MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts
Project MAC

Artificial Intelligence Project Memorandum MAC - M -360
Memo No. 145, , October 19, 1967

A Fast Parsing Scheme

for

Hand-Printed Mathematical Expressions

by William A. Martin

*

ABSTRACT

A set 0f one-line text-book-style mathematical expressions is de-
fined by a context free grammar. This grammar generates strings which
describe the expressions in terms of mathematical symbols and some simple
positional operators, such as vertical concatenation. The grammar rules
are processed to abstract information used to drive the parsing scheme.
This has been called syntax-controlled as opposed to syntax-directed

‘analysis.

The parsing scheme consists of two operations. First, the X-Y
plane is searched in such a way that the mathematical characters are
picked up in a unique order. Then, the resulting character string is
parsed using a precedence algorithm with certain modifications for
special cases. The search of the X-Y plane is directed by the particular
characters encountered.

A.I. Memo 145 . -2- Memorandum MAC-M-360

I. Introduction

No satisfactory method of typing mathematical expressions in a linear
string has as yet been devised. Chapter II of my thesis 13 shows the
difficult notation I had to use. A good method for communicating two;
dimensional expressions to the éomputer is needed. Klererlo has devised
an algorithm for parsing two-dimensional expressions constructed on a
Vslightly'modified typewriter, but these expressions are not easy to t&pe.
One is therefore led fo hope that the input of characters through a stylus
dgvice like the RAND tablet will some day be practical. Existing character
recognition programs9 are good enough to begin experiments; Anderson
has just constructed an algorithm for parsing mathematical expressions
drawn on a RAND tablet. However, while Klefer‘s algorithm is quite fast,
Anderson's takes many seconds to parse an expression of moderate size.
There are several reasons for this; partly it is a matter of implemen-
tation. But a very important reason is that Andersop's algorithm is
very general and has more power than is needed for most of the expressions
we expeﬁt to encounter. For example, consider how’Anderson's top down

syntax directed algorithm would parse:
0

o = z 2t
. =0

The program is given an ordered list of syntax rules. Those needed for
this example would be:
1. s E=E

2. E-T+T

A.I. Memo 145 -3- ‘Memorandum MRC-M—360

5. T~ XE

6 T— X
E

7 T= j: T
S

8. T—=0

9. T~—~ 1.

The spatial relationships in the exponent and summation are made
ekplicit by giving X and Y coordinates. The parsing program must accept
any expression which can be generated by starting with S and substituting
the right side of any rule for its left side.in the exﬁression being formed.
The éafsing program must determine the sequence of rules used to form thé
input expression. Examining the rules in the order given, it would first
try to.apply rule 1. by partitioning the remaining characters on either

side of an =. Choosing the rightmost = the program forms two possibilities:

0
X = 1 and jz x2+I
(0]

which must be examples of expressions which can be formed by starting with
E. Taking the right side first, the 4+ indicates that it might be of the

form:

0

L
zxz and I

Proceeding in this manner, the original choice of = is found to be un-

acceptable. The parser then tries the second = and forms:

0
X and zj x2+I
I=0

A.I. Memo 145 -4- Memorandum MAC-M-360

which will prove to be correct. When an application of rule 7 is tried,
the characters will be partitioned into groups depending on whether they
are above, below, or completely to ;he right of the zj.
Now let us see how Klerer's algorithm woula handle this same example.
The expression is considered to be a tree branching from left to right.
The program will pick up the leftmost character, the X. Since this is a
letter it will know from rule 5 that it might have an exponent, but a‘
scan of the appropriate area shows none to be present. It next picks up
the =, forming a stringrof the characters found. Here the program knows
that only rule 1 can apply so it moves right again, adding the ZS to
the string. From rulé 7 the program then knowsrpo search in a similar
manner, first below, then above, and thenAto the right of the E:
It puts marking characters between the charécters found inreach area. In
this manner the Klerer program forms the character string:
u :
x = L'(I =0,0, x #(2+1))
without any falsercharacters being picked up. This string is then par-
sed by an efficient method for linear strings. The Klerer methdd is

 superior on this example, but it can fail on: b -

[a

c1n1x
%

Anderson will recognize this as

b

-X
j L dx
a d

1 think Anderson was led to his approach by a) -the desire to handle a
wide variety of notations, b) the belief that the characters would not be
constrained in size and position as they are on the typewriter and c)

the desire for a theoretically attractive syntax directed scheme. 1t

A.I. Memo. 145 -5= Memorandum MAC-M-360

is certainly true that what little documentation Klerer has done makes
his scheme seem very ad hoc.

In this memo I present my version of Klerer's scheme in a systematic
manner, which shows its power and limitations. This makes more apparent
where the power of Andérson's schgme is needed. Using as input a iist of
characters and the coordinates of each as shown in Fig. 1, tﬁe program
appears to be about 20 times as fast as Anderson's on the examples shown
in Fig. 2. Andérson's program will slow down more than linearly as the
nﬁmber of characters in the examples is increased, but the Klerer al-
gorithm will mot. On the other hand, Anderson's program contains many
tests for correctly formed syntactic sub-units. Only after my program
hasrbeen tested on a RAND téblet can a complete comparison be made be-

tween Anderson's scheme and mine.

A.I. Memo 145

(12
24
36
37
(37
48
(60

1]
]
+

16
28
40
40
40
52

20
30
45
44
44

56

68

Xxmin xcen

Xmax

20
33
20
26
28
12
20
20

ymax

ycen

ymin

26
39
26
26
34
18
26
26

32
45
32
26
40
24
32
32

Memorandum MAC-M-360

X)

2)

PLUSS)
QUOTIENT)
A)

B)

PLUSS)

X))

= (xmin xcen =xmax ymin ycen ymax x)

Fig.

1

A Hand Coded Example

A.I. Memo 145 -7- Memorandum MAC-M-360

Example Seconds to Parse, Compiled CTSS LISP
x+ 3 %1 2
x2+ =+ X 3
10
x! +-}: (x)I 3
I1=2
|x |+ ly=2 2
2
—%— (x+y) 4
dx
fi(X:Y) 2
b
f xdx 2
a
x - SIN x= 0 .2
Fig. 2

Some EXamples’Parsed

A. I. Memo 145 -8- Memorandum MAC-M-360

II. The Grammar
The expressions to be parsed can be described by a context free

7 . ' .
grammar. Such a grammar consists of a set of terminal characters, a

set of non-terminal characters and a set of productions of the form A - 8,

where A is a non-terminal character, and 6 is a finite string of termihal
and non-terminal characters. Starting with a specified non-terminal, S¥*,
the mathematical expressions are described by the strings of terminals
which can be formed by the repeated substitution of the right side of
any production for its left siae, until no non-terminals remain in the
string}

Since we are describing two-dimensional mathematical expressions the
terminal symbols consist of mathematical symbols, parentheses? and the

following positional operators:

(C=xy) = --X-:J Y concatenation
(V=x vy z) = Z 'i vertical concatenation
r-'w,——-
X
—
—x A
(H=xy z) = E--—-} horseshoe
[+]
[]
(E=xy) = 2] exponent
S=xy) = L 2o subscript
(B= X y) = ""—')'(' E: bottom

The center rectangle of V= is assumed to extend a character width to

the left of the others; the reason for this will be explained later. (=

can take an arbitrary number of arguments.

A. I. Memo 145 -9- Memorandum MAC-M-360

If one thinks of each mathematical symbol as being enclosed in a
rectangle, then the ppsitional operators show how to combine the rec-
tangles to form larger ones. For example, the string of terminal symbols

. SVoI
describing ZJx would be:

1=1

(C= (V= (C=1 =1) Z? =) (E= X I)).

We will call this positional operator notation. The positional operators

defined here will form a left to right tree structure of symbols.

Before we can present our grammar two more complications must be
introduced; First, we associate‘with each production a production in a
parenthesis grammar which generates the internal LISP representation of
the mathematical expressions. The use of production pairs is a simple
example of the scheme propbsed by Donovan.3 For example, a simple
grammar might be:

l. 8*— E¥* S* = E*

2. E*— (PWR H* E*¥) E* - (E= H* E¥)

3. E¥x— X E* = X
4, H*- X H* - X
5. H¥ - E* H* = (C= LPAR E* RPAR)

where PWR stands for exponentiation and LPAR and RPAR stand for left and
' X
right parenthesis. The generation of the strings to describe (xx) in

- the two languages would then proceed as follows:

LISP notation Positional Operator Notation
S* S* Rule
E* E* 1

(PWR H* E*) (E= H* E*) 2

A. I. Memo 145 -10- Memorandum MAC-M-360

LISP notation cont. v : Positional Operator Notation cont.
Rule
(PWR H* E%) (E= (C= LPAR E* RPAR)E¥) 5
(PWR (PWR H* E*) E*) (E= (C= LPAR(E= H* E*)RPAR)E%*) 2
(PWR (PWR X E*)E*)V ' (E= (C= LPAR(E= X E*)RPAR)E*) 4
(PWR(PWR X X)E¥*) (E= (C= LPAR(E= X X)RPAR)E%*) -3
(PWR(PWR X X)X) ' (E= (C= LPAR(E= X X)RPAR)X) 3

Whenever we substitute for a non-terﬁinal in the positional operator string,
we make the cofresponding substitution in the LISP string. Our grammar
now génerates ordered péirs of strings. The first string represénts the
mathematical expression in our LISP notation and the second represents the
expression in positional operator notation. Once the parsing program has
found the series of productions which generate the positional opérator no-
tation for an input expression, the same sefies can then be used to generate
its LISP represeﬁtati?n.
The same non-terminal symbol might occur twice on the right side of a
production. For example we might have:
E* - (PLUS E* E¥) E* = (C= E* + E¥*).
In order to distinguish betweenrthese two instancgs when applying the same
substitutions to both sides, they will be subscripted. This is just a
notational convenience. Tﬁe subscripted form of the rule above is:
E* = (PLUS (E* 1) (E* 2)) E¥ = (C= (E* 1) + (E*x 2)).
Finally, the grammar can be further condensed without any change in its

power if alternative choices and repeated substrings are introduced.5 The

A.I. Memo 145 -11- Memorandum MAC-M-360

repeated strings are useful since functions such as PLUS and TIMES can
take an arbitrary number of arguments. The expréssion x+x+x could be
generated by the rules:

S*' - (PLUS X S¥%) S* = (C= X + S*)

S*¥ - X ' S* - X
But this leads to the unsimplified parsing (PLUS X (PLUS X X)). In-
stead we will write:

S* ~ (PLUS X (REPEAT 1 X)) §* — (C= X (REPEAT 1 (+ X)))
The 1 is just used to subscfipt the REPEAT expression itself for iden-
tification on both sides. Parentheses around the argument of the
REPEAT on the right side indicate that it is a string of characters.
Finally, we introduce OR, so that the rule which may be used to generate
:X + X - X is:

§* - (PLUS X (REPEAT 1 (OR X (MINUS X)))

§*— (C =X (REPEAT 1 (OR (+ X) (- X))))
The OR lets us represent all strings of terms connected by + or - signs
with just one rule. The OR may have any number of arguments but ther
corresponding argument of a given OR must be taken on both sides.
The mathematical symbols and operétors have been given the names

éhown in Fig. 3. The LISP notation is expiained in Fig. 4. A grammar

for the mathematical expressions used in my thesis is shown in Fig. 5.

A. I. Memo 145

-12-

SIGMA

EQSIGN
PLUSS

DASH

STAR
QUOTIENT
BAR

COMMA -
EXCLAMAT ION
LPAR

RPAR

INTEGRAL

Fig.

Symbol Names

Memorandum MAC-M-360

A. I. Memo 145 -13- Memorandum MAC-M-360

~~~~ . (PIS ABC) SA+B+C

(PRD ABC) A "B " C

(PWR A B) = AS
RV A BCDE) = dB+DE
daB acP
B
(ITc DABC) = [ cdp
A
c
(SUM A BCD) = Z' D
A=B
- Cc=D
(EVL A B C D E) E|A=B
(NAM A];c) = Cyp
(F A B) = F (A,B)
MAM A B (FCD)) = F, . (C,D)
(FTL A) = A !
(aBs &) = |a |

(Most operators can take any number

of arguments in the obvious manner.)

Fig. 4

LISP Notation



A.

I. Memo 145

00020
00030
00040
00060
00070
00080
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00270
00280
00290
00300
00310
00320
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00470
00480
00490
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590

E*

S*
M*
F*

F*
F*
C*

C*

H*
H*
H*
H*
H*
H*
H*
H*

H*
Qx
H*

u*

I*
I*
E*

(C=

-14- Memorandum MAC-M-360

(PLS (OR F* (PRD - 1 F*) NIL) (REPEAT 1(OR (PRD -1 F*) F%)))
(cF *(;);{)(;)R F*(PLUSS F*)) (DASH F¥)NIL) (REPEAT 1 (OR (DASH F*) (PLUSS

E* E*
(EQN (E* 1) (E* 2)) (C=(E* 1) EQSIGN(E* 2))

(PRD (P* 1) (REPEAT 1 P*) (OR C*(P* 2)))

(C=(P* 1) (REPEAT 1(STAR P*))STAR(OR C*(P* 2)))
P* P*

C* C*

(ITG V* (E* 1) (E* 2) (E* 3))

(C=(H= INTEGRAL (E* 1) (E* 2)) (E* 3)D V*)

(SUM V& (E* 1) (E* 2) H¥)

(C=(V=(C= V* EQSIGN(E* 1))SIGMA(E* 2)) H*)

(PWR R* E*) (E= R* E*)

(ABS E*) (C= LBAR E* RBAR)

(V* Ex (REPEAT 1 E*))(C= V* LPAR E*(REPEAT 1(COMMA E*))RPAR)

vk Vk

I* I*

(FACTORIAL R*) (C= R* EXCLAMATION)

(NAM E* (REPEAT 1 E*)V¥) (S= V*(C= E*(REPEAT 1(COMMA E*))))

(PWR (NAM (E* 1) (REPEAT 1 E*)V#) (E* 2))

(H= V*(C=(E* 1) (REPEAT 1(COMMA E*))) (E* 2))

E* (C= LPAR E* RPAR)

(PRD (E* 1) (PWR(E* 2) -1)) (V=(E* 2)QUOTIENT (E* 1))

(NAM(E* 1) (REPEAT 1 E¥*) (Vk (E* 2) (REPEAT 2 E*)))

(C=(S= V*(C=(E* 1) (REPEAT 1(COMMA E*))))LPAR

(E* 2) (REPEAT 2 (COMMA E*))RPAR)

(OR (DRV (REPEAT 1 (V* (OR 1 K*)))V#)
(DRV(REPEAT 1(V*(OR 1 K*)))H*))

(OR (V=(C=(REPEAT 1(D(OR V*(E= V* K*¥)))))
QUOTIENT (C=(E= D (SUM/ (K* 1 I)))v*))
(C=(V=(C=(REPEAT 1(D(OR V*(E= V* K*)))))
QUOTIENT (E= D (SUM/ (K* 1 I))))H*))

K* K*

(FRT (K* 1) (K* 2)) (V=(K* 2)QUOTIENT (K* 1)}

(EVL(E* 1) (E* 2) (REPEAT 1((E* 1) (E* 2)))H*)

H* (B= BAR(V=(C=(E* 1)EQSIGN (E* 2))

(REPEAT 1(C=(E* 1)EQSIGN(E* 2))))))

C*

K*
V*
P*
p*
P*
R*
R*

(TRANSCENDENTAL(OR V* I* Q% E*))

(C= TRANSCENDENTAL (OR (BLANK V#) (BLANK I%)
(BLANK Q*) (LPAR E* RPAR)))

INTEGER INTEGER '

LITER LITER

U* U*

Q* Q*

H* H*

(ABS E*) (C= LBAR E* RBAR)

V& y=*

Fig. 5.



A. I. Memo. 145 -15- Memorandum MAC-M-360

III. Searching the X-Y Plane

I now want to describe how the parsing algorithm picks up the characters
from the X-Y plane to form a linear string. The program is presented with
a rectangle known to enclose all of the characters and a rule for selecting
one character from the rectangle to be added to the linear string. For
example, in Fig. 6 the program might be given the solid rectangle and iq-
structions to find the leftmost character in it. The particular character
found determines an ordered list of new rectangles, defined in terms of the
dimensions of the original one and the dimensions of the character found.
A character selecting rule is also associated with each fectangle. In Fig.
6 the aivide bar would yield a list of rectangles 1,2, and 3 and the in-
gtructions to find the leftmost character in 1 and 2 and the leftmost
character falling Qithin the shaded tolerance area in 3. The program then
calls itself recursively on each of these smaller rectangles. When no
character is found in a rectangle, control returns to the next higher level.

I call this a character directed search scheme.

The manner of defining the subrectangles and their associated selection
rules depends on the particular set of positional operators. First, any
given rectangle contains either a single symbol or is composed of smaller

subrectangles related by one of the positional operators. (Requirement 1)

Subrectanges must always be scanned in the same order. This requirement

is not absolutely necessary, it is only necessary that we get the same
interprétation of the linear string no matter what the order. The linear
string parsing problem will probably be simpler, however, if requirement 1)
canrbe met. Second, our approach will be to assign a choice of subrectangles

and selection rules to each of the positional operators. When this is done



A. I. Memo 145 -16- Memorandum MAC-M-360

Ve

Fig. 6

A Step in the Character Search



A. I. Memo 145 -17- Memorandum MAC-M-360

it is necessary that (Requirement 2) no grammatical string in positional

operator notation can result in the picking up of some of the characters

in a text-book expression defined by a second distinct grammatical string

in positional operator notation. This requirement is to avoid ambiguous

spatial parsings. For example, we do not want to allow an expression like
XZY to have the legal parsings X2 times Y or X times 2Y.

Anderson also divides each rectangle into smaller ones, using the
terminal characters as guides. Looking at the rules in his graﬁmar and
algorithm we note that he partitions the current reétangle in all appro-
priate ways.' To be applicable, a rule may contain only those terminal
characters which are in the current rectangle, and the characters which
occur leftmostiand rightmost in the subrectangles must be permitted by the
rule. These tests certaiﬁly cut down the number of partitions tried.

(Assertion A) However, for the grammar defined in the first section the

names and dimensions of the characters which can occur leftmost, or right-

most in a rectangle completely determine the subrectangles to be tried.

This is a fortunate situation! bRequirement 2) then guarantees that if the
associated selection rule picks any character in a given subreﬁtanglé, that
subrectangle applies to the text-book expression at hand.

A little thought should convince the reader that a context free
grammar will generafe a tree structure of subekpressions. For example,

the tree structure for the positional operator expression,

€= (V= (C=1 =1) I =) (E=X 1))

which was given in part 1 is:



A. I. Memo 145 -18- Memorandum MAC-M-360

=1) 2 =) (E=X 1))

A top down parsing scheme, of which Anderson's is an example, picks one
of the forms which the top node can have. For this choice there are
generally only certain possible choices for the lower nodes, and these

can be dependent on the choice for the top node. This can be an advan-

tage, as Anderson points out, if one of fhe lower nodes can be discovered
very easily, thus constréining a higher node and reducing the possibilities
for other nodes. For example, in dex which has the tree structufe;
(1)‘ Jxax
f b @)
d x
disco?ery of the integral sign gives us the form of node (1) and then we
know that node (2) is not a product.’
The task of parsing is sometimes simplified if the construction at
any node depends,bnly on the nodes below it. This is the situatidn in a
precedence grammar, as defined by Floyd.6 This property can be verified

by examining the grammar in question. For the grammar defined in part 1,

it can be verified that the choice of subrectangles is independent of con-

text in which the main rectangle appears. Subrectangles and selection rules

can be associated with certain characters without regard to the context in
which the characters occur. These are the properties which make a char-

acter directed search scheme possible.



A. I. Memo 145 -19- Memorandum MAC-M-360

Assertion A) follows from a simple exhaustive argument for our part-
icular grammar. First, the leftmost character of a rectangle must belong
to its leftmost subrectangle for each positional operator except for vertical

concatenation, which has no obvious leftmost subrectangle. Vertical con-

catenation is used only with the symbols £ and . This is why we
require that these symbols‘extend further to the left than rectangles with
which they are vertically concatenated. We thus know for each positional
operator which subrectangle is being searched first. Note that when we
pick up a character we are starting simultaneously on all the rectangles -
in which it lies leftmostf Next, for each positionél operator it will be-
possible to tell the poSitions of additional subrectangles whenever the
first subrectangle is finished. To see this we list the characters which

can occur rightmost in the first subrectangle of each positional operator.

operator " C€haracters
concatenation C= (+ - LITER INTEGER | Z [ ) ! — D

vertical concatenation V= Z —

horseshoe H= [ LITER

‘exponent E= LITER ) D | INTEGER
subscript | S= LITER
) bottom B= 'l

In the case of B=, S=, H=, and V= the first subrectangle encloses a single
character, so it is easy to get the dimensions of the other subrectangle
from the dimensions of this character and those of the main rectangle.

In the case of E= tﬁe rightmost character might be a ) or ’ which is sym-



A; I. Memo 145 -20- Memorandum MAC-M-360

metrical with respect to the center line of the subrectangle, but may not
extend to its complete height. Its vertical dimension‘will suffice if
we allow the exponent subrectangle of the E= operator to be placed as low as
the top of the rightmost character in the first subrectangle. Finally,
the rightmost character of the first C‘= éubrectangle is used to find the
X- coordinate of the second subrecténgle. The X- coordinate of the r1+1§'-E '
subrectangle is found from the rightmost character of the nth subrectangle.
The y- coordinate is found from the center of the leftmost character.
Notice that if we proceed in this way it isAeasy to meet requirement
1). The scheme will work if it satisfies requirement 2). Once again we
use an exhaustive argument for the grammar at hand. Our method of starting
the first subrectangle is the same for each positional operator. We must
show that an additional subrectangle can't be started unless the positional
operator in questionrapplies. If a false réctangle were started, then the
first charaéter picked up in it must belong to a second grammatical con-
struction. That is, there must be some previoué character from which
this character can be reached by two grammatical paths. We have already
listed the rightmost characters which can initiate a second subrectangle;
some of them can initiatermorerthan one, either because they apply to an
.operator which initiates more than one or because they apply to more than

, LITER, |,), D, and INTEGER.

one operator, or both. These are Z,

We must show that the same character can not be reached by taking more

than one branch from a given character. 1In the case of & and the
plane is divided into non-intersecting areas above, below, and to the

right of these characters. For the rest, the second subrectangle is to

the right. To avoid the situation:



A. I. Memo 145 -21- Memorandum MAC-M-360

b-x

dx

J

a

we must make therobjectionablé requirement that every or L ex-
tend a full character width to the left of all symbols in the rectangles
concatenated with it vertically. When this is done every rectangle will
have its leftmost character at least a character width to the left of ﬁhe
others, then the opgrators H=, E=, S=, and C= can take second subrectan-
gles only when the subrectangle's center lines are in the appropriaté
positibn. Under these conditions requirement 2) is met.

"It will probably be neceséary to relax requirement 2) in order to
make the algorithm acceptéble to users. We will do this after experience
indicates the complete range of changes neéded.

We have assumed that concatenation does not apply if the space for
the next symbol is blank. Experimentation with tolerances will be re-
quired to determine when additional machinery will be needed to make this
 determination. One case which has already been handled is sin x, where
a blank can be used to separate a transcendental function name from its
simple argument. Since the n in sin alone is not sufficient to indicate
that a blank can be added to the character-string, this is a case Where the
search scheme can not be character directed. The whole phrase Mgin" is
required fo make skipping a blank a legal operatiod. I call this an ex-

ample of a phrase directed search scheme. It is especially simple because

the dimensions of the phrase are not needed to guide the search and be-

cause the phrase can be found by a lexical parse.



A. I. Memo 145 -22- Memorandum MAC-M-360

A phrase directed search scheme is one where the characters are picked
up in éuch an order that the search for the next character depénds only on
the grammatical phrases that can be formed using the characters already
pickea up. It might be necessary to compute the dimensions of the phrases,
using the formulas which define the positional opérators, in order to get
the parameters néeded to guide the search. VIf we relax this definition to
allow back-up, then the expression |

[

a

b-x
C

dx

which gave trouble above could be handled with a phrase directed scheme.
We should note that in order to formulate a grammar for matrices a
more complicated search will have to be made when a new rectangle is

entered.



A. I. Memo 145 -23- Memorandum MAC-M-360

e

IV. Parsing the String

When the mathematical symbols are picked up by the search algorithm
it is necessary to add some additional symbols té indicate the positional
relationships discovered. VThe exact symbols used should make the result-
ing string parsable by a simple algorithm if at all possible. The actual

symbols used are:

(c= x Y) S

(V= X — ¥) - —— X QMARKL Y QMARK?
= X IV - L X SMARKl Y SMARK2 °*
@= [ ¥ 2) - [ Y DIARK z DMARK

(H= LITER Xy - LITER SE= X SE=END NE= Y NE=END

(E= X Y) - X NE= Y NE=END
= X Y) - X SE= Y SE=END

(B= X Y) - X BMARK N= Y N=END

The usé of QMARK, SMARK, and IMARK simplifies the parsing by making it

unnecessary for the left-to-right parser to change state when a

b

Z, or f is parsed. Applying the search scheme to each rule one can find
the resulting linear string of terminal and non-terminal characters which
would be produced. A parsing algorithm for this transformed set of rules

must then be produced. These were found to form an operator precedence

, i
gr.ammar6 with two exceptions; I X }_and dxi Absolute value was
. dy
handled by converting each I to either [ or 7} as it was encountered.
Absolute value thus becomes X1 . This can be done based on the pre-

. ' . 11
ceding character, but it represents a change of state since the pre-



A. I. Memo 145 -24- Memorandum MAC-M-360

ceding character may be either Tor1 . Derivatives were handled by us
by looking two characters ahead to find them and then going into a special
state for the duration of the derivative quotient.

It was then possible to calculate precedence functions for the rules
not involvingrderivatives; Since the method of doing this is not usually
stated, we will give it here. Ifione has an operator precedence grammar
then each ordered pair of terminal symbols may have no relations or be in
exactly one of the relations >, <, and = . Precedence functions f and
g ‘map the terminal symbols into the integers so that if xRy then f£(x) R g(y).
Thus  the precedence can be found by comparing therintegers assigned to each
terminal symbol. To find f and g, first associate with each tefminal sym-
bol x a second symbol x'. Define new relations G and E as follows.

If x>y, then xGy'. If x<y then y'Gx. If x =y, then xEy'.

We have eliminated <, now we eliminate E. Arranging the symbols along
the edges of a matrix, unprimed first, any two syﬁbols can be in either
reiation E or VG. Moving do&n the rows, if xXEy then xRz — yRz. Use
this to copy the row for x into the row for y and eliminate the row for x.
If'gEy and yGx occurs, f and g dé not exist. When the relation E has
béen eliminated the elemenﬁs form a lattiée under the relation G. One
must now éomplete the trahsitive reiation G.la, If =xGx occurs fdr some
x, then f and g do not exist. 'Otherwise, the symbols can easily be
ordered. Taken in any order the symbols are added one at a time to a list,
being moved to the right until they réach an element with which they are in
relation G. The elements are now assigned an integer corresponding to their

distance from the right end of the list. The integers assigned to unprimed



A. I. Memo 145 ' -25- Memorandum MAC-M-360

elements form f and those assigned to primed elements form g. A small

grammar with its precedence table and precedence functions is shown in

Fig. 7.



A. I. Memo 145

E*

E*

T*

T*

T*

A*

A%

11

10

NUMBER

LITER

LISP

(PLUS E* T+*)

T*

(TIMES T* A%)

-26-

Memorandum MAC-M-360

Positional Operator

(C= T* + E*)

T*

(C= A* * T¥%)

A%* A%
A% (C= LPAR A* RPAR)
NUMBER NUMBER
LITER LITER

3 9 8 7 0

+ % NUM LITER )

L | L L L

G | L L L

¢ | ¢ G

G | ¢ G

L L =
G
Fig. 7

A Small Grammar with its Precedence

Table and Functions



A. I. Memo 145 -27- Memorandum MAC-M-360

V. Conclusion

The speed of this program indicates that a more éomplex one which over-
comes its weaknesses will run in a practical‘time. The approach taken here
should lead to an efficient result and one which can be understood. The
next theoretical step is to construct a parser which will explore the left

to right tree, only backing up in truly difficult cases.



A. I. Memo 145 -28- Memorandum MAC-M-360

Bibliography.

1. R. H. Anderson, '"Syntax-Directed Recognition of Hand-Printed Two-
Dimensional Mathematics', presented at ACM Symposium on Interactive
Systems for Experimental Applied Mathematics, Aug. 1967. '

2. A. Colmerauer, '"Relations de Precedence Totale', Institut de Math-
ematiques Appliquees, Universite de Grenoble, April 1967.

3. J.J. Donovan, ''Canonic Systems and Their Application to Programming
Languages', MAC-M-347, M.I.T. April 1967

4. T.G. Evans, "A Formalism for the Description of Complex Objects and
its Implementation', Air Force Cambridge Research Lab., Bedford,
Mass., Oct. 1967.

5. R.W. Floyd, '"The Syntax of Programming Languages - A Survey',
IEEE Transactions on Electronic Computers, Vol. EC-13, No.4, Aug. 1964.

6. , "Syntactic Analysis and Operator . Precedence', JACM, Vol.
10, No. 3., July 1963.

7. S. Ginsburg, The Mathematical Theory of Context Free Languages, McGraw
Hill, 1966.

8. T.V. Griffiths and S.R. Petrick, '"On the Relative Efficiencies of
Context-Free Grammar Recognizers', CACM, Vol. 8, No. 5, May 1965.

9. G.F. Groner, 'Real-Time Recognition of Handprinted Text', Memorandum
RM-5016-ARPA, The RAND Corporation, Oct. 1966. )

10. M. Klerer, Unpﬁblished Notes at Hudson Laboratories, Columbia Univer-
sity, 1965.

11. D.E. Knuth, "Translation of Languages from Left to Right'", Information
- and Control 8, 1965.

12. S. Kuno, 'Computer Analysis of Natural Languages", Preceedings of the
Symposium on Mathematical Aspects of Computer Sc1ence, the Amerlcan
Mathematlcal Society, New York, 1966.

13. W. A. Martin, "Symbolic Mathematical Laboratory', MAC-TR-36, M.I.T. Jan. 1967.
14. M. Minsky, discussion.

15. N. Wirth and H. Weber, "Euler: A Generalization of ALGOL, and.its For-
mal Definition: Part I'", CACM, Vol. 9, No. 1, Jan. 1966.



