with probabikity p

This theoremthus bounds the rate of convergenceifa
R . : : ; the 1
the limting distribution w (in cases where there Y8 ONfWice it will be unable to discrimnate between

one absorption state, m will have a 1 correspondi Pglétﬁarget the the kth | anguage. After drawing msam

that state and 0 everywhere else). Using Fhis reS]bllteéﬂ,E the probability that all of thembelong to the set
can now bound the rates of convergence (in terns E)tmek is (p)™. Insucha case even after seeing m

nunber k of sanples) by: sanples, the learner will be in an anbi guous state. Now

earner receives a string which is i hotlh L

Learning scenar] Rate of Convergencg (Pk)m > (pr)™ since m<ﬂ/fl\4and pr < 1. Finally
TLA (uniform (0. 9%) since Min(1jp =In((1/m™) =In(1/6), we see that
TLA(a =0. 99) O (1 —10-%)F) ()™ >é. 'Thus the probability of being anbi guous af-

ter mexanples is greater than § which neans that the
_ _10-6\k np g
TLA(a =0. 9999) (1 —-10"7)") confidence of being able toidentifythe target is less than
RW 0. 89)
. 1-6.1
This theoremalso hel ps us to see the connection bahis sinple result allows us to assess the nunber of
tween the nunmber of exanples and the nunmber of pasanples. we ne.ed.to drawin order to be conﬁdent of cor- .
raneters since a chain with n states (Correspondiggcﬁ;éyldent.lfylngthetarget. Note th&}t 1f the dlStN.thl‘
ann xntransitionmatrix) represents alanguage fa ltshe data is very unfavorable, that 1s, the probability

withlog(n) paraneters. of receiving anbi guous strings is quite high, then the
nunber of sanples needed can actually be quite large.
4 Batch Learni ng Upper and Lower Wiile the previous theoremprovi des the nunber of sam
Bounds: An Aside ples necessary toidentify the target, the foll owing theo-

remprovi des an upper bound for the nunber of sanples
SO far we have discussed a Hen@ry]ess ]earner HDVltﬁ@t are suﬁcient to guarantee identiﬁcationwith hl gh
fromstate tostate inparaneter space and hopeful 1 ycosiidence .
verging to the correct target infinite tine. As weRafems If the learner draws more than M =
th}s was \fvell—m)deled by our Nhrkov fornulgtlon. In L In(1/6) sanples, then it will identify the {ar-
this section however we step back and consider up U/ (1=4))
and lower bounds for learning finite 1 anguage fanil{§&s iu%th confidence greater than 1 —6. ( Here &
the learner was allowed to remenber all the strings?e%t—\uj/ij))’
countered and optimze over them Needless to say tHwsf. Consider the set L YL U;,L;. Any ele-
m ght not be a psychol ogicallypl ausible assunptiomebtitof this set is present inthe target 1 anpuage L
it canshedlight onthe information-theoretic conphekiittiyany other 1 anguage. Consequently uponreceiving
of the learning problem such a string, the learner will be able toinstantly iden-
(onsider a situation where there are n languagefsy the target. After m> Msanples, the probability

Ly, L, .. plover an al phabet ¥ Each |l anguage c8a1that the learner has not received any nenber of this set



is (1=P(L} =(1 —b)™ <(1—-b;)M =¢. Hence state if the newsentence is analyzable. Otherwise the

the probability of seeing sone nenber of L in thosd earner noves unifornly at randomto any of the other

sanples is greater than 1 —6. But seeing such a nenbefrates and stays there i ff the sentence can be anal yzed.

enables the learner to identify the target so thelpridie sentence cannot be anal yzed in the newstate the

ability that the learner 1s able to identify the tlaaagetersremains inits original state.

greater than1 -6 if it draws nore than Msanples. I Fig. 4 shows the convergence tines for these three al-
To summarize, this section provides a sinple upperithns when Lis the target language. Interestingly,

and ] ower bound on the sanple conplexity of exact idahl three performbetter than the TLAfor this task. Fur-

tification of the target language frompositive dat#hékhehey do not suffer fromlocal naxinm problens. It

6 paraneter that neasures the confidence of the leamieiul d be pointedout, however, that the differences from

of being able to identify the target is suggest:vELAfarde mar ginal and this convergence has been shown

PAC[6] formulation. However there is a crucial didfdry for Las the target language. Ideally the conver-

ence. Inthe PACformulation, one is interestedinganee rates have to be conputedfor eachtarget 1 anguage

approximationto the target l anguage with at least dndthen either a worst case or average case rate should

confidence. In our case, this is not so. Since we arteenddci ded upon to characterize the convergence tines

allowed to approxinmte the target, the sanple conpfex-the al gorithmon the 1 anguage famly as a whole.

1ty shoots up with choice of unfavorable distributions.

'Iherg are some interesti.ng directions one could f@ll(ﬁgncl usion, Open Questions, and

within this batch learning framework. One could try .

to get true PAGstyle distribution-free bounds for valfuture Tirections

ous kinds of language famlies. Alternatively one,could

use the exact identificationresults here for linguisti Cealnlurrber of parameters nincreases, the size of the

plausible 1 anguage fanilies with “reasonable” probabilP° ding Mrkov matrix grows 4s Zhus in the

ity distributions on the data. It might be an intere¥t] of a 10 paraneter systemas foundin models of En-

s.t1n . .
exercise to reconpute the bounds for cases mere@ﬁeshgtress ([4]) the corresponding Mirkovstructure will
learner receives both positive and negative dat a.

Iblen&&ﬂ 024 x1024 matrix. W are currently conducting
the bounds obtained here coul d be sharpened furtl?élranayysls of this larger.systemtoﬁnd.ltg local maxina,
W intend to look into some of these questions in ae]yze its convergence tines, and see if its convergence
future.

times correspond to what one m ght findin practice with
real stress systens.

. . Addi tional questions remain to be answered. One 1s-
5 Variants of the Learning Mdel sue has to do mith the “snpothness” relation between
W have so far focused on the TLA scheme for learrhe paranmeter settings and the resulting surface strings.
ing. TLAobserves the single value and greediness lowmprinciples-and-paraneters theory, it has often been
straints. There could be several variants of this Isuggdsteed that a small paraneter change could lead to
al gori thmand nmany of these are captured conpletal harge deductive change in the grammar, hence alarge
by our Mirkov formul ation. W consider the followthange in the surface l anguage generated. In all the ex-
three sinple variants by dropping either or both ofinphes considered so far there is a smwoth relation be-
Single Val ue and Greediness constraints: tween surface sentences and paraneters, in that sw tch-

. . . . ing froma V2 to a non- V2 system for instance, leads
Randomwalkvx'lthnelther greediness nor 51pgle us to a Mirkov state that is not too far away fromthe
value constraints: Whavg a!readyse.enthls eXalprevious one. If this is not so, it is not so clear tha
ple before. The learner is in a particular state. i WP9PA will work as before. In fact, the whole ques-
recel vi ng a newsentence, it remins 1n that statetiifoﬁ.}bq howto formil ate the notion of “snoothness” in
sentence is analyzable. If not, the learner noveg P8hguage grammr franework is unclear. W know
fornly at ?andomto any of the other states and StpySthe case of continuous functions, for exanple, that
there waiting for the next sentence. This is done wWithaWe |earner is allowed to choose exanpl es (whi ch can
regard to whether the newstate allows the sentencgetoi nylated by selective attention), then such an “ac-

be anal yzed. tive” learner can approxinate suchfunctions mich nore
qui ckly than a “passive” learner, like the one presented

%Jlaf}w I's there an analog tothis inthe discrete, digital
ongy,

state if the newsentence is analyzable. Otherw s of language? How can one approximate a | an-
learner chooses one of the parameters unifornly at3@ge’ Here too mathematics may play a helpful role.
domand flips it thereby moving to an adj acent stateﬂgﬁlall that there is an analog to a functional analysis
the Markov structure. Againthis is done wi thout re% r&nguagesaﬁan@ly, the al gebrai ¢ approach advanced

to whether the newstate allows the sentence to be gHa® om;ky and Schutzenbergelj ([5]) Inthis m)del, a
lyzed. However since only one paraneter is change(]l%ﬁguage is described by an (infinite) pol ynom al gener-

atine, the learner can only nove to neighboring s tHteA8 fupctlon, where the coefftients on .the pol ynom al
at any gi ven tine. terma gives the nunber of ways of deriving the string

z. A (weak, string) approximation to a language can
Randommwal k vi th no singl e val ue constraint but then be defined in terns of an approximtion to the
wvi th greediness: 'The learner rennins inits ori&igmaﬂlerating function. If this nethod can be deployed,

Randomwal k wi th no greediness but with single
value constraint: The learner rennins inits origi



then one ni ght be able to carry over the results of funcgrammar is (VO5-V2). For cases when the tar-
tional anal ysis and approximation for active vs. passiget is learnable, the learner converges to the target
learners into the “digital” domnin of language. If this 100-200 sanples with high (greater than 0.99)
1s possible, we would then have a very powerful set ofprobability. Further, the variants of the TLA all
previously underutilized mathenatical tools to anal yzeut performthe TLAinterns of convergence tines.
l anguage 1l earnability.
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A2 Renarks

1. W have provided a conplete list of initial start-
ing grammars fromwhi chsone target is not learn-
able (i.e. learnable with probability 1). W no-
tice that there are three kinds of such problem
starting states. Sone states correspond to sinks
inthe Mirkov Structure with respect to sone tar-
get grammr. Here the learner gets stuck, never
leaves 1t and correspondingly never converges to
the target. 'Then there are states which are not
sinks (OVS4V2 when the target is SVO V2) but
whi ch can onl y nove to sone non-target sink, and
so never converge to the target. These two kinds
of problemstates (starred in our table) have been
listed by Gibson and Wxler in Fig. 4 (pg. 27 of
manuscript). Finally there are states whichare not
sinks, but which can with a non zero probability
converge to sone non-target sink. They can also
with a non-zero probability converge to the target
andinthis respect are distinguished fromproblem
states of type 2.

2. W would like to observe that of the 56 possible
initial granmar-target grammar conbi nations pos-
sible, 12result innon-learnable situations in the 3-
parameter systeminvestigatedhere. Thisis afairly
hi gh density of unfavourable initial configurations.
It woul dbe interestingtosee howthis changes with
other lingual subsystens with a larger nunber of
paraneters.

3. Walsodidananalysis of convergence tines under
uni formdi stribution for the each target grammar.
W find that the results are simlar to the results
displayed in the paper for the case when the 1t(?rget



sink Ytarget: 5

Figure 1: The 8 paraneter settings in the GWexanple, shown as a Mairkov structure, with transition probabili
omtted. (Wthout transitionprobabilities, this diagramcorresponds exactly tothat in GWs appendix, as ne
above.) Directed arrows betweencircles (states) represent possible nonzero (possible learner) transitions
grammar (in this case, nunber 5, setting [0 10]), lies at dead center. Around it are the three settings t!
fromthe target by exactly one binary digit; surrounding those are the 3 hypotheses two binary digits away fr
target; the third ring out contains the single hypothesis that differs fromthe target by 3 binary digits.
the learner can either cycle or stepin or out one ring (binary digit) at a tine, according to the single-ste
hypothesis; but sone transitions are not possible because there is no data to drive the learner fromone sta
other under the TLA

Ly Ly Ls Ly Ly Lg L7 Ls

Ly 1
Lz 1—agb—c 2+a—|éb+c
I 1—a—d 24atd—b b

3 3 3 3
L c d 3—c—d

4 3 3 3
T 1 2—a a

5 3 3
L e 3—%—0

o 3 atd 3 3—2a—d a
L7 3 b 3 3§b
Lsg 3 3

Table 1: Transition matrix corresponding to a paranetrized choice for the distribution onthe target strings
case the target ijsahd the distributionis paranmetrized according to Section 3. 2.
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Figure 2: Convergence as function of nunber of exanples. The horizontal axis denotes the nunber of exanp
received and the vertical axis represents the probability of converging to the target state. The data fromt
1s assuned to be distributed unifornly over degree-0 sentences. The solid line represents TLA convergence
and the dotted line is a randomwal k l earning al gori thm(RM). Note that randomwal k actually converges fas

than the TLAin this case.

1.0

0.8

0.6

0.4

0.2

Probability of converging from most unfavourable state

0.0

0 10 20 30 40
Log(Number of Samples)

Figure 3: Rates of convergence for TLAw th Lhe target 1 anguage for different distributions. The y-axis plots t
probabilityof convergingtothe target after msanples andthe z-axisisonalogscale, i.e., it shows log(m a
The solidline denotes the choice of an “unfavorable” distribution characterized by a =0.9999; b =c =d =0. (
The dotted line denotes the choice of ¢ =0.99; b =¢ =d =0. 0001 and the dashed line is the convergence curve

a uni formdistribution, the sane curve as plottedin the earlier figure.
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0.0
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Figure 4: Convergence rates for different learning al gorithmsswhka t/ar get 1anguage. The curve with the
slowest rate (large dashes) represents the TLA. The curve with the fastest rate (snall dashes) is the Randor
(RM) with no greediness or single value constraints. Randomwal ks with exactly one of the greediness and si
val ue constraints have performances in between these two and are very close to each other.

Initial Gamat Target Granmar | State of Initial Gammar Probability of Nof

(Mirkov Structure) | Converging to Tar geft
(SVO-'W2) (OVS-W2) Not Sink 0.5
(SVOHW2) * (OVS-W2) 51 nk 1.0
(SOV-W2) (OVS-W2) Not Sink 0.15
(SOVHV2) * (OVS-W2) 51 nk 1.0
(VCs-W2) (SVO'W2) Not Sink 0.33
(VOBHV2) * (SVO'W2) 51 nk 1.0
(OVS-W2) (SVO-'W2) Not Sink 0.33
(OVSHV2) * (SVOV2) Not Sink 1.0
(VCs-W2) (SOV-W2) Not Sink 0.33
(VOBHV2) * (SOV-W2) 51 nk 1.0
(OVS-W2) (SOV-W2) Not S1nk 0.08
(OVSHV2) * (SOV-W2) 51 nk 1.0

Table 2: Conplete list of problemstates, 1.e., all conbinations of starting granmar and target grammar whi cl
innon-learnability of the target. The itens narked with an asterisk are those listedin the original paper !

and Wxler [1].
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