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Abstract

The Expectation-Maximization (EM) algorithm is an iterative approach to maximum likelihood pa-

rameter estimation. Jordan and Jacobs (1993) recently proposed an EM algorithm for the mixture of

experts architecture of Jacobs, Jordan, Nowlan and Hinton (1991) and the hierarchical mixture of ex-

perts architecture of Jordan and Jacobs (1992). They showed empirically that the EM algorithm for

these architectures yields signi�cantly faster convergence than gradient ascent. In the current paper

we provide a theoretical analysis of this algorithm. We show that the algorithm can be regarded as a

variable metric algorithm with its searching direction having a positive projection on the gradient of the

log likelihood. We also analyze the convergence of the algorithm and provide an explicit expression for

the convergence rate. In addition, we describe an acceleration technique that yields a signi�cant speedup

in simulation experiments.
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Introduction

Although neural networks are capable in principle of representing complex nonlinear functions,

the time required to train a complex network does not always scale well with problem size

and the solution obtained does not always reveal the structure in the problem. Moreover, it is

often di�cult to express prior knowledge in the language of fully-connected neural networks.

Achieving better scaling behavior, better interpretability of solutions and better ways of incor-

porating prior knowledge may require a more modular approach in which the learning problem

is decomposed into sub-problems. Such an approach has been used with success in the statistics

literature and the machine learning literature, where decision-tree algorithms such as CART

and ID3 and multivariate spline algorithms such as MARS have running times that can be

orders of magnitude faster than neural network algorithms and often yield simple, interpretable

solutions (Breiman, Friedman, Olshen & Stone, 1984; Friedman, 1991; Quinlan, 1986).

A general strategy for designing modular learning systems is to treat the problem as one

of combining multiple models, each of which is de�ned over a local region of the input space.

Jacobs, Jordan, Nowlan and Hinton (1991) introduced such a strategy with their \mixture of

experts" (ME) architecture for supervised learning. The architecture involves a set of function

approximators (\expert networks") that are combined by a classi�er (\gating network"). These

networks are trained simultaneously so as to split the input space into regions where particular

experts can specialize. Jordan and Jacobs (1992) extended this approach to a recursively-de�ned

architecture in which a tree of gating networks combine the expert networks into successively

larger groupings that are de�ned over nested regions of the input space. This \hierarchical

mixture of experts" (HME) architecture is closely related to the decision tree and multivariate

spline algorithms.

The problem of training a mixture of experts architecture can be treated as a maximum

likelihood estimation problem. Both Jacobs et al. (1991) and Jordan and Jacobs (1992) derived

learning algorithms by computing the gradient of the log likelihood for their respective archi-

tectures. Empirical tests revealed that although the gradient approach succeeded in �nding

reasonable parameter values in particular problems, the convergence rate was not signi�cantly

better than that obtained by using gradient methods in multi-layered neural network archi-

tectures. The gradient approach did not appear to take advantage of the modularity of the

architecture. An alternative to the gradient approach was proposed by Jordan and Jacobs (in

press), who introduced an Expectation-Maximization (EM) algorithm for mixture of experts

architectures. EM is a general technique for maximum likelihood estimation that can often

yield simple and elegant algorithms (Baum, Petrie, Soules & Weiss, 1970; Dempster, Laird &

Rubin, 1977). For mixture of experts architectures, the EM algorithm decouples the estimation

process in a manner that �ts well with the modular structure of the architecture. Moreover,

Jordan and Jacobs (in press) observed a signi�cant speedup over gradient techniques.

In this paper, we provide further insight into the EM approach to mixtures of experts

architectures via a set of convergence theorems. We study a particular variant of the EM

algorithm proposed by Jordan and Jacobs (in press) and demonstrate a relationship between

this algorithm and gradient ascent. We also provide theorems on the convergence rate of the

algorithm and provide explicit formulas for the constants.

The remainder of the paper is organized as follows. Section 2 introduces the ME model.

The EM algorithm for this architecture is derived and two convergence theorems are presented.

Section 3 presents an analogous derivation and a set of convergence results for the HME model.

Section 4 introduces two acceleration techniques for improving convergence and presents the

results of numerical experiments. Section 5 presents our conclusions.
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Figure 1: The mixture of experts architecture. The total output � is the weighted sum of the

expert network outputs: � = g1�1 + g2�2, where the weights are the gating network outputs

g1 and g2.

Theoretical analysis of an EM algorithm for the mixture of

experts architecture

Network learning based on maximum likelihood estimation

We begin by studying the non-hierarchical case. As shown in Figure 1, the mixture of experts

(ME) architecture is comprised of K expert networks, each of which solves a function approx-

imation problem over a local region of the input space. To each expert network we associate

a probabilistic model that relates input vectors x 2 R
n to output vectors y 2 R

m. We denote

these probabilistic models as follows

P (yjx; �j); j = 1; 2; � � � ; K;

where the �j are parameter vectors. Each of these probability densities is assumed to belong

to the exponential family of densities (Jordan & Jacobs, in press). The j
th

expert network

produces as output a parameter vector �j

�j = fj(x; �j); j = 1; 2; � � � ; K;

which is the location parameter for the j
th

probability density. In the current paper, as in

Jordan and Jacobs (in press), we treat the case in which the functions fj are linear in the

parameters. We extend our results to the case of experts that are nonlinear in the parameters

in the Appendix.

We also assume, for simplicity, that the probability densities P (yjx; �j) are gaussian, im-

plying that the location parameter is simply the mean. We associate a covariance matrix �j
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with each expert network, yielding the following probabilistic model for expert j

P (yjx; �j) = (2� det �j)
�
1
2 expf�

1

2
[y� fj(x; �j)]

T
�
�1
j
[y� fj(x; �j)]g: (1)

The ME architecture also utilizes a auxiliary network known as a gating network, whose job

it is to partition the input space into regions corresponding to the various expert networks. This

is done by assigning a probability vector [g1; g2; � � � ; gK]
T to each point in the input space. In

particular, the gating net implements a parameterized function s : R
n ! R

K
and a normalizing

function g : RK ! R
K such that

gj = gj(x; �g) =
e
sjP

K

i=1 e
si
; j = 1; � � � ; K; (2)

which satis�es
KX
j=1

gj(x; �g) = 1; for any x; �g: (3)

In the current paper we focus on the case in which the function s is linear (cf. Jordan & Jacobs,

in press). In this case the boundaries gi = gi0 are planar and the function g can be viewed as a

smoothed piecewise-planar partitioning of the input space.

Training data are assumed to be generated according to the following probability model.

We assume that for a given x, a label j is selected with probability P (jjx) = gj(x; �g). An

output y is then chosen with probability P (yjx; �j). Thus the total probability of observing y

from x is given by the following �nite mixture density

P (yjx) =

KX
j=1

P (jjx)P (yjx; �j) =

KX
j=1

gj(x; �g)P (yjx; �j): (4)

A training set Y = f(x(t);y(t)); t = 1; � � � ; Ng is assumed to be generated as an independent set

of draws from this mixture density. Thus the total probability of the training set, for a speci�ed

set of input vectors fx(t)gN
t=1, is given by the following likelihood function

L = P (fy
(t)
g
N

1 jfx
(t)
g
N

1 ) =

NY
t=1

P (y
(t)
jx

(t)
) (5)

=

NY
t=1

KX
j=1

gj(x
(t)
; �g)P (y

(t)jx(t); �j): (6)

The learning algorithms that we discuss are all maximum likelihood estimators. That is,

we treat learning as the problem of �nding parameters �g, �j , and �j to maximize L, or, more

conveniently, to maximize the log likelihood l = lnL

l(�;Y) =

NX
t=1

ln

KX
j=1

gj(x
(t)
; �g)P (y

(t)
jx

(t)
; �j);

where � = [�g; �1; �1; � � � ; �K ;�1;�2; � � � ;�K ]
T
.

Given the probability model in Eq. 4, the expected value of the output is given as follows

� � E[yjx] =

KX
j=1

gj(x; �g)�j :
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This motivates using the weighted output of the expert networks as the total output of the ME

architecture (cf. Figure 1).

The model in Eqs. (4) and (1) is a �nite gaussian mixture model. It is interesting to

compare this model to a related gaussian mixture model that is widely studied in statistics;

i.e., the model

P (x) =

KX
j=1

�jP
(k)
j

(xj�j); �j � 0;

KX
j=1

�j = 1: (7)

The di�erence between these models is clear: the �j 's in Eq. (7) are independent of the input

vectors, while the gj 's in Eq. (4) are conditional on x (they represent the probabilities P (jjx)).

Thus model (7) represents a unconditional probability, appropriate for unsupervised learning,

while model (4) represents a conditional probability, appropriate for supervised learning.

There is another model studied in statistics, the switching regression model (Quandt &

Ramsey, 1972, 1978, De Veaux, 1986), that is intermediate between model (7) and model (4).

The switching regression model is given as follows

P (yjx) = �P (yjx; �1) + (1� �)P (yjx; �2); (8)

where the P (yjx; �1) are univariate gaussians and the mean of each gaussian is assumed to be

linear in x. This model assumes that the data pair fy;xg is generated from a pair of linear

regression models through a random switch which turns to one side with probability � and to

the other side with probability 1��. This model can be generalized to allow for a multinomial

switch

P (yjx) =

KX
j=1

�jP (yjx; �j); (9)

where �j � 0;
P

K

j=1 �j = 1 and P (yjx; �j) is given by Eq. (1). The di�erence between

switching regression and the ME model is that the switching regression model assumes that

the setting of the switch is independent of the input vector. This assumption does not allow

for piecewise variation in the form of the regression surface; all of the regression components

contribute throughout the input space. Switching regression can be viewed as one end of a

continuum in which the overlap in the regression components is total; decision tree models

(e.g., Breiman et al., 1984) are the other end of the continuum in which the overlap is zero.

The ME model interpolates smoothly between these extremes.

An EM algorithm for training the mixture of experts

In many estimation problems the likelihood is a complicated nonlinear function of the param-

eters. Parameter estimation in such cases usually involves some sort of numerical optimization

technique, typically gradient ascent. An alternative to gradient techniques, applicable in many

situations, is the \Expectation-Maximization" or \EM" algorithm (Baum, Petrie, Soules &

Weiss, 1970; Dempster, Laird & Rubin, 1977). EM is based on the idea of solving a succession

of simpli�ed problems that are obtained by augmenting the original observed variables with a

set of additional \hidden" variables. Unconditional mixture models are particularly amenable

to the EM approach (Redner & Walker, 1984) and, as observed by Jordan and Jacobs (in press),

the conditional mixture of experts model is also amenable to an EM approach.

Given an observed data set Y , we augment Y with a set of additional variables Ymis, called

\missing" or \hidden" variables, and consider a maximum likelihood problem for a \complete-

data" set Z = fY ;Ymisg (cf. Little & Rubin, 1987). We choose the missing variables in such
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a way that the resulting \complete-data log likelihood," given by lc(�;Z) = lnP (Y ;Ymisj�),

is easy to maximize with respect to �. The probability model P (Y ;Ymisj�) must be chosen

so that its marginal distribution across Y , referred to in this context as the \incomplete-data"

likelihood, is the original likelihood

P (Yj�) =

Z
P (Y ;Ymisj�)dYmis: (10)

In deriving an update to the parameters based on the complete-data log likelihood, we �rst note

that we cannot work directly with the complete-data log likelihood, because this likelihood is

a random function of the missing random variables Ymis. The idea is to average out Ymis, that

is, to maximize the expected complete-data log likelihood EYmis
[lnP (Y ;Ymisj�)]. This idea

motivates the EM algorithm.

The EM algorithm is an iterative algorithm consisting of two steps:

� The Expectation (E) step, which computes the following conditional expectation of the

log likelihood

Q(�j�
(k)
) = EYmis

flnP (Zj�)jY ;�
(k)
g

=

Z
P (YmisjY ;�

(k)
) lnP (Zj�)dYmis (11)

where �
(k)

is the value of the parameter vector at iteration k.

� The Maximization (M) step, which computes

�
(k+1)

= argmax
�

Q(�j�
(k)
): (12)

The M step chooses a parameter value that increases the Q function; the expected value of

the complete-data log likelihood. Dempster, Laird and Rubin (1977) proved that an iteration

of EM also increases the original log likelihood l. That is,

l(�
(k+1)

;Y) � l(�
(k)
;Y):

Thus the likelihood l increases monotonically along the sequence of parameter estimates gen-

erated by an EM algorithm.

Although in many cases the solution to the M step can be obtained analytically, in other

cases an iterative inner loop is required to optimize Q. Another possibility is to simply increase

the value of Q during the M step

Q(�
(k+1)

j�
(k)
) > Q(�

(k)
j�

(k)
) (13)

by some means, for example by gradient ascent or by Newton's method. An algorithm with

an M-step given by Eq. (13) is referred to as a generalized EM (GEM) algorithm (Dempster,

Laird & Rubin, 1977).

For the ME architecture we choose the missing data to be a set of indicator random variables

Ymis = fI
(t)
j
; j = 1; � � � ; K; t = 1; � � � ; Ng with

I
(t)
j

=

(
1; if y(t) is generated from the j-th model given by Eq. (1),

0; otherwise
(14)
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and
KX
j=1

I
(t)
j

= 1; for each t:

We assume that the distribution of the complete data is given as follows

P (Zj�) =

NY
t=1

KY
j=1

[gj(x
(t)
; �g)P (y

(t)
jx

(t)
; �j)]

I
(t)

j :

It is easy to verify that this distribution satis�es Eq. (10).

From Eq. (11), we also obtain

Q(�j�(k)
) = EYmis

flnP (Zj�)jY ;�(k)g

=

NX
t=1

KX
j=1

h
(k)
j
(t) ln[gj(x

(t)
; �g)P (y

(t)jx(t); �j)]

=

NX
t=1

KX
j=1

h
(k)
j
(t) ln gj(x

(t)
) +

NX
t=1

h
(k)
1 (t) lnP (y

(t)
jx

(t)
; �1)

+ � � �+

NX
t=1

h
(k)

K
(t) lnP (y

(t)
jx

(t)
; �K); (15)

where

h
(k)
j
(t) = E[I

(t)
j
jY ;�

(k)
] = P (jjx

(t)
;y

(t)
)

=
gj(x

(t)
; �

(k)
g )P (y

(t)jx(t); �
(k)
j
)P

K

i=1 gi(x
(t); �

(k)
g )P (y(t)jx(t); �

(k)
i
)

; (16)

where P (jjx(t);y(t)) denotes the probability that the pair fx(t);y(t)g comes from the jth prob-

ability model. Note that we always have h
(k)
j
(t) > 0.

With the Q function in hand, we now investigate the implementation of the M step. From

Eq. (15), Eq. (1) and Eq. (2), we have

@Q

@�g
=

NX
t=1

KX
j=1

h
(k)
j
(t)

@gj(x
(t)
; �g)

@�g
=gj(x

(t)
; �g)

=

NX
t=1

KX
j=1

h
(k)
j
(t)[

@sj

@�g
�

KX
i=1

gi(x
(t)
; �g)

@si

@�g
]

=

NX
t=1

KX
j=1

[h
(k)
j
(t)� gj(x

(t)
; �g)]

@sj

@�g
; (17)

@Q

@�j
=

NX
t=1

h
(k)
j
(t)

@P (y(t)jx(t); �j)

@�j
=P (y

(t)
jx

(t)
; �j)

=

NX
t=1

h
(k)
j
(t)

@f
T

j
(x(t); �j)

@�j
�
�1
j
[y

(t)
� fj(x

(t)
; �j)]; j = 1; � � � ; K; (18)

and

@Q

@�j

=

NX
t=1

h
(k)
j
(t)

@P (y(t)jx(t); �j)

@�j

=P (y
(t)
jx

(t)
; �j)
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= �
1

2

NX
t=1

h
(k)
j
(t)�

�1
j
f�j � [y

(t)
� fj(x

(t)
; �j)][y

(t)
� fj(x

(t)
; �j)]

T
g�

�1
j
;

j = 1; � � � ; K: (19)

By letting
@Q

@�j
j
�j=�

(k+1)

j

= 0, we obtain the update for the covariance matrices

�
(k+1)
j

=
1P

N

t=1 h
(k)
j
(t)

NX
t=1

h
(k)
j
(t)[y

(t)
� fj(x

(t)
; �j)][y

(t)
� fj(x

(t)
; �j)]

T
: (20)

Assuming that the training set Y is generated by a mixture model, we note that when the the

sample number N is su�ciently large (relative to the dimension of y), the space spanned by

the N vectors [y(t) � fj(x
(t)
; �j)]; t = 1; � � � ; N will be of full dimension with probability one.

Recalling that h
(k)
j
(t) > 0 we observe that when the sample number N is su�ciently large the

matrices �
(k+1)
j

are therefore positive de�nite with probability one.

Next, by letting
@Q

@�j
j
�j=�

(k+1)

j

= 0, we obtain

NX
t=1

h
(k)
j
(t)

@f
T

j
(x

(t)
; �j)

@�j
(�

(k)
j
)
�1
[y

(t)
� fj(x

(t)
; �j)] = 0; (21)

which we can solve explicitly given our assumption that the expert networks are linear

�
(k+1)
j

= (R
(k)
j
)
�1
c
(k)
j

(22)

where

c
(k)
j

=

NX
t=1

h
(k)
j
(t)Xt(�

(k)
j
)
�1
y
(t)
; (23)

R
(k)
j

=

NX
t=1

h
(k)
j
(t)Xt(�

(k)
j
)
�1
X

T

t
; (24)

and

X
T

t =

8>>><
>>>:

(x
(t)
)
T

0 � � � � � � 0 j 1 0 � � � � � � 0

0 (x(t))T 0 � � � 0 j 0 1 0 � � � 0

.

..
.
..

.

.. j
.
..

.

..

0 � � � � � � 0 (x
(t)
)
T j 0 � � � � � � 0 1

9>>>=
>>>;
: (25)

Note that R
(k)
j

is invertible with probability one when the sample size N is su�ciently large.

Finally, let us consider the update for �g. Jordan and Jacobs (in press) observed that the

gating network is a speci�c form of a generalized linear model, in particular a multinomial logit

model (cf. McCullagh & Nelder, 1984). Multinomial logit models can be �t e�ciently with

a variant of Newton's method known as iteratively reweighted least squares (IRLS). For the

purposes of the current paper, we simply write the generic form of a Newton update and refer

the reader to Jordan and Jacobs (in press) for further details on IRLS. Note also that Jordan

and Jacobs (in press) assume that the inner loop of IRLS �tting runs to completion. In the

current paper we address only the case in which a single IRLS step is taken in the inner loop.

The form of this IRLS step is generalized to allow a learning rate parameter.
1

1Thus the algorithm that we analyze in this paper is, strictly speaking, a GEM algorithm.
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The update for the gating network parameters is obtained as follows. Denote the gradient

vector at iteration k as

e
(k)
g

=

NX
t=1

KX
j=1

[h
(k)
j
(t)� gj(x

(t)
; �

(k)
g
)]
@sj

@�
(k)
g

; (26)

and the Hessian matrix at iteration k as

R
(k)
g

=

NX
t=1

KX
j=1

gj(x
(t)
; �

(k)
g
)[1� gj(x

(t)
; �

(k)
g
)]
@sj

@�g

@sj

@�
T

g

: (27)

Then the generalized IRLS update is given as follows

�
(k+1)
g

= �
(k)
g

+ 
g(R
(k)
g
)
�1
e
(k)
g
; (28)

where 
g is a learning rate.

In summary, the parameter update for the model Eq. (4) is given as follows

Algorithm 1

1. (The E step): Compute the h
(k)
j
(t)'s by Eq. (16).

2. (The M step): Compute �
(k+1)
j

by Eq. (20), compute �
(k+1)
g by Eq. (28), and also

compute �
(k+1)
j

; j = 1; � � � ; K by Eq. (22).

Before closing this section, let us return to the switching regression model (Eq. 9). Following

the same procedure as above, we obtain the following EM algorithm for switching regression.

Algorithm 2

1. (The E step): Compute the h
(k)
j
(t)'s by

h
(k)
j
(t) =

�
(k)
j
(x

(t)
)P (y

(t)jx(t); �
(k)
j
)P

K

i=1 �
(k)
i
(x(t))P (y(t)jx(t); �

(k)
i
)

: (29)

2. (The M step): Compute �
(k+1)
j

by Eq. (20), and let

�
(k+1)
j

(x
(t)
) = h

(k)
j
(t): (30)

Obtain �
(k+1)
j

; j = 1; � � � ; K in the same manner as for model Eq. (4).

We see that the EM algorithm for switching regression is simpler, because the �
(k)
j
(x(t))'s

are not constrained through a common parameter �g as in the ME model.
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Theoretical convergence results

In this section we provide a number of convergence results for the algorithm presented in the

previous section. We study both the convergence and the convergence rate of the algorithm.

In the Appendix we extend these results to a number of related algorithms.

We begin with a convergence theorem that establishes a relationship between the EM algo-

rithm and gradient ascent.

Theorem 1 For the model given by Eq. (4) and the learning algorithm given by Algorithm 1,

we have:

�
(k+1)
g

� �
(k)
g

= P
(k)
g

@l

@�g
j
�g=�

(k)

g

;

�
(k+1)
j

� �
(k)
j

= P
(k)
j

@l

@�j
j
�j=�

(k)

j

; j = 1; � � � ; K;

vec[�
(k+1)
j

]� vec[�
(k)
j
] = P

(k)

�j

@l

@vec[�j]
j
�j=�

(k)

j

; j = 1; � � � ; K; (31)

where l = lnL is given by Eq. (6), Eq. (4) and Eq. (1), and \vec[A]" denotes the vector

obtained by stacking the column vectors of the matrix A.

Moreover, assuming that the training set Y is generated by the mixture model of Eqs. (4)

and (1) and assuming that the number N is su�ciently large, we have that P
(k)
g is a positive

de�nite matrix, and P
(k)
j

; P
(k)
�j

; j = 1; � � � ; K are positive de�nite matrices with probability one.

Speci�cally, they take the following values:

(i) P
(k)
g = 
g(R

(k)
g )�1 with R

(k)
g given by Eq. (28).

(ii) For j = 1; � � � ; K, P
(k)
j

= (R
(k)
j
)�1 with R

(k)
j

given by Eq. (22).

(iii) For j = 1; � � � ; K,

P
(k)

�j
=

2P
N

t=1 h
(k)
j
(t)

�
(k)
j


 �
(k)
j

(32)

where \
" denotes the Kronecker product. For a m � n matrix A and q � m matrix B, the

Kronecker product A
B is de�ned as

A
 B =

8>>><
>>>:

a11B a12B � � � a1nB

a21B a22B � � � a2nB

.

..
.
..

.

..

am1B am2B � � � amnB

9>>>=
>>>;

Proof. From Eqs. (6), (4) and (1), for l = lnL, we obtain the following derivatives:

@l

@�g
j
�g=�

(k)
g

=

NX
t=1

KX
j=1

f
gj(x

(t)
; �

(k)
g )P (y(t)jx(t); �

(k)
j
)P

K

i=1 gi(x
(t); �

(k)
g )P (y(t)jx(t); �

(k)
i
)

g

@gj(x
(t)
; �g)=@�g j

�g=�
(k)
g

gj(x
(t); �

(k)
g
)

=

NX
t=1

KX
j=1

[h
(k)
j
(t)� gj(x

(t)
; �

(k)
g )]

@sj

@�g
j
�g=�

(k)
g
; (33)

@l

@�j
j
�j=�

(k)

j

=

NX
t=1

f
gj(x

(t)
; �

(k)
g )P (y(t)jx(t); �

(k)
j
)P

K

i=1 gi(x
(t); �

(k)
g )P (y(t)jx(t); �

(k)
i
)

g

@P (y(t)jx(t); �j)=@�j j
�j=�

(k)

j

P (y(t)jx(t); �
(k)
j
)

9



=

NX
t=1

h
(k)
j
(t)

@f
T

j
(x

(t)
; �j)

@�j
j
�j=�

(k)

j

(�
(k)
j
)
�1
[y

(t)
� fj(x

(t)
; �

(k)
j
)];

j = 1; � � � ; K; (34)

@l

@�j

j
�j=�

(k)

j

=

NX
t=1

f
gj(x

(t)
; �

(k)
g
)P (y

(t)jx(t); �
(k)
j
)P

K

i=1 gi(x
(t); �

(k)
g
)P (y(t)jx(t); �

(k)
i
)

g

@P (y
(t)jx(t); �

(k)
j
)=@�jj�j=�

(k)

j

P (y(t)jx(t); �
(k)
j
)

= �
1

2

NX
t=1

h
(k)
j
(t)(�

(k)
j
)
�1
f�

(k)
j
� [y

(t)
� fj(x

(t)
; �

(k)
j
)][y

(t)
� fj(x

(t)
; �

(k)
j
)]
T
g(�

(k)
j
)
�1
;

j = 1; � � � ; K; (35)

We now prove points (i), (ii) and (iii).

(i) Comparing Eq. (33) with Eq. (28) it follows that P
(k)
g = 
g(R

(k)
g )

�1
. To show that P

(k)
g

is positive de�nite, we show that R
(k)
g is positive de�nite.2 For an arbitrary vector u, from Eq.

(28) we have

u
T
R
(k)
g u =

NX
t=1

KX
j=1

gj(x
(t)
; �

(k)
g )[1� gj(x

(t)
; �

(k)
g )]u

T
@sj

@�g

@sj

@�
T

g

u

=

NX
t=1

KX
j=1

gj(x
(t)
; �

(k)
g )[1� gj(x

(t)
; �

(k)
g )]v

T
v � 0;

since gj(x
(t)
; �

(k)
g
)[1 � gj(x

(t)
; �

(k)
g
)] > 0. Equality holds in the above equation only when

v = [@sj=@�
T

g ]u = 0 for any u, which is impossible. Thus we have established that R
(k)
g (and

thus also (R
(k)
g )

�1
) is positive de�nite.

(ii) Let C
(k)
j

, R
(k)
j

be given by Eq. (22). From Eq. (21) and Eq. (34), we obtain

[C
(k)
j

� (R
(k)
j
)�

(k)
j
] =

@l

@�j
j
�j=�

(k)

j

; j = 1; � � � ; K:

Furthermore, it follows from Eq. (22) that

�
(k+1)
j

= �
(k)
j

+ (R
(k)
j
)
�1
C
(k)
j

� �
(k)
j

= �
(k)
j

+ (R
(k)
j
)
�1
[C

(k)
j

� (R
(k)
j
)�

(k)
j
]: (36)

That is, we have

�
(k+1)
j

= �
(k)
j

+ (R
(k)
j
)
�1 @l

@�j
j
�j=�

(k)

j

; j = 1; � � � ; K:

and P
(k)
j

= (R
(k)
j
)�1.

We now prove that R
(k)
j

is positive de�nite. For an arbitrary vector u, from Eq. (22 ) we

have

u
T
R
(k)
j
u =

NX
t=1

h
(k)
j
(t)u

T
Xt(�

(k)
j
)
�1
X

T

t u =

NX
t=1

h
(k)
j
(t)v

T
(�

(k)
j
)
�1
v � 0:

2A matrix A is positive de�nite if and only if A�1 is positive de�nite.

10



From the note immediately following Eq. (16)), we know that �
(k)
j

given by Eq. (20) is positive

de�nite and invertible for each k with probability one. Thus, with probability one, the equality

of the above equation holds only when v = X
T

t u = 0 for any u, which is impossible. Thus we

have established that R
(k)
j

(and thus also (R
(k)
j
)
�1
) is positive de�nite with probability one.

(iii) We consider Eq. (20) for updating �
(k)
j
. This equation can be expanded as follows

�
(k+1)
j

= �
(k)
j

+
1P

N

t=1 h
(k)
j
(t)

NX
t=1

h
(k)
j
(t)[y

(t)
� fj(x

(t)
; �j)][y

(t)
� fj(x

(t)
; �j)]

T
� �

(k)
j

= �
(k)
j

+
2�

(k)
jP

N

t=1 h
(k)
j
(t)

V�j�
(k)
j
; (37)

where

V�j = �
1

2

NX
t=1

h
(k)
j
(t)(�

(k)
j
)
�1
f�

(k)
j

� [y
(t)
� fj(x

(t)
; �

(k)
j
)][y

(t)
� fj(x

(t)
; �

(k)
j
)]
T
g(�

(k)
j
)
�1
:

It follows from Eq. (35) that

V�j =
@l

@�j

j
�j=�

(k)

j

:

That is, we have

�
(k+1)
j

=
2�

(k)
jP

N

t=1 h
(k)
j
(t)

@l

@�j

j
�j=�

(k)

j

�
(k)
j
:

Utilizing the identity vec[ABC] = (CT 
 A)vec[B], we obtain

vec[�
(k+1)
j

] =
2P

N

t=1 h
(k)
j
(t)

(�
(k)
j

 �

(k)
j
)
@l

@�j

j
�j=�

(k)

j

:

Thus P
(k)

�j
=

2PN

t=1
h
(k)

j (t)
(�

(k)
j


 �
(k)
j
). Moreover, for an arbitrary matrix U , we have

vec[U ]
T
(�

(k)
j

 �

(k)
j
)vec[U ] = tr(�

(k)
j
U�

(k)
j
U
T
)

= tr((�
(k)
j
U)

T
(�

(k)
j
U)) = vec[�

(k)
j
U ]

T
vec[�

(k)
j
U ] � 0

where the equality holds only when �
(k)
j
U = 0, which is impossible with probability one since

U is arbitrary, and �
(k)
j

is, as indicated above, positive de�nite with probability one. Thus we

have established that P
(k)
�j

is positive de�nite with probability one. 2

Theorem 1 can be used to establish a relationship between the step taken by the EM

algorithm and the direction of steepest ascent. Recall that for a positive matrix B, we have

@l

@�

T

B
@l

@�
> 0. This implies the following corollary.

Corollary 1 Assume that the training set fy(t);x(t); t = 1; � � � ; Ng comes from the mixture

model of Eqs. (4) and (1) and that N is su�ciently large. With probability one, the search

direction of the EM algorithm has a positive projection on the gradient ascent searching direction

of l = lnL.

11



That is, the EM algorithm can be viewed as a modi�ed gradient ascent algorithm for

maximizing l = lnL. From Theorem 1, B changes with the iteration step k, thus, the EM

algorithm can also be regarded as a variable metric gradient ascent algorithm. This algorithm

searches in an uphill direction, so if the learning rate is appropriate, the searching process will

converge to a local maximum or a saddle point of the likelihood l = lnL.

Similar results have been obtained for unsupervised mixture models by Xu and Jordan

(1993) and for Hidden Markov Models by Baum and Sell (1968). See Xu and Jordan (1993) for

further discussion of the relationships between these theorems.

We now utilize a result from Xu and Jordan (1993) to establish the convergence of the

parameters �
(k)
. We also provide convergence rates for both l(�

(k)
) and �

(k)
.

Theorem 2 Assume that the training set Y is generated by the mixture model of Eqs. (4)(1)

and that N is su�ciently large. Assume further that �1; � � � ;�K are diagonal and let v�j be a

vector consisting of the diagonal elements of �j.

Let us denote

� = [�
T

g
; �

T

1 ; � � � ; �
T

K
;v�1; � � � ;v�K ]

T

P = diag[P
(k)
g ; P1; � � � ; PK; P�1 ; � � � ; P�K ]; and H(�) =

@
2
l(�)

@�@�
T
:

Furthermore, assume that on a given domain D
�

(i)
@
2
gj(�q)

@�q@�
T

q

,
@
2
fji(�j)

@�j@�
T

j

, j = 1; � � � ; K; i = 1; � � � ; m exist and are continuous;

(ii) the Hessian matrix H(�) is negative de�nite;

(iii) �
�
is a local maximum of l(�), and �

� 2 D
�
.

Then with probability one,

(1) Letting �M;�m ( here M > m > 0) be the minimum and maximum eigenvalues

of the negative de�nite matrix (P
1
2 )

T
H(�)(P

1
2 ) (or equivalently the minimum and maximum

eigenvalues of PH(�), since we have PHe = �e from (P
1
2 )THP

1
2e = �e), we have

l(�
�
)� l(�

(k)
) � r

k
[l(�

�
)� l(�0)]; (38)

kP
�
1
2 (�

(k)
��

�
)k � jrj

k=2

r
2

m
[l(�

�
)� l(�0)]; (39)

where r = 1� (1� M

2
)
m
2

M
< 1. We also have 0 < jrj < 1 when M < 2.

(2) For any initial point �0 2 D
�
, limk!1�

(k)
= �

�
when M < 2.

Proof. As indicated earlier, when the training set fy(t);x(t); t = 1; � � � ; Ng is generated

from the mixture model of Eqs. (4)(1) and N is su�ciently large, �
(k)
j

remains positive de�nite

during the learning process. Thus, under the condition (i), it follows from Eqs. (6), (4) and

(1) that H(�) exists and remains continuous on D
�
. Expanding the log likelihood in a Taylor

expansion, we have

l(�)� l(�
�
) = (� ���

)
T
@l(�)

@�
j
�=�

� +
1

2
(� ���

)
T
H(�

�
+ �(� ���

))(� ���
)

with 0 < � < 1. Since
@l(�)

@�
j
�=�

� = 0, we have

l(�)� l(�
�
) =

1

2
(� ��

�
)
T
H(�

�
+ �(� ��

�
))(� ��

�
): (40)

12



From Theorem 1 we know that P is positive de�nite. Furthermore, from condition (ii),

H(�) is negative de�nite on D
�
. This implies that P

1
2 exists and (P

1
2 )

T
H(�)(P

1
2 ) is negative

de�nite on D
�
. Utilizing the Rayleigh quotient we obtain that for any u,

�Mkuk
2
� u

T
(P

1
2 )

T
H(�)(P

1
2 )u � �mkuk

2
: (41)

Substituting Eq. (41) into Eq. (40), we obtain

l(�)� l(�
�
) =

1

2
(� ��

�
)
T
(P

�
1
2 )

T
(P

1
2 )

T
H(�

�
+ �(� ��

�
))P

1
2P

�
1
2 (� ��

�
) (42)

l(�)� l(�
�
) � �

M

2
kP

�
1
2 (� ��

�
)k

2
(43)

Moreover, we have

�mkP
�
1
2 (� ��

�
)k

2
� j(� ��

�
)
T
[
@l(�)

@�
�
@l(�)

@�
j
�=�

� ]j

� �kP
1
2
@l(�)

@�
kkP�

1
2 (� ���

)k

Thus

kP
�
1
2 (� ��

�
)k �

1

m
kP

1
2
@l(�)

@�
k:

Together with Eq. (43), we obtain

� kP
1
2
@l(�)

@�
k
2
�

2m2

M
[l(�)� l(�

�
)]: (44)

On the other hand, we also have

l(�)� l(�
(k)
) = (���

(k)
)
T
@l(�)

@�
j
�=�

(k)+
1

2
(���

(k)
)
T
H(�

(k)
+ �

0
(���

(k)
))(���

(k)
)

with 0 < �
0
< 1. By Theorem 1, we know that for the EM algorithm, �

(k+1) � �
(k)

=

P
@l(�)

@�
j
�=�

(k) . Utilizing this result in the above equation, we obtain

l(�
(k+1)

)� l(�
(k)
) = kP

1
2
@l(�)

@�
k2
�=�

(k)

+
1

2
(P

1
2
@l(�)

@�
j
�=�

(k))
T
(P

1
2 )

T
H(�

(k)
+ �

0
(� ��

(k)
))P

1
2 (P

1
2
@l(�)

@�
j
�=�

(k))

� (1�
M

2
)kP

1
2
@l(�)

@�
k
2

�=�
(k) : (45)

Combining Eq. (45) and Eq. (44), we obtain

l(�
(k+1)

)� l(�
(k)
) � �(1�

M

2
)
2m

2

M
[l(�

(k)
)� l(�

�
)]

and furthermore

l(�
(k+1)

)� l(�
�
) � [1� (1�

M

2
)
2m

2

M
][l(�

(k)
)� l(�

�
)]

� [1� (1�
M

2
)
2m2

M
]
k
[l(�0)� l(�

�
)]: (46)
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Let r = [1 � (1 � M

2
)
2m2

M
]. Multiplying both sides of the above equation by negative one,

we obtain Eq. (38). In addition, it is easy to verify that 0 < jrj < 1 when M < 2 (recall that

M > m). Furthermore, it follows from Eq. (41) and Eq. (42) that we have

l(�
(k)
)� l(�

�
) � �

m

2
kP

�
1
2 (�

(k)
��

�
)k

2

which, by Eq. (46), becomes

�
m

2
kP

�
1
2 (�

(k)
��

�
)k

2
� r

k
[l(�0)� l(�

�
)]

kP�
1
2 (�

(k) ���
)k � jrjk=2

r
2

m
[l(�

�
)� l(�0)]

which is just Eq. (39). In addition, when M < 2, jrj < 1, we have limk!1�
(k)

= �
�
since P

is positive de�nite. 2

We see from this theorem that the EM algorithm converges linearly. Moreover, the speed of

convergence depends on the di�erence between M and m: the smaller the di�erence, the faster

the convergence.

Theoretical analysis of an EM algorithm for the hierarchical

mixture of experts architecture

An EM algorithm for training the hierarchical architecture

The ME architecture can be viewed as an architecture for splitting the input space into regions

in which di�erent local functions are �t. The hierarchical mixture of experts (HME) architecture

generalizes this idea to a nested model in which regions in the input space are split recursively

into subregions (Jordan & Jacobs, 1992). The resulting tree-structured architecture can be

viewed as a multi-resolution function approximator in which smoothed piecewise functions are

�t at a variety of levels of resolution.

As shown in Figure 2, the HME architecture is a tree. In this tree, each terminal node is an

expert network, and each nonterminal node is a root of a subtree which itself corresponds to

an HME architecture. At every nonterminal node in the tree there is a gating network which is

responsible for the topmost split of the HME architecture rooted at that node. All of the expert

networks and the gating networks in the architecture have the same input vector x 2 R
n
. In

the remainder of this section, as in Jordan and Jacobs (in press), we consider the case in which

the expert networks and the gating networks are generalized linear models. Furthermore, for

simplicity, we consider only the case in which the probability model for the experts is gaussian.

Let us denote a node at depth r by vi0i1���ir . This node is the ir-th daughter of the node

vi0i1���ir�1 . The root node of the tree is vi0 . The number of branches emitted from vi0i1���ir is

denoted by Ki0i1���ir
. For simplicity, we can omit i0 and write vi1���ir and Ki1���ir

. In addition,

the output of the subtree rooted at vi1���ir is denoted

yi1���ir =

Ki1���irX
ir+1=1

gi1���irir+1(x; �
g

i1���ir
)yi1���irir+1

where gi1���irir+1 is the gating coe�cient generated by the gating network attached at vi1���ir .

This coe�cient satis�es
Ki1���irX
ir+1=1

gi1���irir+1(x; �
g

i1���ir
) = 1;

14
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Figure 2: A two-level hierarchical mixture of experts. To form a deeper tree, each expert is

expanded recursively into a gating network and a set of sub-experts.

for any x, where �
g

i1���ir
is the parameter vector of the gating network.

Given a training set Y = f(x(t);y(t)); t = 1; � � � ; Ng, we want to maximize the likelihood

function (cf. Eq. 6), that is,

L = P (fy(t)gN1 jfx
(t)gN1 ) =

NY
t=1

P (y
(t)jx(t)):

Expanding the probability model, we have

P (y
(t)
jx

(t)
) =

Ki0X
i1=1

gi1(x
(t)
; �

g

i0
)P (y

(t)
jx

(t)
; vi1)

where

P (y
(t)
jx

(t)
; vi1) =

8>>>><
>>>>:

PKi1

i2=1
gi1i2(x

(t)
; �

g

i1
)P (y(t)jx(t); vi1i2);

if vi1 is a nonterminal node;

(2� det�i1
)
�
1
2 e
f�

1
2
[y(t)�fi1(x

(t)
;�i1 )]

T�
�1
i1

[y(t)�fi1(x
(t)
;�i1 )]g;

if vi1 is a terminal node

(47)
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and recursively

P (y
(t)jx(t); vi1���ir) =

8>>>><
>>>>:

PKi1���ir

ir+1=1
gi1���ir(x; �

g

i1���ir
)P (y

(t)jx(t); vi1���irir+1);

if vi1���ir is a nonterminal node;

(2� det�i1���ir
)
�
1
2 e
f�

1
2
[y(t)�fi1���ir (x

(t)
;�i1���ir )]

T��1
i1 ���ir

[y(t)�fi1 ���ir (x
(t)
;�i1 ���ir )]g;

if vi1���ir is a terminal node

(48)

where fi1���ir(:; :) is parameterized function implemented by the expert network at terminal node

vi1���ir , and �i1���ir , �i1���ir
are the parameters of this expert network; P (y

(t)jx(t); vi1���ir) is the

probability that y
(t)

is generated from the probability model rooted at vi1���ir when x
(t)

is the

input.

To derive an EM algorithm for the HME architecture, we attach a set of indicator random

variables to each nonterminal node vi1���ir

I
(t)
i1���ir

=

(
1; if y(t) is generated by the subtree rooted at vi1���ir ;

0; otherwise.

The missing data Ymis consists of all of the indicator variables attached to the nonterminal

nodes throughout the tree. In addition, we denote by Ymis

i1���ir
the set consisting of the indicator

variables attached to the nonterminal nodes in the subtree rooted at vi1 ���ir .

We de�ne the distribution of the complete data Z = fY ;Ymisg as follows

P (Zj�) =

NY
t=1

Ki0Y
i1=1

[gi1(x
(t)
; �

g

i0
)P (Zi1

jx
(t)
; vi1)]

I
(t)

i1 (49)

where

P (Zi1
jx

(t)
; vi1) =

8>>>><
>>>>:

QKi1

i2=1
[gi1i2(x

(t)
; �

g

i1
)P (Zi1i2

jx(t); vi1i2)
I
(t)

i1i2 ;

if vi1 is a nonterminal node;

(2�det�i1
)
�
1
2 e
f�

1
2
[y(t)�fi1(x

(t)
;�i1)]

T��1
i1

[y(t)�fi1(x
(t)
;�i1)]g;

if vi1 is a terminal node

(50)

and recursively

P (Zi1���ir
jx

(t)
; vi1���ir ) =

8>>>>><
>>>>>:

QKi1���ir

ir+1=1
[gi1���irir+1(x; �

g

i1���ir
)P (Zi1���ir ir+1

jx(t); vi1���irir+1)]
I
(t)

i1���ir ir+1 ;

if vi1���ir is a nonterminal node;

(2�det�i1���ir
)
�
1
2 e
f�

1
2
[y(t)�fi1���ir (x

(t)
;�i1 ���ir )]

T�
�1
i1 ���ir

[y(t)�fi1���ir (x
(t)
;�i1���ir )]g;

if vi1���ir is a terminal node

(51)

It is not di�cult to verify that this distribution satis�es Eq. (10) as required.

We now compute the Q function as required by the E step of the EM algorithm. From Eq.

(11), we obtain

Q(�j�
(k)
) =

NX
t=1

Ki0X
i1=1

h
(k)
i1
(t)fln[gi1(x

(t)
; �

g

i0
)] + ln Fi1g

where

h
(k)
i1
(t) = E[I

(t)
i1
jY ;�

(k)
] =

gi1(x
(t)
; �

g(k)
i0

)P
(k)
(y

(t)jx(t); vi1)PKi0

i1=1
gi1(x

(t); �
g(k)
i0

)P (k)(y(t)jx(t); vi1)
; (52)
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lnFi1 =

( PKi1

i2=1
h
(k)
i1i2

(t)fln[gi1i2(x
(t)
; �

g

i1
)] + lnFi1i2g; if vi1 is a nonterminal node;

lnP (y
(t)jx(t); vi1); if vi1 is a terminal node

h
(k)
i1i2

(t) = E[I
(t)
i1i2

jY ;�
(k)
; I

(t)
i1

= 1] =
gi1i2(x

(t)
; �

g(k)
i1

)P (k)(y(t)jx(t); vi1i2)PKi1

i2=1
gi1i2(x

(t); �
g(k)
i1

)P (k)(y(t)jx(t); vi1i2)
; (53)

and recursively

lnFi1���ir =

8>>><
>>>:

PKi1���ir

ir+1=1
h
(k)
i1���ir ir+1

(t)fln[gi1���irir+1(x; �
g

i1���ir
)] + lnFi1���irir+1g;

if vi1���ir is a nonterminal node;

lnP (y
(t)jx(t); vi1���ir );

if vi1���ir is a terminal node

h
(k)
i1���irir+1

(t) = E[I
(t)
i1���irir+1

jY ;�
(k)
; I

(t)
i1

= 1; I
(t)
i1i2

= 1; � � � ; I
(t)
i1���ir

= 1]

=
gi1���irir+1(x

(t)
; �

g(k)
i1���ir

)P
(k)
(y

(t)jx(t); vi1���irir+1)PKi1���ir

ir+1=1
gi1���irir+1(x

(t); �
g(k)
i1���ir

)P (k)(y(t)jx(t); vi1���irir+1)
; (54)

where �
g(k)
i1 ���ir

is the estimate of �
g

i1 ���ir
at iteration k. P (y

(t)jx(t); vi1���ir ) is given by Eqs. (47) and

(48) and P
(k)
(y

(t)jx(t); vi1���ir ) means that the probability is determined with all the parameters

in the subtree rooted at vi1���ir being �xed at the estimates obtained in iteration k.

Proceeding now to the M step of the EM algorithm, we obtain parameter updates by

optimizing the Q function. If the node vi1 ���ir is a terminal node, by setting the partial derivative

of Q with respect to �i1���ir
equal to zero, we obtain an update for the covariance matrices

�
(k+1)
i1���ir

=

P
N

t=1 h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)[y(t)� fi1���ir (x
(t)
; �i1���ir )][y

(t)� fi1���ir (x
(t)
; �i1���ir )]

T

P
N

t=1 h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)

:

(55)

To obtain an update for the parameters of the expert networks we di�erentiate Q with respect

to �i1���ir and �nd that we must solve the following equation

NX
t=1

h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)
@f

T

i1���ir
(x(t); �i1���ir)

@�i1 ���ir

�
�1
i1���ir

[y
(t)� fi1���ir(x

(t)
; �i1���ir )] = 0: (56)

In the case of linear expert networks, this equation is a weighted least squares equation, which

can be solved as follows

�
(k+1)
i1���ir

= (R
(k)
i1���ir

)
�1
c
(k)
i1 ���ir

;

where

c
(k)
i1���ir

=

NX
t=1

h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)Xt(�
(k)
i1���ir

)
�1
y
(t)
;

and

R
(k)
i1���ir

=

NX
t=1

h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)Xt(�
(k)
i1���ir

)
�1
X

T

t : (57)

Finally, for any nonterminal node vi1���ir , setting the partial derivative of Q with respect to

�
g

i1���ir
equal to zero, we have that �

g(k+1)
i1���ir

is the solution of the following nonlinear system

NX
t=1

h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1 ���ir

(t)

Ki1���irX
ir+1=1

[h
(k)
i1���ir+1

(t)� gi1���ir+1(x
(t)
; �

g

i1���ir
)]
@si1���ir+1

@�
g

i1���ir

= 0: (58)
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As in the case of the one-level ME architecture (cf. Eq. (26) and Eq. (28)), we obtain the

following Newton step for updating the gating network parameters

�
g(k+1)
i1���ir

= �
g(k)
i1���ir

+ 
i1���ir(R
g(k)
i1���ir

)
�1
e
g(k)
i1���ir

; (59)

where

R
g(k)
i1���ir

=

NX
t=1

h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)

Ki1���irX
ir+1=1

gi1���ir(x
(t)
; �

g(k)
i1���ir

)�

� [1� gi1���ir (x
(t)
; �

g(k)
i1���ir

)]
@si1���ir+1

@(�
g(k)
i1���ir

)

@si1���ir+1

@(�
g(k)
i1���ir

)T
(60)

and

e
g(k)
i1���ir

=

NX
t=1

h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)�

�

Ki1���irX
ir+1=1

[h
(k)
i1���ir+1

(t)� gi1���ir+1(x
(t)
; �

g(k)
i1���ir

)]
@si1���ir+1

@(�
g(k)
i1���ir

)

: (61)

As in the case of the one-level architecture (cf. Eq. (28)) the algorithm in Eq. (59) is

essentially the same as the IRLS algorithm suggested by Jordan and Jacobs (in press), although

we have introduced a learning rate parameter and we restrict the update to a single step.

In summary, the EM algorithm for the HME architecture is given as follows.

Algorithm 3

1. (The E step): Compute the h
(k)
i1
(t); h

(k)
i1i2

(t); � � � ; h
(k)
i1���ir

(t) by Eqs. (52), (53) and (54).

2. (The M step): Compute the �
(k+1)
i1���ir

by Eq. (55), compute the �
g(k+1)
i1���ir

by Eq. (59), and

compute the �
(k+1)
i1���ir

by Eq. (57).

We can think of the E step as assigning credit (posterior probability) to various branches of the

tree for each data point and the M step as solving weighted least squares problems in which

the weights are given by the posterior probabilities assigned in the E step. The updates for the

gating networks simply cache away the posteriors.

Theoretical convergence results

Much of the analysis developed in Section 2.2 can be extended to cover the EM algorithm for

the HME architecture. In this subsection we extend Theorem 1 and Theorem 2 to cover the

hierarchical case. The results are given as Theorems 3 and 4, respectively.

We �rst compute the derivatives of the Q function

@Q

@�
g

i1���ir

=

NX
t=1

h
(k)
i1
(t) h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)�
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�

Ki1���irX
ir+1=1

[h
(k)
i1���ir+1

(t)� gi1���ir+1(x
(t)
; �

g

i1���ir
)]
@si1���ir+1

@�
g

i1���ir

; (62)

@Q

@�i1���ir

=

NX
t=1

h
(k)
i1
(t) h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)�

�
@f

T

i1���ir
(x

(t)
; �i1���ir)

@�i1���ir

�
�1
i1���ir

[y
(t)
� fi1���ir (x

(t)
; �i1���ir )]; (63)

@Q

@�i1���ir

= �
1

2

NX
t=1

h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)�
�1
i1���ir

�

� f�i1���ir
� [y

(t)
� fi1���ir (x

(t)
; �i1���ir)][y

(t)
� fi1 ���ir (x

(t)
; �i1���ir)]

T
g�

�1
i1���ir

: (64)

and the derivatives of the log likelihood

@l

@�
g

i1���ir

j
�
g

i1���ir
=(k)�

g

i1���ir

=

NX
t=1

h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)�

�

Ki1���irX
ir+1=1

[h
(k)
i1���ir+1

(t)� gi1���ir+1(x
(t)
;
(k)
�
g

i1���ir
)]
@si1���ir+1

@�
g

i1���ir

j
�
g

i1���ir
=(k)�

g

i1���ir

; (65)

@Q

@�i1���ir

j
�i1���ir=�

(k)

i1 ���ir

=

NX
t=1

h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1 ���ir

(t)�

�
@f

T

i1���ir
(x

(t)
; �i1���ir)

@�i1���ir

j
�i1 ���ir=�

(k)

i1���ir

�
�1
i1���ir

[y
(t)
� fi1���ir(x

(t)
; �

(k)
i1���ir

)]; (66)

@Q

@�i1���ir

j
�i1 ���ir=�

(k)

i1 ���ir

= �
1

2

NX
t=1

h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)(�
(k)
i1���ir

)
�1
�

� f�
(k)
i1���ir

� [y
(t)
� fi1���ir(x

(t)
; �

(k)
i1���ir

)][y
(t)
� fi1���ir(x

(t)
; �

(k)
i1���ir

)]
T
g(�

(k)
i1���ir

)
�1
:(67)

Based on these two sets of derivatives, we follow the same line of thought as in the proof of

Theorem 1 to establish the following theorem for the HME architecture.

Theorem 3 For the HME architecture of Eqs. (47) and (48), with the parameter updates given

by Algorithm 3, we have that for every node vi1���ir

�
g(k+1)
i1���ir

� �
g(k)
i1���ir

= P
g(k)
i1���ir

@l

@�
g

i1���ir

j
�
g

i1���ir
=�

g(k)

i1 ���ir

;

�
(k+1)
i1���ir

� �
(k)
i1���ir

= P
(k)
i1���ir

@l

@�i1���ir

j
�i1���ir=�

(k)

i1 ���ir

;

vec[�
(k+1)
i1���ir

]� vec[�
(k)
i1���ir

] = P
(k)

�i1 ���ir

@l

@vec[�i1���ir
]
j
�i1 ���ir=�

(k)

i1 ���ir

; (68)

where l = lnL is de�ned by Eqs. (6), (47) and (48).
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Moreover, assuming that the training set Y is generated by the HME model of Eqs. (47)

and (48), and that the number N is su�ciently large, then P
g(k)
i1���ir

is a positive de�nite matrix,

and P
(k)
i1���ir

, P
(k)

�i1 ���ir
are positive de�nite matrices with probability one. Speci�cally, they take

the following values:

(i) P
g(k)
i1���ir

= 

g

i1���ir
(R

g(k)
i1���ir

)
�1

with R
g(k)
i1���ir

given by Eq. (59).

(ii) P
(k)
i1���ir

= (R
(k)
i1���ir

)
�1

with R
(k)
i1���ir

given by Eq. (57).

(iii) For P
(k)

�i1 ���ir
, we have

P
(k)
�i1 ���ir

=
2P

N

t=1 h
(k)
i1
(t)h

(k)
i1i2

(t) � � �h
(k)
i1���ir

(t)

�
(k)
i1���ir


 �
(k)
i1���ir

(69)

where \
" denotes the Kronecker product as de�ned in Theorem 3.

From Theorem 5, we can again reach Corollary 1. Again, we see that the EM algorithm

for training the HME architecture is a type of variable metric gradient ascent algorithm for

maximizing l = lnL.

Finally, we can also generalize Theorem 2 as follows.

Theorem 4 Assume that the training set Y is generated by the HME model of Eqs. (47) and

(48) and that the number N is su�ciently large. Assume that �i1���ir
is diagonal and v�i1 ���ir

is a vector consisting of the diagonal elements of �i1���ir
.

Let � be a vector produced by cascading every vector vi1���ir = [(�
g

i1���ir
)T ; �

T

i1���ir
;v

T

�i1���ir
]T of

every node vi1���ir in the HME architecture. Let P be a diagonal block matrix with each diagonal

item being a positive diagonal block matrix D
b

i1���ir
= diag[P

q

i1���ir
; Pi1���ir ; P�i1���ir

]. The items of

� and P are arranged in such a way that Db

i1���ir
in P corresponds to vi1���ir in �.

Furthermore, assume that on a given domain D
�

(i) The parameterized functions of all the expert networks and the gating networks have

second order continuous derivatives.

(ii) The Hessian matrix H(�) =
@
2
l(�)

@�@�
T is negative de�nite;

(iii) �
�
is a local maximum of l(�), and �

� 2 D
�
.

Then we have the same conclusion as given in Theorem 2. That is

(1) Letting �M;�m ( here M > m > 0) be the minimum and maximum eigenvalues of

the negatively de�nite matrix (P
1
2 )TH(�)(P

1
2 ) (or equivalently the minimum and maximum

eigenvalues of PH(�), since we have PHe = �e from (P
1
2 )THP

1
2e = �e), we have

l(�
�
)� l(�

(k)
) � r

k
[l(�

�
)� l(�0)];

kP
�
1
2 (�

(k)
��

�
)k � jrj

k=2

r
2

m
[l(�

�
)� l(�0)];

where r = 1� (1� M

2
)
m
2

M
< 1. We also have 0 < jrj < 1 when M < 2.

(2) For any initial point �0 2 D
�
, limk!1�

(k)
= �

�
when M < 2.

We should point out that the similarity in the conclusions of Theorem 2 and Theorem 4 does

not mean that the EM algorithm for the hierarchical architecture has the same convergence

rate as that for the one-level architecture. In the two cases the matrix P is di�erent, and thus

M;m; r are also di�erent. This results in di�erent convergence rates. Indeed, in practice, the

hierarchical architecture is usually faster. The similarity in the conclusions of the two theorems

does mean, however, that the convergence rates for both the algorithms are of the same (linear)

order.
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Variants of the EM Algorithm and Simulations

Variants of the EM algorithm

For convenience, we denote an EM update of the parameter vector as follows

�
(k+1)

= Up(�
(k)
): (70)

From Theorems 1 and 2 and Theorems 3 and 4, we see that this update is actually a line search

method along an ascent direction of l = lnL

�
(k+1)

= �
(k)

+ P
(k)

�

@l

@�
j
�=�

(k) ; (71)

with P
(k)

�
being a positive de�nite matrix evaluated at �

(k)
. Moreover this update has a linear

convergence rate. This link between the EM algorithm and conventional gradient-based opti-

mization techniques suggests the possibility of using acceleration techniques for improving the

convergence. In the sequel we suggest two such acceleration techniques.

Modi�ed line search

Eq. (71) can be replaced by a modi�ed line search

�
(k+1)

= �
(k)

+ �kdk;

dk = P
(k)

�

@l

@�
j
�
= �

(k)
= Up(�

(k)
)� �(k); (72)

where �k is a stepsize which is optimized by maximizing l(�
(k)

+ �kdk) with respect to �k via

a one-dimensional search (e.g., Fibonacci search).

The implementation of a one-dimensional optimization method at every parameter update

is typically expensive. One often uses an inaccurate line search by decreasing (e.g., �k ! r�k)

or increasing (e.g., �k ! 1
r
�k) the stepsize heuristically according to a stopping rule. One

frequently used stopping rule is the so-called Goldstein test (Luenberger, 1984). The Goldstein

test is implemented as follows

l(�k) � l(0) + "l
0
(0)�k;

l(�k) > l(0) + (1� ")l
0
(0)�k;

l
0
(0) = d

T

k

@l

@�
j
�
= �

(k)
; (73)

where 0 < " < 1 is a speci�ed error bound.

Interestingly, if we rewrite the update as

�
(k+1)

= �
(k)

+ �k[Up(�
(k)
)� �

(k)
] = (1� �k)�

(k)
+ �kUp(�

(k)
);

we �nd that Eq. (72) is identical to the speedup technique for the EM algorithm studied

by Peters & Walker (1978a,b), Meilijson(1989) and Redner & Walker (1984). These authors

reported a signi�cant speedup for an appropriately selected �k even without the Goldstein test.
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A speeding up formula based on locally linearization

Using a �rst-order Taylor expansion of Up(�
(k)
) around �

(k�1)
, we have, approximately,

Up(�
(k)
) = Up(�

(k�1)
) +B(�

(k)
� �

(k�1)
)

�
(k+1)

= �
(k)

+B(�
(k)

� �
(k�1)

)

or

��k = B��k�1; (74)

where B =
@Up

@�
j
�
= �

(k)
and ��k = �

(k+1) � �(k).

For the matrix B, we have the following characteristic equation

det(�I �B) = �
n
+ �1�

n�1
+ � � �+ �n�1�+ �n = �

n
+

nX
j=1

�j�
n�j

= 0

�j = (�1)
j

X
1�i1<i2<���ij�n

�i1�i1 � � ��ij (j = 1; 2; � � � ; n)

where �i; i = 1; � � � ; n are the eigenvalues of B. It follows from the Cayley-Hamilton theorem

that

B
n
+

nX
j=1

�jB
n�j

= 0

Multiplying by ��k�n (k � n), we have

B
n
��k�n +

nX
j=1

�jB
n�j

��k�n = 0: (75)

From Eq. (74), we obtain

��k�j = B��k�j�1 = � � � = B
n�j

��k�n; j = 0; 1; � � � ; n:

Substituting into Eq. (75), we have

��k +

nX
j=1

�j��k�j = 0: (76)

Assuming that in comparison with the �rst l eigenvalues, the remaining eigenvalues can be

neglected, we have approximately

�
n
+

lX
j=1

�j�
n�j

= 0; B
n
+

lX
j=1

�jB
n�j

= 0

and correspondingly

�i +

lX
j=1

�j��i�j = 0; i = k; k+ 1; � � � : (77)

The approximation becomes exact when the last n� l eigenvalues are zero.

By minimizing k�k +
P

l

j=1 �j��k�jk
2, we obtain the following linear equation for solving

� = [�1; � � � ; �l]
T

S � = s0; S = [sij ]l�l; s0 = [�s01;�s02; � � � ;�s0l]
T
;
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sij = sji = (��k�i)
T
(��k�j); (78)

Moreover, we have

1X
i=k

lX
j=0

�j��i�j =

lX
j=0

�j��k�j +

1X
i=k+1

��i +

lX
j=1

1X
i=k+1

�j��i�j :

where �0 = 1. From Eq. (77) and

1X
i=k+1

�j��i�j = ���k+1 + �
�

(where �
�
= limk!1��k), we have

���k+1 + �
�
+

lX
j=1

�j(���k+1�j + �
�
) = 0:

Using this equation together with

lX
j=0

�j��k+1�j = ��k+1

lX
j=0

�j �

l�1X
i=0

[

lX
j=i+1

�j ]��k�i

we �nally obtain

�
�

k+1 = �k+1 �

P
l�1
i=0[
P

l

j=i+1 �j ]��k�iP
l

j=0 �j

: (79)

This formula can be used for speeding up the EM algorithm in two ways.

� Given an initial �0, we compute via the EM update �0; �1; � � � ; �l+1, and then from �j ; j =

1; � � � ; l, we solve �1; � � � ; �l utilizing Eq. (78). This yields a new �
�

l+1 via Eq. (79). We

then let �0 = �
�

l+1 and repeat the cycle.

� Instead of starting a new cycle after obtaining �
�

k+1, we simply let �l+1 = �
�

l+1, and use

the EM update (Eq. 70) to obtain a new �l+2, then we use �1; �1; � � � ; �l+2 to get a �
�

l+2.

Similarly, after getting �
�

k
; k > l, we let �k = �

�

k
and use the EM update to get a new

�k+1, and then use �k�l; � � � ; �k+1 to get a �
�

k+1.

Speci�cally, when l = 1, we have

�
�

k+1 = �k +
��k

1 + �1
; �1 = �

(��k)
T
(��k�1)

(��k�1)
T (��k�1)

: (80)

In this case, the extra computation required by the acceleration technique is quite small, and

we recommend the use of this approach in practice.

Simulations

We conducted two sets of computer simulations to compare the performance of the EM al-

gorithm with the two variants described in the previous section. The training data for

each simulation consisted of 1000 data points generated from the piecewise linear function

y = a1x + a2 + nt; x 2 [xL; xU ] and y = a
0

1x + a
0

2 + nt; x 2 [x
0

L
; x

0

U
], where nt is a gaussian
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random variable with zero mean and variance � = 0:3. Training data were sampled from the

�rst function with probability 0:4 and from the second function with probability 0:6.

We studied a modular architecture with K = 2 expert networks. The experts were linear;

that is, fj(x
(t)
; �j) were linear functions [x; 1]

T
�j . For the gating net, we have

sj = [x; 1]
T
�gj ;

where gj is given by Eq. (2). For simplicity, we updated �gj by gradient ascent

�
(k+1)
gj

= �
(k)
gj

+ rg
@Q

@�gj
: (81)

The learning rate parameter was set to rg = 0:05 for the �rst data set and rg = 0:002 for the

second data set. We used Eq. (20) and Eq. (22) to update the parameters �
(k+1)
j

; j = 1; 2 and

�
(k+1)
j

; j = 1; 2, respectively.

The initial values of �
(0)
gj
; �

(0)
j
; �

(0)
j
; j = 1; 2 were picked randomly. To compare the perfor-

mance of the algorithms, we let each algorithm start from the same set of initial values.

The �rst data set (see Figure 3(a)) was generated using the following parameter values

a1 = 0:8; a2 = 0:4; xL = �1:0; xU = 1:0; a
0

1 = �1:0; a
0

2 = 3:6; x
0

L = 2:0; x
0

U = 4:0:

The performance of the original algorithm, the modi�ed line search variant with �k = 1:1, the

modi�ed line search variant with �k = 0:5, and the algorithm based on local linearization are

shown in Figures 4, 5, 6, and 7, respectively. As seen in Figures 4(a) and 5(a), the log likelihood

converged after 19 steps using both the original algorithm and the modi�ed line search variant

with �k = 1:1. When a smaller value was used (�k = 0:5), the algorithm converged after 24 steps

(Figure 6(a)). Trying other values of �k, we veri�ed that �k < 1 slows down the convergence,

while �k > 1 may speed up the convergence (cf. Redner & Walker, 1984). We found, however,

that the outcome was quite sensitive to the selection of the value of �k. For example, setting

�k = 1:2 led the algorithm to diverge. Allowing �k to be determined by the Goldstein test

(Eq. 73) yielded results similar to the original algorithm, but required more computer time.

Finally, Figure 7(a) shows that the algorithm based on local linearization yielded substantially

improved convergence|the log likelihood converged after only 8 steps.

Figures 4(b) and 4(c) show the evolution of the parameters for the �rst expert net and

the second expert net, respectively. Comparison of these �gures to Figures 5(b) and 5(c)

shows that the original algorithm and the modi�ed line search variant with �k = 1:1 behaved

almost identically: �1 converged to the correct solution after about 18 steps in either case.

Figures 6(b) and 6(c) show the slowdown obtained by using �k = 0:5. Figures 7(b) and 7(c)

show the improved performance obtained using the local linearization algorithm. In this case,

the weight vectors converged to the correct values within 7 steps.

Panel (d) in each of the �gures show the evolution of the estimated variances �
2
1; �

2
2. The

results were similar to those for the expert net parameters. Again, the algorithm based on local

linearization yielded signi�cantly faster convergence than the other algorithms.

A second simulation was run using the following parameter values (see Figure 3(b))

a1 = 0:8; a2 = 0:4; xL = �1:0; xU = 2:0; a
0

1 = �1:2; a
0

2 = 2:4; x
0

L = 1:0; x
0

U = 4:0:

The results obtained in this simulation were similar to those obtained in the �rst simulation.

The EM algorithm converged in 11 steps and the local linearization algorithm converged in 6

steps.

24



-1

-0.5

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

o
o

o

o

o
o

o

o o

o
o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

ooo

o o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o
o

o

o o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o
o

o

o

o

o

o
o

o

o
o

oo

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o
o

o

o

o

o

o

o o

o

o

o

o

oo

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

oo o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

oo

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

oo

o
o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o o

o

o

o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

x

y

-3

-2

-1

0

1

2

3

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

o

o

o

o

o

o
o

o

o

oo

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

oo

o
o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o
o

oo

o

o

o
o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

oo
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o
o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o o
o

o

o

o

o

o

o
o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

oo

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

ooo

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o
oo

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

x

y

x

y

x

y

(a)

(b)

Figure 3: The data sets for the simulation experiments.
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Figure 4: The performance of the original EM algorithm: (a) The evolution of the log likelihood;

(b) the evolution of the parameters for expert network 1; (c) the evolution of the parameters

for expert network 2; (d) the evolution of the variances.
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Figure 5: The performance of the linesearch variant with �k = 1:1.
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Figure 6: The performance of the linesearch variant with �k = 0:5.

28



epochs

va
ria

nc
es expert 1

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

0 10 20 30 40 50 60

o

o

o

o

o
o

o

o
o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

the learning steps

the
 lo

g-l
ike

lih
oo

d
lo

g 
lik

el
ih

oo
d

-1

0

1

2

3

4

0 10 20 30 40 50 60

the learning steps

the
 pa

ram
ete

r v
alu

es 
of 

  e
xp

ert
-ne

t-1

1st parameter

2nd parameter

pa
ra

m
et

er
s 

(e
xp

er
t 1

)

2nd parameter

1st parameter

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

the learning steps

the
 pa

ram
ete

r v
alu

es
 of

   e
xp

ert
-n

et-
2

1st parameter

2nd parameter

pa
ra

m
et

er
s 

(e
xp

er
t 2

)

1st parameter

2nd parameter

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 10 20 30 40 50 60

the learning steps

the
 es

tim
ate

d v
ari

an
ce

s

- with expert-net-1

-- with expert-net-2

expert 2

(a)

(b)

(d)

(c)

Figure 7: The performance of the algorithm based on local linearization.
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The results from a number of other simulation experiments con�rmed the results reported

here. In general the algorithm based on local linearization provided signi�cantly faster con-

vergence than the original EM algorithm. The modi�ed line search variant did not appear to

converge faster (if the parameter �k was �xed). We also tested gradient ascent in these exper-

iments and found that convergence was generally one to two orders of magnitude slower than

convergence of the EM algorithm and its variants. Moreover, convergence of gradient ascent

was rather sensitive to the learning rate and the initial values of the parameters.

Concluding remarks

Finite mixture models have become increasingly popular as models for unsupervised learning,

partly because they occupy an interesting niche between parametric and nonparametric ap-

proaches to statistical estimation. Mixture-based approaches are parametric in that particular

parametric forms must be chosen for the component densities, but they can also be regarded as

nonparametric by allowing the number of components of the mixture to grow. The advantage of

this niche in statistical theory is that these models have much of the 
exibility of nonparametric

approaches, but retain some of the analytical advantages of parametric approaches (McLachlan

& Basford, 1988). Similar remarks can be made in the case of supervised learning: The ME

architecture and the HME architecture provide 
exible models for general nonlinear regres-

sion while retaining a strong 
avor of parametric statistics. The latter model, in particular,

compares favorably to decision tree models in this regard (Jordan & Jacobs, in press).

In the current paper we have contributed to the theory of mixture-based supervised learning.

We have analyzed an EM algorithm for ME and HME architectures and provided theorems on

the convergence of this algorithm. In particular, we have shown that learning algorithm can be

regarded as a variable metric algorithm with its metric matrix P being positive de�nite, so that

the searching direction of the algorithm always has a positive projection on the gradient of the

log likelihood. We have shown that the algorithm converges linearly, with a rate determined

by the di�erence between the minimal and maximal eigenvalues of a negative de�nite matrix.

Similar results to those obtained here can also be obtained for the case of the unsupervised

learning of �nite mixtures (Xu & Jordan, 1993).
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Appendix

The theoretical results presented in the main text show that the EM algorithm for the ME

and HME architectures converges linearly with a rate determined by the condition number of a

particular matrix. These results were obtained for a special case in which the expert networks

31



are linear with a gaussian probability model and the gating networks are multinomial logit

models. In this section we discuss extensions of these results to other architectures.

We �rst note that Theorems 2 and 4 make no speci�c reference to the particular probability

models utilized in specifying the architecture. The results on convergence rate in these theorems

require only that the matrix P be positive de�nite. These theorems apply directly to other

architectures if the corresponding P matrices can be shown to be positive de�nite. We therefore

need only consider generalizations of Theorem 1, the theorem which established the positive

de�niteness of P for the generalized linear ME architectures. An analogous generalization of

Theorem 3 for the HME architectures can also be obtained.

Let us consider the case in which the function implemented by each expert network

(fj(x; �j)) is nonlinear in the parameters. We consider two possible updates for the param-

eters: (1) a gradient algorithm

�
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j

= �
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and (2) a Newton algorithm:
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where 
j > 0 is a learning rate.

These updates are covered by the following extension of Theorem 1.

Theorem 1A 1 For the model given by Eq. (4) and the updates given by Eq. (83) or Eq.

(85), we have:
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� �
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where P
(k)
j

is positive de�nite.

Proof. For the gradient descent algorithm, we have P
(k)
j

= 
jIK , which is obviously positive

de�nite because 
j > 0. For the Newton algorithm, we have that P
(k)
j

= 
j(R
(k)
j
)�1. We now

show that this matrix is positive de�nite. For an arbitrary vector u, we have
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Equality holds only when v = u
T
@f

T
j (x(t);�

(k)

j )

@�
(k)

j

= 0, since �
(k)
j

is positive de�nite with probability

one. This is impossible for any u. So with probability one, R
(k)
j

(and thus (R
(k)
j
)
�1

also) is

positive de�nite. 2

Note that the Newton update (Eq. 85) is particularly appropriate for the case in which the

experts are generalized linear models (McCullagh & Nelder, 1983); that is, the case in which

fj(x
(t)
; �j) = [fj1(x

(t)
; �j); � � � ; fjdy(x

(t)
; �j)] (dy is the dimension of y) with

fji(x
(t)
; �j) = Fji([�j;1; � � � ; �j;m]

T
x
(t)

+ �j;m+1);

where Fji(:) is a continuous univariate nonlinear function known as the link function. In this

case the Newton algorithm reduces to the IRLS algorithm. The extension to generalized linear

models also allows probability models from the generalized exponential family (cf. Jordan &

Jacobs, in press) and Theorem 1A is applicable to this case as well.

We can also consider the case in which the gating network is nonlinear in the parameters.

Both the Newton update (IRLS update) and the gradient update are applicable in this case.

Theorem 1 already established that the Newton update for the gating network involves a positive

de�nite Pg matrix. As in Theorem 1A, the result for the gradient update is immediate.
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