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Abstract

Feedforward networks are a class of approximation techniques that can be used to learn to perform some
tasks from a �nite set of examples. The question of the capability of a network to generalize from a �nite
training set to unseen data is clearly of crucial importance. In this paper, we bound the generalization
error of a class of Radial Basis Functions, for certain well de�ned function learning tasks, in terms of the
number of parameters and number of examples. We show that the total generalization error is partly due
to the insu�cient representational capacity of the network (because of the �nite size of the network being
used) and partly due to insu�cient information about the target function because of the �nite number of
samples. Prior research has looked at representational capacity or sample complexity in isolation. In the
spirit of A. Barron, H. White and S. Geman we develop a framework to look at both. While the bound
that we derive is speci�c for Radial Basis Functions, a number of observations deriving from it apply
to any approximation technique. Our result also sheds light on ways to choose an appropriate network
architecture for a particular problem and the kinds of problems which can be e�ectively solved with �nite
resources, i.e., with �nite number of parameters and �nite amounts of data.
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1 Introduction

Many problems in learning theory can be e�ectively
modelled as learning an input output mapping on the
basis of limited evidence of what this mapping might be.
The mapping usually takes the form of some unknown
function between two spaces and the evidence is often a
set of labelled, noisy, examples i.e., (x; y) pairs which are
consistent with this function. On the basis of this data
set, the learner tries to infer the true function.

Such a scenario of course exists in a wide range of
scienti�c disciplines. For example, in speech recogni-
tion, there might exist some functional relationship be-
tween sounds and their phonetic identities. We are given
(sound, phonetic identity) pairs from which we try to in-
fer the underlying function. This example from speech
recogniton belongs to a large class of pattern classi�ca-
tion problems where the patterns could be visual, acous-
tic, or tactile. In economics, it is sometimes of interest
to predict the future foreign currency rates on the ba-
sis of the past time series. There might be a function
which captures the dynamical relation between past and
future currency rates and one typically tries to uncover
this relation from data which has been appropriately pro-
cessed. Similarly in medicine, one might be interested in
predicting whether or not breast cancer will recur in a
patient within �ve years after her treatment. The input
space might involve dimensions like the age of the pa-
tient, whether she has been through menopause, the ra-
diation treatment previously used etc. The output space
would be single dimensional boolean taking on values de-
pending upon whether breast cancer recurs or not. One
might collect data from case histories of patients and try
to uncover the underlying function.

The unknown target function is assumed to belong to
some class F which using the terminology of computa-
tional learning theory we call the concept class. Typi-
cal examples of concept classes are classes of indicator
functions, boolean functions, Sobolev spaces etc. The
learner is provided with a �nite data set. One can make
many assumptions about how this data set is collected
but a common assumption which would su�ce for our
purposes is that the data is drawn by sampling inde-
pendently the input output space (X � Y ) according
to some unknown probability distribution. On the ba-
sis of this data, the learner then develops a hypothesis
(another function) about the identity of the target func-
tion i.e., it comes up with a function chosen from some
class, say H (the hypothesis class) which best �ts the
data and postulates this to be the target. Hypothesis
classes could also be of di�erent kinds. For example,
they could be classes of boolean functions, polynomials,
linear functions, spline functions and so on. One such
class which is being increasingly used for learning prob-
lems is the class of feedforward networks [53],[43],[35]. A
typical feedforward network is a parametrized function
of the form

f(x) =

nX
i=1

ciH(x;wi)

where fcigni=1 and fwigni=1 are free parameters and

H(�; �) is a given, �xed function (the \activation func-
tion"). Depending on the choice of the activation func-
tion one gets di�erent network models, such as the most
common form of \neural networks", the Multilayer Per-
ceptron [74, 18, 51, 43, 44, 30, 57, 56, 46], or the Radial
Basis Functions network [14, 26, 39, 40, 58, 70, 59, 67,
66, 32, 35].

If, as more and more data becomes available, the
learner's hypothesis becomes closer and closer to the tar-
get and converges to it in the limit, the target is said to
be learnable. The error between the learner's hypothesis
and the target function is de�ned to be the generalization
error and for the target to be learnable the generaliza-
tion error should go to zero as the data goes to in�nity.
While learnability is certainly a very desirable quality, it
requires the ful�llment of two important criteria.

First, there is the issue of the representational ca-
pacity (or hypothesis complexity) of the hypothesis class.
This must have su�cient power to represent or closely
approximate the concept class. Otherwise for some tar-
get function f , the best hypothesis h in H might be far
away from it. The error that this best hypothesis makes
is formalized later as the approximation error. In this
case, all the learner can hope to do is to converge to h

in the limit of in�nite data and so it will never recover
the target. Second, we do not have in�nite data but
only some �nite random sample set from which we con-
struct a hypothesis. This hypothesis constructed from
the �nite data might be far from the best possible hy-
pothesis, h, resulting in a further error. This additional
error (caused by �niteness of data) is formalized later as
the estimation error. The amount of data needed to en-
sure a small estimation error is referred to as the sample

complexity of the problem. The hypothesis complexity,
the sample complexity and the generalization error are
related. If the class H is very large or in other words
has high complexity, then for the same estimation error,
the sample complexity increases. If the hypothesis com-
plexity is small, the sample complexity is also small but
now for the same estimation error the approximation er-
ror is high. This point has been developed in terms of
the Bias-Variance trade-o� by Geman et al [31] in the
context of neural networks, and others [72, 38, 80, 75] in
statistics in general.

The purpose of this paper is two-fold. First, we for-
malize the problem of learning from examples so as to
highlight the relationship between hypothesis complex-
ity, sample complexity and total error. Second, we ex-
plore this relationship in the speci�c context of a partic-
ular hypothesis class. This is the class of Radial Basis
function networks which can be considered to belong to
the broader class of feed-forward networks. Speci�cally,
we are interested in asking the following questions about
radial basis functions.

Imagine you were interested in solving a particular

problem (regression or pattern classi�cation) using Ra-

dial Basis Function networks. Then, how large must the

network be and how many examples do you need to draw

so that you are guaranteed with high con�dence to do

very well? Conversely, if you had a �nite network and

a �nite amount of data, what are the kinds of problems
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you could solve e�ectively?

Clearly, if one were using a network with a �nite
number of parameters, then its representational capac-
ity would be limited and therefore even in the best case
we would make an approximation error. Drawing upon
results in approximation theory [55] several researchers
[18, 41, 6, 44, 15, 3, 57, 56, 46, 76] have investigated
the approximating power of feedforward networks show-
ing how as the number of parameters goes to in�nity,
the network can approximate any continuous function.
These results assume in�nite data and questions of learn-
ability from �nite data are ignored. For a �nite net-
work, due to �niteness of the data, we make an error
in estimating the parameters and consequently have an
estimation error in addition to the approximation er-
ror mentioned earlier. Using results from Vapnik and
Chervonenkis [80, 81, 82, 83] and Pollard [69], work has
also been done [42, 9] on the sample complexity of �nite
networks showing how as the data goes to in�nity, the
estimation error goes to zero i.e., the empirically opti-
mized parameter settings converge to the optimal ones
for that class. However, since the number of parameters
are �xed and �nite, even the optimal parameter setting
might yield a function which is far from the target. This
issue is left unexplored by Haussler [42] in an excellent
investigation of the sample complexity question.

In this paper, we explore the errors due to both �nite
parameters and �nite data in a common setting. In order
for the total generalization error to go to zero, both the
number of parameters and the number of data have to
go to in�nity, and we provide rates at which they grow
for learnability to result. Further, as a corollary, we are
able to provide a principled way of choosing the optimal
number of parameters so as to minimize expected errors.
It should be mentioned here that White [85] and Barron
[7] have provided excellent treatments of this problem
for di�erent hypothesis classes. We will mention their
work at appropriate points in this paper.

The plan of the paper is as follows: in section 2 we
will formalize the problem and comment on issues of a
general nature. We then provide in section 3 a precise
statement of a speci�c problem. In section 4 we present
our main result, whose proof is postponed to appendix D
for continuity of reading. The main result is quali�ed by
several remarks in section 5. In section 6 we will discuss
what could be the implications of our result in practice
and �nally we conclude in section 7 with a reiteration of
our essential points.

2 De�nitions and Statement of the

Problem

In order to make a precise statement of the problem we
�rst need to introduce some terminology and to de�ne
a number of mathematical objects. A summary of the
most common notations and de�nitions used in this pa-
per can be found in appendix A.

2.1 Random Variables and Probability
Distributions

Let X and Y be two arbitrary sets. We will call x
and y the independent variable and response respectively,
where x and y range over the generic elements of X and
Y . In most cases X will be a subset of a k-dimensional
Euclidean space and Y a subset of the real line, so that
the independent variable will be a k-dimensional vec-
tor and the response a real number. We assume that a
probability distribution P (x; y) is de�ned on X � Y . P
is unknown, although certain assumptions on it will be
made later in this section.

The probability distribution P (x; y) can also be writ-
ten as1:

P (x; y) = P (x)P (yjx) ; (1)

where P (yjx) is the conditional probability of the re-
sponse y given the independent variable x, and P (x)
is the marginal probability of the independent variable
given by:

P (x) =

Z
Y

dy P (x; y) :

Expected values with respect to P (x; y) or P (x) will be
always indicated by E[�]. Therefore, we will write:

E[g(x; y)] �
Z
X�Y

dxdy P (x; y)g(x; y)

and

E[h(x)] �
Z
X

dx P (x)h(x)

for any arbitrary function g or h.

2.2 Learning from Examples and Estimators

The framework described above can be used to model
the fact that in the real world we often have to deal with
sets of variables that are related by a probabilistic rela-
tionship. For example, y could be the measured torque
at a particular joint of a robot arm, and x the set of an-
gular position, velocity and acceleration of the joints of
the arm in a particular con�guration. The relationship
between x and y is probabilistic because there is noise
a�ecting the measurement process, so that two di�erent
torques could be measured given the same con�guration.

In many cases we are provided with examples of this
probabilistic relationship, that is with a data set Dl, ob-
tained by sampling l times the set X � Y according to
P (x; y):

Dl � f(xi; yi) 2 X � Y gli=1 :
From eq. (1) we see that we can think of an element
(xi; yi) of the data set Dl as obtained by sampling X
according to P (x), and then sampling Y according to
P (yjx). In the robot arm example described above, it
would mean that one could move the robot arm into

1Note that we are assuming that the conditional distribu-
tion exists, but this is not a very restrictive assumption.
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a random con�guration x1, measure the corresponding
torque y1, and iterate this process l times.

The interesting problem is, given an instance of x that
does not appear in the data set Dl, to give an estimate
of what we expect y to be. For example, given a certain
con�guration of the robot arm, we would like to estimate
the corresponding torque.

Formally, we de�ne an estimator to be any function
f : X ! Y . Clearly, since the independent variable x
need not determine uniquely the response y, any esti-
mator will make a certain amount of error. However, it
is interesting to study the problem of �nding the best
possible estimator, given the knowledge of the data set
Dl, and this problem will be de�ned as the problem of
learning from examples, where the examples are repre-
sented by the data set Dl. Thus we have a probabilistic
relation between x and y. One can think of this as an
underlying deterministic relation corrupted with noise.
Hopefully a good estimator will be able to recover this
relation.

2.3 The Expected Risk and the Regression
Function

In the previous section we explained the problem of
learning from examples and stated that this is the same
as the problem of �nding the best estimator. To make
sense of this statement, we now need to de�ne a mea-
sure of how good an estimator is. Suppose we sample
X �Y according to P (x; y), obtaining the pair (x; y). A
measure2 of the error of the estimator f at the point x
is:

(y � f(x))2 :

In the example of the robot arm, f(x) is our estimate of
the torque corresponding to the con�guration x, and y is
the measured torque of that con�guration. The average
error of the estimator f is now given by the functional

I[f ] � E[(y�f(x))2] =
Z
X�Y

dxdy P (x; y)(y�f(x))2 ;

that is usually called the expected risk of f for the speci�c
choice of the error measure.

Given this particular measure as our yardstick to eval-
uate di�erent estimators, we are now interested in �nd-
ing the estimator that minimizes the expected risk. In
order to proceed we need to specify its domain of def-
inition F . Then using the expected risk as a criterion,
we could obtain the best element of F . Depending on
the properties of the unknown probability distribution
P (x; y) one could make di�erent choices for F . We will
assume in the following that F is some space of di�er-
entiable functions. For example, F could be a space of
functions with a certain number of bounded derivatives
(the spaces �m(Rd) de�ned in appendix A), or a Sobolev
space of functions with a certain number of derivatives
in Lp (the spaces Hm;p(Rd) de�ned in appendix A).

2Note that this is the familiar squared-error and when
averaged over its domain yields the mean squared error for a
particular estimator, a very common choice. However, it is
useful to remember that there could be other choices as well.

Assuming that the problem of minimizing I[f ] in F is
well posed, it is easy to obtain its solution. In fact, the
expected risk can be decomposed in the following way
(see appendix B):

I[f ] = E[(f0(x) � f(x))2] + E[(y � f0(x))
2] (2)

where f0(x) is the so called regression function, that is
the conditional mean of the response given the indepen-
dent variable:

f0(x) �
Z
Y

dy yP (yjx) : (3)

From eq. (2) it is clear that the regression function is
the function that minimizes the expected risk in F , and
is therefore the best possible estimator. Hence,

f0(x) = arg min
f2 F

I[f ] :

However, it is also clear that even the regression func-
tion will make an error equal to E[(y � f0(x))

2], that
is the variance of the response given a certain value for
the independent variable, averaged over the values the
independent variable can take. While the �rst term in
eq. (2) depends on the choice of the estimator f , the sec-
ond term is an intrinsic limitation that comes from the
fact that the independent variable x does not determine
uniquely the response y.

The problem of learning from examples can now be
reformulated as the problem of reconstructing the re-
gression function f0, given the example set Dl. Thus we
have some large class of functions F to which the target
function f0 belongs. We obtain noisy data of the form
(x; y) where x has the distribution P (x) and for each x,
y is a random variable with mean f0(x) and distribution
P (yjx). We note that y can be viewed as a determin-
istic function of x corrupted by noise. If one assumes
the noise is additive, we can write y = f0(x) + �x where
�x

3 is zero-mean with distribution P (yjx). We choose an
estimator on the basis of the data set and we hope that
it is close to the regression (target) function. It should
also be pointed out that this framework includes pat-
tern classi�cation and in this case the regression (target)
function corresponds to the Bayes discriminant function
[36, 45, 71].

2.4 The Empirical Risk

If the expected risk functional I[f ] were known, one
could compute the regression function by simply �nding
its minimum in F , that would make the whole learning
problem considerably easier. What makes the problem
di�cult and interesting is that in practice I[f ] is un-
known because P (x; y) is unknown. Our only source of
information is the data set Dl which consists of l inde-
pendent random samples of X � Y drawn according to
P (x; y). Using this data set, the expected risk can be
approximated by the empirical risk Iemp:

3Note that the standard regression problem often assumes
�x is independent of x. Our case is distribution free because
we make no assumptions about the nature of �x.
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Iemp[f ] �
1

l

lX
i=1

(yi � f(xi))
2
:

For each given estimator f , the empirical risk is a random
variable, and under fairly general assumptions4, by the
law of large numbers [23] it converges in probability to
the expected risk as the number of data points goes to
in�nity:

lim
l!1

PfjI[f ]� Iemp[f ]j > "g = 0 8" > 0 : (4)

Therefore a common strategy consists in estimating the
regression function as the function that minimizes the
empirical risk, since it is \close" to the expected risk if
the number of data is high enough. For the error metric
we have used, this yields the least-squares error estima-
tor. However, eq. (4) states only that the expected risk
is \close" to the empirical risk for each given f , and not
for all f simultaneously. Consequently the fact that the
empirical risk converges in probability to the expected
risk when the number, l, of data points goes to in�nity
does not guarantee that the minimum of the empirical
risk will converge to the minimum of the expected risk
(the regression function). As pointed out and analyzed
in the fundamental work of Vapnik and Chervonenkis
[81, 82, 83] the notion of uniform convergence in prob-
ability has to be introduced, and it will be discussed in
other parts of this paper.

2.5 The Problem

The argument of the previous section suggests that an
approximate solution of the learning problem consists in
�nding the minimumof the empirical risk, that is solving

min
f2F

Iemp[f ] :

However this problem is clearly ill-posed, because, for
most choices of F , it will have an in�nite number of
solutions. In fact, all the functions in F that interpolate
the data points (xi; yi), that is with the property

f(xi) = yi 1; : : : ; l

will give a zero value for Iemp. This problem is very
common in approximation theory and statistics and can
be approached in several ways. A common technique
consists in restricting the search for the minimum to a
smaller set than F . We consider the case in which this
smaller set is a family of parametric functions, that is a
family of functions de�ned by a certain number of real
parameters. The choice of a parametric representation
also provides a convenient way to store and manipulate
the hypothesis function on a computer.

We will denote a generic subset of F whose elements
are parametrized by a number of parameters propor-
tional to n, by Hn. Moreover, we will assume that the
sets Hn form a nested family, that is

4For example, assuming the data is independently drawn
and I[f ] is �nite.

H1 � H2 � : : : � Hn � : : : � H:

For example, Hn could be the set of polynomials in one
variable of degree n� 1, Radial Basis Functions with n

centers, multilayer perceptrons with n sigmoidal hidden
units, multilayer perceptrons with n threshold units and
so on. Therefore, we choose as approximation to the

regression function the function f̂n;l de�ned as:5

f̂n;l � arg min
f2Hn

Iemp[f ] : (5)

Thus, for example, if Hn is the class of functions which
can be represented as f =

P
n

�=1 c�H(x;w�) then eq.
(5) can be written as

f̂n;l � arg min
c�;w�

Iemp[f ] :

A number of observations need to be made here. First,
if the class F is small (typically in the sense of bounded
VC-dimension or bounded metric entropy [69]), then the
problem is not necessarily ill-posed and we do not have to
go through the process of using the sets Hn. However, as
has been mentioned already, for most interesting choices
of F (e.g. classes of functions in Sobolev spaces, con-
tinuous functions etc.) the problem might be ill posed.
However, this might not be the only reason for using the
classes Hn. It might be the case that that is all we have
or for some reason it is something we would like to use.
For example, one might want to use a particular class of
feed-forward networks because of ease of implementation
in VLSI. Also, if we were to solve the function learning
problem on a computer as is typically done in practice,
then the functions in F have to be represented some-
how. We might consequently use Hn as a representation
scheme. It should be pointed out that the sets Hn and
F have to be matched with each other. For example,
we would hardly use polynomials as an approximation
scheme when the class F consists of indicator functions
or for that matter use threshold units when the class F
contains continuous functions. In particular, if we are to
recover the regression function, H must be dense in F .
One could look at this matching from both directions.
For a class F , one might be interested in an appropriate
choice of Hn. Conversely, for a particular choice of Hn,
one might ask what classes F can be e�ectively solved
with this scheme. Thus, if we were to use multilayer
perceptrons, this line of questioning would lead us to
identify the class of problems which can be e�ectively
solved by them.

Thus, we see that in principle we would like to min-
imize I[f ] over the large class F obtaining thereby the

5Notice that we are implicitly assuming that the problem
of minizing Iemp[f ] over Hn has a solution, which might not
be the case. However the quantity

En;l � inf
f2Hn

Iemp[f ]

is always well de�ned, and we can always �nd a function f̂n;l

for which Iemp[f̂n;l] is arbitrarily close to En;l. It will turn
out that this is su�cient for our purposes, and therefore we

will continue, assuming that f̂n;l is well de�ned by eq. (5)
4



regression function f0. What we do in practice is to min-
imize the empirical risk Iemp[f ] over the smaller class Hn

obtaining the function f̂n;l. Assuming we have solved all
the computational problems related to the actual com-

putation of the estimator f̂n;l, the main problem is now:

how good is f̂n;l?

Independently of the measure of performance that we

choose when answering this question, we expect f̂n;l to
become a better and better estimator as n and l go to
in�nity. In fact, when l increases, our estimate of the ex-
pected risk improves and our estimator improves. The
case of n is trickier. As n increases, we have more param-
eters to model the regression function, and our estimator
should improve. However, at the same time, because we
have more parameters to estimate with the same amount
of data, our estimate of the expected risk deteriorates.
Thus we now need more data and n and l have to grow
as a function of each other for convergence to occur.
At what rate and under what conditions the estimator
f̂n;l improves depends on the properties of the regression
function, that is on F , and on the approximation scheme
we are using, that is on Hn.

2.6 Bounding the Generalization Error

At this stage it might be worthwhile to review and re-
mark on some general features of the problem of learning
from examples. Let us remember that our goal is to min-
imize the expected risk I[f ] over the set F . If we were to
use a �nite number of parameters, then we have already
seen that the best we could possibly do is to minimize
our functional over the set Hn, yielding the estimator
fn:

fn � arg min
f2Hn

I[f ] :

However, not only is the parametrization limited, but
the data is also �nite, and we can only minimize the
empirical risk Iemp, obtaining as our �nal estimate the

function f̂n;l. Our goal is to bound the distance from

f̂n;l that is our solution, from f0, that is the \optimal"
solution. If we choose to measure the distance in the
L
2(P ) metric (see appendix A), the quantity that we

need to bound, that we will call generalization error, is:

E[(f0 � f̂n;l)
2] =

R
X
dx P (x)(f0(x) � f̂n;l(x))

2 =

= kf0 � f̂n;lk2L2(P )
There are 2 main factors that contribute to the gener-
alization error, and we are going to analyze them sepa-
rately for the moment.

1. A �rst cause of error comes from the fact that
we are trying to approximate an in�nite dimen-
sional object, the regression function f0 2 F , with
a �nite number of parameters. We call this er-
ror the approximation error, and we measure it by
the quantity E[(f0 � fn)

2], that is the L2(P ) dis-
tance between the best function in Hn and the re-
gression function. The approximation error can be

expressed in terms of the expected risk using the
decomposition (2) as

E[(f0 � fn)
2] = I[fn]� I[f0] : (6)

Notice that the approximation error does not de-
pend on the data set Dl, but depends only on the
approximating power of the class Hn. The natural
framework to study it is approximation theory, that
abound with bounds on the approximation error for
a variety of choices of Hn and F . In the following
we will always assume that it is possible to bound
the approximation error as follows:

E[(f0 � fn)
2] � "(n)

where "(n) is a function that goes to zero as n goes
to in�nity if H is dense in F . In other words,
as shown in �gure (1), as the number n of pa-
rameters gets larger the representation capacity of
Hn increases, and allows a better and better ap-
proximation of the regression function f0. This is-
sue has been studied by a number of researchers
[18, 44, 6, 8, 30, 57, 56] in the neural networks com-
munity.

2. Another source of error comes from the fact that,
due to �nite data, we minimize the empirical risk

Iemp[f ], and obtain f̂n;l, rather than minimizing
the expected risk I[f ], and obtaining fn. As the

number of data goes to in�nity we hope that f̂n;l
will converge to fn, and convergence will take place
if the empirical risk converges to the expected risk
uniformly in probability [80]. The quantity

jIemp[f ]� I[f ]j
is called estimation error, and conditions for the
estimation error to converge to zero uniformly in
probability have been investigated by Vapnik and
Chervonenkis [81, 82, 80, 83] Pollard [69], Dudley
[24], and Haussler [42]. Under a variety of di�erent
hypothesis it is possible to prove that, with proba-
bility 1� �, a bound of this form is valid:

jIemp[f ]� I[f ]j � !(l; n; �) 8f 2 Hn (7)

The speci�c form of ! depends on the setting of the
problem, but, in general, we expect !(l; n; �) to be
a decreasing function of l. However, we also expect
it to be an increasing function of n. The reason
is that, if the number of parameters is large then
the expected risk is a very complex object, and then
more data will be needed to estimate it. Therefore,
keeping �xed the number of data and increasing the
number of parameters will result, on the average,
in a larger distance between the expected risk and
the empirical risk.

The approximation and estimation error are clearly
two components of the generalization error, and it is in-
teresting to notice, as shown in the next statement, the
generalization error can be bounded by the sum of the
two:
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Statement 2.1 The following inequality holds:

kf0 � f̂n;lk2L2(P ) � "(n) + 2!(l; n; �) : (8)

Proof: using the decomposition of the expected risk (2),
the generalization error can be written as:

kf0� f̂n;lk2L2(P ) = E[(f0 � f̂n;l)
2] = I[f̂n;l]� I[f0] : (9)

A natural way of bounding the generalization error is as
follows:

E[(f0 � f̂n;l)
2] � jI[fn]� I[f0]j+ jI[fn]� I[f̂n;l]j : (10)

In the �rst term of the right hand side of the previous
inequality we recognize the approximation error (6). If
a bound of the form (7) is known for the generalization
error, it is simple to show (see appendix (C) that the
second term can be bounded as

jI[fn]� I[f̂n;l]j � 2!(l; n; �)

and statement (2.1) follows 2.
Thus we see that the generalization error has two com-

ponents: one, bounded by "(n), is related to the approxi-
mation power of the class of functions fHng, and is stud-
ied in the framework of approximation theory. The sec-
ond, bounded by !(l; n; �), is related to the di�culty of
estimating the parameters given �nite data, and is stud-
ied in the framework of statistics. Consequently, results
from both these �elds are needed in order to provide an
understanding of the problem of learning from examples.
Figure (1) also shows a picture of the problem.

2.7 A Note on Models and Model Complexity

From the form of eq. (8) the reader will quickly realize
that there is a trade-o� between n and l for a certain
generalization error. For a �xed l, as n increases, the
approximation error "(n) decreases but the estimation
error !(l; n; �) increases. Consequently, there is a certain
n which might optimally balance this trade-o�. Note
that the classes Hn can be looked upon as models of
increasing complexity and the search for an optimal n
amounts to a search for the right model complexity. One
typically wishes to match the model complexity with the
sample complexity (measured by how much data we have
on hand) and this problem is well studied [29, 75, 52, 73,
4, 28, 17] in statistics.

Broadly speaking, simple models would have high
approximation errors but small estimation errors while
complex models would have low approximation errors
but high estimation errors. This might be true even
when considering qualitatively di�erent models and as
an illustrative example let us consider two kinds of mod-
els we might use to learn regression functions in the
space of bounded continuous functions. The class of
linear models, i.e., the class of functions which can be
expressed as f = w�x+�, do not have much approximat-
ing power and consequently their approximation error is
rather high. However, their estimation error is quite low.
The class of models which can be expressed in the form
H =

Pn

i=1 ci sin(wi � x + �i) have higher approximating

F
f0

Hn

f n

fn l
^

?

Figure 1: This �gure shows a picture of the problem.
The outermost circle represents the set F. Embedded in
this are the nested subsets, the Hn's. f0 is an arbitrary
target function in F , fn is the closest element of Hn and

f̂n;l is the element of Hn which the learner hypothesizes
on the basis of data.

power [47] resulting in low approximation errors. How-
ever this class has an in�nite VC-dimension [82] and its
estimation error can not therefore be bounded.

So far we have provided a very general characteriza-
tion of this problem, without stating what the sets F
and Hn are. As we have already mentioned before, the
set F could be a set of bounded di�erentiable or inte-
grable functions, and Hn could be polynomials of degree
n, spline functions with n knots, multilayer perceptrons
with n hidden units or any other parametric approxima-
tion scheme with n parameters. In the next section we
will consider a speci�c choice for these sets, and we will
provide a bound on the generalization error of the form
of eq. (8).

3 Stating the Problem for Radial Basis

Functions

As mentioned before the problem of learning from exam-
ples reduces to estimating some target function from a
set X to a set Y . In most practical cases, such as char-
acter recognition, motor control, time series prediction,
the set X is the k-dimensional Euclidean space Rk, and
the set Y is some subset of the real line, that for our pur-
poses we will assume to be the interval [�M;M ], where
M is some positive number. In fact, there is a probability
distribution P (x; y) de�ned on the space Rk � [�M;M ]
according to which the labelled examples are drawn in-
dependently at random, and from which we try to esti-
mate the regression (target) function. It is clear that the
regression function is a real function of k variables.

In this paper we focus our attention on the Radial Ba-
6



sis Functions approximation scheme (also called Hyper-
Basis Functions [67]). This is the class of approximating
functions that can be written as:

f(x) =

nX
i=1

�iG(x� ti)

where G is some given basis function and the �i and
the ti are free parameters. We would like to understand
what classes of problems can be solved \well" by this
technique, where \well" means that both approximation
and estimation bounds need to be favorable. We will see
later that a favorable approximation bound can be ob-
tained if we assume that the class of functions F to which
the regression function belongs is de�ned as follows:

F � ff 2 L2(R
k)jf = � �G; j�jRk �Mg : (11)

Here � is a signed Radon measure on the Borel sets of
R
k, G is a gaussian function with range in [0; V ], the

symbol � stands for the convolution operation, j�jRk is
the total variation6 of the measure � and M is a positive
real number. We point out that the class F is non-trivial
to learn in the sense that it has in�nite pseudo-dimension
[69].

In order to obtain an estimation bound we need the
approximating class to have bounded variation, and the
following constraint will be imposed:

nX
i=1

j�ij �M :

We will see in the proof that this constraint does not
a�ect the approximation bound, and the two pieces �t
together nicely. Thus the set Hn is de�ned now as the
set of functions belonging to L2 such that

f(x) =

nX
i=1

�iG(x� ti);

nX
i=1

j�ij �M ; ti 2 R
k (12)

Having de�ned the sets Hn and F we remind the reader
that our goal is to recover the regression function, that is
the minimum of the expected risk over F . What we end
up doing is to draw a set of l examples and to minimize
the empirical risk Iemp over the set Hn, that is to solve
the following non-convex minimization problem:

f̂n;l � arg min
��;t�

lX
i=1

(yi �
nX

�=1

��G(xi � t�))
2 (13)

Notice that assumption that the regression function

f0(x) � E[yjx]
belongs to the class F correspondingly implies an as-
sumption on the probability distribution P (yjx), viz.,

6A signed measure � can be decomposed by the Hahn-
Jordan decomposition into � = �

+��
�
: Then j�j = �

++�
�

is called the total variation of �: See Dudley [23] for more
information.

that P must be such that E[yjx] belongs to F : Notice
also that since we assumed that Y is a closed interval,
we are implicitly assuming that P (yjx) has compact sup-
port.

Assuming now that we have been able to solve the
minimization problem of eq. (13), the main question we

are interested in is \how far is f̂n;l from f0?". We give
an answer in the next section.

4 Main Result

The main theorem is:

Theorem 4.1 For any 0 < � < 1, for n nodes, l data

points, input dimensionality of k, and Hn;F ; f0; f̂n;l also
as de�ned in the statement of the problem above, with

probability greater than 1� �,

kf0 � f̂n;lk2L2(P ) � O

�
1

n

�
+ O

 �
nk ln(nl) � ln �

l

�1=2!

Proof: The proof requires us to go through a series of
propositions and lemmas which have been relegated to
appendix (D) for continuity of ideas.2

5 Remarks

There are a number of comments we would like to make
on the formulation of our problem and the result we
have obtained. There is a vast body of literature on
approximation theory and the theory of empirical risk
minimization. In recent times, some of the results in
these areas have been applied by the computer science
and neural network community to study formal learning
models. Here we would like to make certain observations
about our result, suggest extensions and future work,
and to make connections with other work done in related
areas.

5.1 Observations on the Main Result

� The theorem has a PAC[79] like setting. It tells
us that if we draw enough data points (labelled
examples) and have enough nodes in our Radial
Basis Functions network, we can drive our error
arbitrarily close to zero with arbitrarily high prob-
ability. Note however that our result is not en-
tirely distribution-free. Although no assumptions
are made on the form of the underlying distribu-
tion, we do have certain constraints on the kinds
of distributions for which this result holds. In par-
ticular, the distribution is such that its conditional
mean E[yjx] (this is also the regression function
f0(x)) must belong to a the class of functions F de-
�ned by eq. (11). Further the distribution P (yjx)
must have compact support 7.

7This condition, that is related to the problem of large de-
viations [80], could be relaxed, and will be subject of further
investigations.
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� The error bound consists of two parts, one
(O(1=n)) coming from approximation theory, and

the other O(((nk ln(nl) + ln(1=�))=l)1=2) from
statistics. It is noteworthy that for a given approx-
imation scheme (corresponding to fHng), a certain
class of functions (corresponding to F) suggests it-
self. So we have gone from the class of networks
to the class of problems they can perform as op-
posed to the other way around, i.e., from a class of
problems to an optimal class of networks.

� This sort of a result implies that if we have the
prior knowledge that f0 belongs to class F , then
by choosing the number of data points, l, and the
number of basis functions, n, appropriately, we can
drive the misclassi�cation error arbitrarily close to
Bayes rate. In fact, for a �xed amount of data,
even before we have started looking at the data,
we can pick a starting architecture, i.e., the num-
ber of nodes, n; for optimal performance. After
looking at the data, we might be able to do some
structural risk minimization [80] to further improve
architecture selection. For a �xed architecture, this
result sheds light on how much data is required for
a certain error performance. Moreover, it allows us
to choose the number of data points and number of
nodes simultaneously for guaranteed error perfor-
mances. Section 6 explores this question in greater
detail.

5.2 Extensions

� There are certain natural extensions to this work.
We have essentially proved the consistency of the

estimated network function f̂n;l: In particular we

have shown that f̂n;l converges to f0 with proba-
bility 1 as l and n grow to in�nity. It is also pos-
sible to derive conditions for almost sure conver-
gence. Further, we have looked at a speci�c class
of networks (fHng) which consist of weighted sums
of Gaussian basis functions with moving centers
but �xed variance. This kind of an approximation
scheme suggests a class of functions F which can
be approximated with guaranteed rates of conver-
gence as mentioned earlier. We could prove similar
theorems for other kinds of basis functions which
would have stronger approximation properties than
the class of functions considered here. The general
principle on which the proof is based can hopefully
be extended to a variety of approximation schemes.

� We have used notions of metric entropy and cover-
ing number [69, 24] in obtaining our uniform con-
vergence results. Haussler [42] uses the results of
Pollard and Dudley to obtain uniform convergence
results and our techniques closely follow his ap-
proach. It should be noted here that Vapnik [80]
deals with exactly the same question and uses the
VC-dimension instead. It would be interesting to
compute the VC-dimension of the class of networks
and use it to obtain our results.

� While we have obtained an upper bound on the er-
ror in terms of the number of nodes and examples,

it would be worthwhile to obtain lower bounds on
the same. Such lower bounds do not seem to exist
in the neural network literature to the best of our
knowledge.

� We have considered here a situation where the es-
timated network i.e., f̂n;l is obtained by minimiz-
ing the empirical risk over the class of functions
Hn: Very often, the estimated network is obtained
by minimizing a somewhat di�erent objective func-
tion which consists of two parts. One is the �t to
the data and the other is some complexity term
which favours less complex (according to the de-
�ned notion of complexity) functions over more
complex ones. For example the regularization ap-
proach [77, 68, 84] minimizes a cost function of the
form

H[f ] =

NX
i=1

(yi � f(xi) + ��[f ]

over the class H = [n�1Hn: Here � is the so
called \regularization parameter" and �[f ] is a
functional which measures smoothness of the func-
tions involved. It would be interesting to obtain
convergence conditions and rates for such schemes.
Choice of an optimal � is an interesting question
in regularization techniques and typically cross-
validation or other heuristic schemes are used. A
result on convergence rate potentially o�ers a prin-
cipled way to choose �:

� Structural risk minimization is another method
to achieve a trade-o� between network complex-
ity (corresponding to n in our case) and �t to
data. However it does not guarantee that the ar-
chitecture selected will be the one with minimal
parametrization8. In fact, it would be of some
interest to develop a sequential growing scheme.
Such a technique would at any stage perform a se-
quential hypothesis test [37]. It would then decide
whether to ask for more data, add one more node
or simply stop and output the function it has as
its �-good hypothesis. In such a process, one might
even incorporate active learning [2, 62] so that if the
algorithm asks for more data, then it might even
specify a region in the input domain from where it
would like to see this data. It is conceivable that
such a scheme would grow to minimal parametriza-
tion (or closer to it at any rate) and require less
data than classical structural risk minimization.

� It should be noted here that we have assumed that
the empirical risk

Pl

i=1(yi � f(xi))
2 can be min-

imized over the class Hn and the function f̂n;l be
e�ectively computed. While this might be �ne in
principle, in practice only a locally optimal solu-
tion to the minimization problem is found (typi-
cally using some gradient descent schemes). The

8Neither does regularization for that matter. The ques-
tion of minimal parametrization is related to that of order
determination of systems, a very di�cult problem!
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computational complexity of obtaining even an ap-
proximate solution to the minimization problem is
an interesting one and results from computer sci-
ence [49, 12] suggest that it might in general be
NP -hard.

5.3 Connections with Other Results

� In the neural network and computational learning
theory communities results have been obtained per-
taining to the issues of generalization and learn-
ability. Some theoretical work has been done
[10, 42, 61] in characterizing the sample complex-
ity of �nite sized networks. Of these, it is worth-
while to mention again the work of Haussler [42]
from which this paper derives much inspiration.
He obtains bounds for a �xed hypothesis space i.e.
a �xed �nite network architecture. Here we deal
with families of hypothesis spaces using richer and
richer hypothesis spaces as more and more data
becomes available. Later we will characterize the
trade-o� between hypothesis complexity and error
rate. Others [27, 63] attempt to characterize the
generalization abilities of feed-forward networks us-
ing theoretical formalizations from statistical me-
chanics. Yet others [13, 60, 16, 1] attempt to obtain
empirical bounds on generalization abilities.

� This is an attempt to obtain rate-of-convergence
bounds in the spirit of Barron's work [5], but using
a di�erent approach. We have chosen to combine
theorems from approximation theory (which gives
us the O(1=n) term in the rate, and uniform con-
vergence theory (which gives us the other part).
Note that at this moment, our rate of convergence
is worse than Barron's. In particular, he obtains a
rate of convergence of O(1=n + (nk ln(l))=l). Fur-
ther, he has a di�erent set of assumptions on the
class of functions (corresponding to our F). Fi-
nally, the approximation scheme is a class of net-
works with sigmoidal units as opposed to radial-
basis units and a di�erent proof technique is used.
It should be mentioned here that his proof relies
on a discretization of the networks into a countable
family, while no such assumption is made here.

� It would be worthwhile to make a reference to Ge-
man's paper [31] which talks of the Bias-Variance
dilemma. This is another way of formulating the
trade-o� between the approximation error and the
estimation error. As the number of parameters
(proportional to n) increases, the bias (which can
be thought of as analogous to the approximation
error) of the estimator decreases and its variance
(which can be thought of as analogous to the esti-
mation error) increases for a �xed size of the data
set. Finding the right bias-variance trade-o� is very
similar in spirit to �nding the trade-o� between
network complexity and data complexity.

� Given the class of radial basis functions we are us-
ing, a natural comparison arises with kernel regres-
sion [50, 22] and results on the convergence of ker-
nel estimators. It should be pointed out that, un-

like our scheme, Gaussian-kernel regressors require
the variance of the Gaussian to go to zero as a func-
tion of the data. Further the number of kernels is
always equal to the number of data points and the
issue of trade-o� between the two is not explored
to the same degree.

� In our statement of the problem, we discussed how
pattern classi�cation could be treated as a spe-
cial case of regression. In this case the function
f0 corresponds to the Bayes a-posteriori decision
function. Researchers [71, 45, 36] in the neural
network community have observed that a network
trained on a least square error criterion and used
for pattern classi�cation was in e�ect computing
the Bayes decision function. This paper provides a
rigorous proof of the conditions under which this is
the case.

6 Implications of the Theorem in

Practice: Putting In the Numbers

We have stated our main result in a particular form. We
have provided a provable upper bound on the error (in
the k : kL2(P ) metric) in terms of the number of exam-
ples and the number of basis functions used. Further we
have provided the order of the convergence and have not
stated the constants involved. The same result could be
stated in other forms and has certain implications. It
provides us rates at which the number of basis functions
(n) should increase as a function of the number of exam-
ples (l) in order to guarantee convergence(Section 6.1).
It also provides us with the trade-o�s between the two
as explored in Section 6.2.

6.1 Rate of Growth of n for Guaranteed
Convergence

From our theorem (4.1) we see that the generalization er-
ror converges to zero only if n goes to in�nitymore slowly
than l. In fact, if n grows too quickly the estimation er-
ror !(l; n; �) will diverge, because it is proportional to n.
In fact, setting n = l

r , we obtain

liml!+1 !(l; n; �) =

= liml!+1 O

�h
l
r
k ln(lr+1)+ln(1=�)

l

i1=2�
=

= liml!+1 l
r�1 ln l :

Therefore the condition r < 1 should hold in order to
guarantee convergence to zero.

6.2 Optimal Choice of n

In the previous section we made the point that the num-
ber of parameters n should grow more slowly than the
number of data points l, in order to guarantee the con-

sistency of the estimator f̂n;l. It is quite clear that there
is an optimal rate of growth of the number of parame-
ters, that, for any �xed amount of data points l, gives
the best possible performance with the least number of
parameters. In other words, for any �xed l there is an
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optimal number of parameters n�(l) that minimizes the
generalization error. That such a number should exist
is quite intuitive: for a �xed number of data, a small
number of parameters will give a low estimation error
!(l; n; �), but very high approximation error "(n), and
therefore the generalization error will be high. If the
number of parameters is very high the approximation
error "(n) will be very small, but the estimation error
!(l; n; �) will be high, leading to a large generalization er-
ror again. Therefore, somewhere in between there should
be a number of parameters high enough to make the ap-
proximation error small, but not too high, so that these
parameters can be estimated reliably, with a small esti-
mation error. This phenomenon is evident from �gure
(2), where we plotted the generalization error as a func-
tion of the number of parameters n for various choices
of sample size l. Notice that for a �xed sample size, the
error passes through a minimum. Notice that the loca-
tion of the minimum shifts to the right when the sample
size is increased.

l=1000

l=5000

l=10000

Figure 2: Bound on the generalization error as a function
of the number of basis functions n keeping the sample
size l �xed. This has been plotted for a few di�erent
choices of sample size. Notice how the generalization er-
ror goes through a minimum for a certain value of n.
This would be an appropriate choice for the given (con-
stant) data complexity. Note also that the minimum is
broader for larger l; that is, an accurate choice of n is
less critical when plenty of data is available.

In order to �nd out exactly what is the optimal rate of
growth of the network size we simply �nd the minimum
of the generalization error as a function of n keeping
the sample size l �xed. Therefore we have to solve the
equation:

@

@n
E[(f0 � f̂n;l)

2] = 0

for n as a function of l. Substituting the bound given in
theorem (4.1) in the previous equation, and setting all
the constants to 1 for simplicity, we obtain:

@

@n

�
1

n
+ (

nk ln(nl) � ln(�)

l
)
1
2

�
= 0 :

Performing the derivative the expression above can be
written as

1

n2
=

1

2

�
kn ln(nl) � ln �

l

�� 1

2 k

l
[ln(nl) + 1] :

We now make the assumption that l is big enough to
let us perform the approximation ln(nl) + 1 � ln(nl).
Moreover, we assume that

1

�
<< (nl)nk

in such a way that the term including � in the equa-
tion above is negligible. After some algebra we therefore
conclude that the optimal number of parameters n�(l)
satis�es, for large l, the equation:

n
�(l) =

�
4l

k ln(n�(l)l)

� 1
3

:

From this equation is clear that n� is roughly propor-
tional to a power of l, and therefore we can neglect the
factor n� in the denominator of the previous equation,
since it will only a�ect the result by a multiplicative con-
stant. Therefore we conclude that the optimal number
of parameters n�(l) for a given number of examples be-
haves as

n
�(l) /

�
l

k ln l

� 1
3

: (14)

In order to show that this is indeed the optimal rate of
growth we reported in �gure (3) the generalization error
as function of the number of examples l for di�erent
rate of growth of n, that is setting n = l

r for di�erent
values of r. Notice that the exponent r = 1

3
, that is very

similar to the optimal rate of eq. (14), performs better
than larger (r = 1

2
) and smaller (r = 1

10
) exponents.

While a �xed sample size suggests the scheme above for
choosing an optimal network size, it is important to note
that for a certain con�dence rate (�) and for a �xed error
rate (�), there are various choices of n and l which are
satisfactory. Fig. 4 shows n as a function of l, in other
words (l; n) pairs which yield the same error rate with
the same con�dence.
If data are expensive for us, we could operate in region
A of the curve. If network size is expensive we could
operate in region B of the curve. In particular the eco-
nomics of trading o� network and data complexity would
yield a suitable point on this curve and thus would allow
us to choose the right combination of n and l to solve
our regression problem with the required accuracy and
con�dence.
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Figure 3: The bound on the generalization error as a
function of the number of examples for di�erent choices
of the rate at which network size n increases with sam-
ple size l. Notice that if n = l, then the estimator is not
guaranteed to converge, i.e., the bound on the general-
ization error diverges. While this is a distribution free-
upper bound, we need distribution-free lower bounds as
well to make the stronger claim that n = l will never
converge.
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Figure 4: This �gures shows various choices of (l; n)
which give the same generalization error. The x-axis
has been plotted on a log scale. The interesting obser-
vation is that there are an in�nite number of choices for
number of basis functions and number of data points all
of which would guarantee the same generalization error
(in terms of its worst case bound).

Of course we could also plot the error as a function of
data size l for a �xed network size (n) and this has been
done for various choices of n in Fig. 5.

n=200

n=300

n=1500

Figure 5: The generalization error as a function of num-
ber of examples keeping the number of basis functions
(n) �xed. This has been done for several choices of n. As
the number of examples increases to in�nity the general-
ization error asymptotes to a minimumwhich is not the
Bayes error rate because of �nite hypothesis complexity
(�nite n).

We see as expected that the error monotonically de-
creases as a function of l. However it asymptotically
decreases not to the Bayes error rate but to some value
above it (the approximation error) which depends upon
the the network complexity.

Finally �gure (6) shows the result of theorem (4.1)
in a 3-dimensional plot. The generalization error, the
network size, and the sample size are all plotted as a
function of each other.

7 Conclusion

For the task of learning some unknown function from
labelled examples where we have multiple hypothesis
classes of varying complexity, choosing the class of right
complexity and the appropriate hypothesis within that
class poses an interesting problem. We have provided an
analysis of the situation and the issues involved and in
particular have tried to show how the hypothesis com-
plexity, the sample complexity and the generalization
error are related. We proved a theorem for a special
set of hypothesis classes, the radial basis function net-
works and we bound the generalization error for certain
function learning tasks in terms of the number of param-
eters and the number of examples. This is equivalent to
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Figure 6: The generalization error, the number of ex-
amples (l) and the number of basis functions (n) as a
function of each other.

obtaining a bound on the rate at which the number of
parameters must grow with respect to the number of ex-
amples for convergence to take place. Thus we use richer
and richer hypothesis spaces as more and more data be-
come available. We also see that there is a tradeo� be-
tween hypothesis complexity and generalization error for
a certain �xed amount of data and our result allows us
a principled way of choosing an appropriate hypothesis
complexity (network architecture). The choice of an ap-
propriate model for empirical data is a problem of long-
standing interest in statistics and we provide connections
between our work and other work in the �eld.
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A Notations

� A: a set of functions de�ned on S such that, for
any a 2 A,

0 � a(�) � U
2 8� 2 S :

� A��: the restriction of A to the data set, see eq.

(22).

� B: it will usually indicate the set of all possible
l-dimensional Boolean vectors.

� B: a generic �-separated set in S.

� C(�;A; dL1): the metric capacity of a set A endowed
with the metric dL1(P ).

� d(�; �): a metric on a generic metric space S.

� dL1(�; �); dL1(P )(�; �): L1 metrics in vector spaces.
The de�nition depends on the space on which the
metric is de�ned (k-th dimensional vectors, real
valued functions, vector valued functions).

1. In a vector space Rk we have

dL1(x;y) =
1

l

lX
�=1

jx� � y
�j

where x; y 2 R
k, x� and y� denote their �-th

components.

2. In an in�nite dimensional space F of real val-
ued functions in k variables we have

dL1(P )(f; g) =

Z
Rk

jf(x) � g(x)jdP (x)

where f; g 2 F and dP (x) is a probability
measure on R

k.

3. In an in�nite dimensional space F of func-
tions in k variables with values in Rn we have

dL1(P )(f ;g) =
1

n

nX
i=1

Z
Rk

jfi(x)�gi(x)jdP (x)

where
f (x) = (f1(x); : : : fi(x); : : : fn(x)); g(x) =
(g1(x); : : : gi(x); : : : gn(x)) are elements of F
and dP (x) is a probability measure on R

k.

� Dl: it will always indicate a data set of l points:

Dl � f(xi; yi) 2 X � Y gl
i=1 :

The points are drawn according to the probability
distribution P (x; y).

� E[�]: it denotes the expected value with respect to
the probability distribution P (x; y). For example

I[f ] = E[(y � f(x))2] ;

and

kf0 � fk2
L2(P ) = E[(f0(x) � f(x))2] :

12



� f : a generic estimator, that is any function from
X to Y :

f : X ) Y :

� f0(x): the regression function, it is the conditional
mean of the response given the predictor:

f0(x) �
Z
Y

dy yP (yjx) :

It can also be de�ned as the function that mini-
mizes the expected risk I[f ] in U , that is

f0(x) � arg inf
f2 U

I[f ] :

Whenever the response is obtained sampling a
function h in presence of zero mean noise the re-
gression function coincides with the sampled func-
tion h.

� fn: it is the function that minimizes the expected
risk I[f ] in Hn:

fn � arg inf
f2Hn

I[f ]

Since

I[f ] = kf0 � fk2
L2(P ) + I[f0]

fn it is also the best L2(P ) approximation to the
regression function in Hn (see �gure 1).

� f̂n;l: is the function that minimizes the empirical
risk Iemp[f ] in Hn:

f̂n;l � arg inf
f2Hn

Iemp[f ]

In the neural network language it is the output of
the network after training has occurred.

� F : the space of functions to which the regression
function belongs, that is the space of functions we
want to approximate.

F : X ) Y

where X 2 R
d and Y 2 R. F could be for example

a set of di�erentiable functions, or some Sobolev
space Hm;p(Rk)

� G: it is a class of functions of k variables

g : Rk ! [0; V ]

de�ned as

G == fg : g(x) = G(kx� tk); t 2 R
kg:

where G is the gaussian function.

� G1: it is a k + 2-dimensional vector space of func-
tions from R

k to R de�ned as

G1 � spanf1; x1; x2; �; xk; kxk2g
where x 2 R

k and x� is the �-th component of the
vector x.

� G2: it is a set of real valued functions in k variables
de�ned as

G2 = f�e�f : f 2 G1; � =
1p
2��

g

where � is the standard deviation of the Gaussian
G.

� HI : it is a class of vector valued functions

g(x) : Rk ! R
n

of the form

g(x) = (G(kx�t1k); G(kx�t2k); : : : ; G(kx�tnk))
where G is the gaussian function and the ti are
arbitrary k-dimensional vectors.

� HF : it is a class of real valued functions in n vari-
ables:

f : [0; V ]n ! R

of the form

f(x) = � � x
where � � (�1; : : : ; �n) is an arbitrary n-
dimensional vector that satis�es the constraint

nX
i=1

j�ij �M :

� Hn: a subset of F , whose elements are
parametrized by a number of parameters propor-
tional to n. We will assume that the sets Hn form
a nested family, that is

H1 � H2 � : : :� Hn � : : : :

For example Hn could be the set of polynomials
in one variable of degree n� 1, Radial Basis Func-
tions with n centers or multilayer perceptrons with
n hidden units. Notice that for Radial Basis Func-
tions with moving centers and Multilayer percep-
trons the number of parameters of an element of
Hn is not n, but it is proportional to n (respec-
tively n(k+1) and n(k+2), where k is the number
of variables).

� H: it is de�ned as H =
S1
n=1Hn, and it is identi-

�ed with the approximation scheme. If Hn is the
set of polynomials in one variable of degree n � 1,
H is the set of polynomials of any degree.

� H
m;p(Rk): the Sobolev space of functions in k

variables whose derivatives up to order m are in
L
p(Rk).

� I[f ]: the expected risk, de�ned as

I[f ] �
Z
X�Y

dxdy P (x; y)(y � f(x))2 :

where f is any function for which this expression
is well de�ned. It is a measure of how well the
function f predicts the response y.

13



� Iemp[f ]: the empirical risk. It is a functional on U
de�ned as

Iemp[f ] � 1

l

lX
i=1

(yi � f(xi))
2
;

where f(xi; yi)gli=1 is a set of data randomly drawn
from X � Y according to the probability distribu-
tion P (x; y). It is an approximate measure of the
expected risk, since it converges to I[f ] in proba-
bility when the number of data points l tends to
in�nity.

� k: it will always indicate the number of indepen-
dent variables, and therefore the dimensionality of
the set X.

� l: it will always indicate the number of data points
drawn from X according to the probability distri-
bution P (x).

� L
2(P ): the set of function whose square is inte-

grable with respect to the measure de�ned by the
probability distribution P . The norm in L

2(P ) is
therefore de�ned by

kfk2
L2(P ) �

Z
Rk

dx P (x)f2(x) :

� �m(Rk)(M0;M1;M2; : : : ;Mm): the space of func-
tions in k variables whose derivatives up to order
m are bounded:

jD�
f j �Mj�j j�j = 1; 2; : : : ;m

where � is a multi-index.

� M : a bound on the coe�cients of the gaussian Ra-
dial Basis Functions technique considered in this
paper, see eq. (12).

� M(�;S; d): the packing number of the set S, with
metric d.

� N (�;S; d): the covering number of the set S, with
metric d.

� n: a positive number proportional to the number
of parameters of the approximating function. Usu-
ally will be the number of basis functions for the
RBF technique or the number of hidden units for
a multilayer perceptron.

� P (x): a probability distribution de�ned on X. It
is the probability distribution according to which
the data are drawn from X.

� P (yjx): the conditional probability of the response
y given the predictor x. It represents the proba-
bilistic dependence of y from x. If there is no noise
in the system it has the form P (yjx) = �(y�h(x)),
for some function h, indicating that the predictor
x uniquely determines the response y.

� P (x; y): the joint distribution of the predictors and
the response. It is a probability distribution on
X � Y and has the form

P (x; y) � P (x)P (yjx) :

� S: it will usually denote a metric space, endowed
with a metric d.

� S: a generic subset of a metric space S.

� T : a generic �-cover of a subset S � S.

� U : it gives a bound on the elements of the class A.
In the speci�c case of the class A considere in the
proof we have U = 1 +MV .

� U : the set of all the functions from X to Y for
which the expected risk is well de�ned.

� V : a bound on the Gaussian basis function G:

0 � G(x) � V ; 8x 2 R
k
:

� X: a subset of Rk, not necessarily proper. It is the
set of the independent variables, or predictors, or,
in the language of neural networks, input variables.

� x: a generic element of X, and therefore a k-
dimensional vector (in the neural network language
is the input vector).

� Y : a subset of R, whose elements represent the
response variable, that in the neural networks lan-
guage is the output of the network. Unless other-
wise stated it will be assumed to be compact, im-
plying that F is a set of bounded functions. In pat-
tern recognition problem it is simply the set f0; 1g.

� y: a generic element of Y , it denotes the response
variable.

B A Useful Decomposition of the

Expected Risk

We now show that the function that minimizes the ex-
pected risk

I[f ] =

Z
X�Y

P (x; y)dxdy(y � f(x))2 :

is the regression function de�ned in eq. (3). It is su�-
cient to add and subtract the regression function in the
de�nition of expected risk:

I[f ] =
R
X�Y

dxdyP (x; y)(y � f0(x) + f0(x) � f(x))2 =

=
R
X�Y

dxdyP (x; y)(y � f0(x))
2+

+
R
X�Y

dxdyP (x; y)(f0(x)� f(x))2 +

+ 2
R
X�Y

dxdyP (x; y)(y � f0(x))(f0(x) � f(x))

By de�nition of the regression function f0(x), the cross
product in the last equation is easily seen to be zero, and
therefore

I[f ] =

Z
X

dxP (x)(f0(x) � f(x))2 + I[f0] :

Since the last term of I[f ] does not depend on f , the
minimum is achieved when the �rst term is minimum,
that is when f(x) = f0(x).
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In the case in which the data come from randomly
sampling a function f in presence of additive noise, �;
with probability distribution P(�) and zero mean, we
have P (yjx) = P(y � f(x)) and then

I[f0] =

Z
X�Y

dxdyP (x; y)(y � f0(x))
2 = (15)

=

Z
X

dxP (x)

Z
Y

(y � f(x))2P(y � f(x)) = (16)

=

Z
X

dxP (x)

Z
Y

�
2P(�)d� = �

2 (17)

where �
2 is the variance of the noise. When data are

noisy, therefore, even in the most favourable case we
cannot expect the expected risk to be smaller than the
variance of the noise.

C A Useful Inequality

Let us assume that, with probability 1 � � a uniform
bound has been established:

jIemp[f ]� I[f ]j � !(l; n; �) 8f 2 Hn :

We want to prove that the following inequality also
holds:

jI[fn]� I[f̂n;l]j � 2!(l; n; �) : (18)

This fact is easily established by noting that since the
bound above is uniform, then it holds for both fn and

f̂n;l, and therefore the following inequalities hold:

I[f̂n;l] � Iemp[f̂n;l] + !

Iemp[fn] � I[fn] + !

Moreover, by de�nition, the two following inequalities
also hold:

I[fn] � I[f̂n;l]

Iemp[f̂n;l] � Iemp[fn]

Therefore tha following chain of inequalities hold, prov-
ing inequality (18):

I[fn] � I[f̂n;l] � Iemp[f̂n;l]+! � Iemp[fn]+! � I[fn]+2! :

An intutitive explanation of these inequalities is also ex-
plained in �gure (7).

D Proof of the Main Theorem

The theorem will be proved in a series of steps. For clar-
ity of presentation we have divided the proof into four
parts. The �rst takes the original problem and breaks it
into its approximation and estimation components. The
second and third parts are devoted to obtaining bounds
for these two components respectively. The fourth and
�nal part comes back to the original problem, reassem-
bles its components and proves our main result. New

I[ f  ]n
I[ f     ]n,l

^

2e 2e

Iemp [ f    ] Iemp [ f      ]n,l
^

n

Figure 7: If the distance between I[fn] and I[f̂n;l] is

larger than 2�, the condition Iemp[f̂n;l] � Iemp[fn] is vi-
olated.

de�nitions and notation will be introduced as and when
the necessity arises.

We have seen in section 2 (statement 2.1) that the
generalization error can be bounded, with probability
1� �, as follows:

kf0 � f̂n;lk2L2(P ) � "(n) + 2!(l; n; �) : (19)

In the next parts we will derive speci�c expressions for
the approximation error " and for the estimation error
! in order to prove theorem (4.1).

D.1 Bounding the approximation error

In this part we attempt to bound the approximation er-
ror. In section 3 we assumed that the class of functions
to which the regression function belongs, that is the class
of functions that we want to approximate, is

F � ff 2 L2(R
k)jf = � �G; j�jRk �Mg ;

where � is a signed Radon measure on the Borel sets
of Rk, G is a gaussian function with range [0; V ], the
symbol � stands for the convolution operation, j�jRk is
the total variation of the measure � and M is a positive
real number. Our approximating family is the class:

Hn = ff 2 L2jf =

nX
i=1

�iG(x�ti);
nX
i=1

j�ij �M ; ti 2 R
kg

It has been shown in [33, 34] that the class Hn uniformly
approximate elements of F , and that the following bound
is valid:

E[(f0 � fn)
2] � O

�
1

n

�
: (20)

This result is based on a lemma by Jones [48] on the
convergence rate of an iterative approximation scheme
in Hilbert spaces. A formally similar lemma, brought to
our attention by R. Dudley [25] is due to Maurey and
was published by Pisier [65]. Here we report a version
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of the lemma due to Barron [6, 7] that contains a slight
re�nement of Jones' result:

Lemma D.1 (Maurey-Jones-Barron) If f is in the

closure of the convex hull of a set G in a Hilbert space H

with kgk � b for each g 2 G, then for every n � 1 and

for c > b
2 � kfk2 there is a fn in the convex hull of n

points in G such that

kf � fnk2 � c

n
:

In order to exploit this result one needs to de�ne suitable
classes of functions which are the closure of the convex
hull of some subset G of a Hilbert space H. One way
to approach the problem consists in utilizing the integral
representation of functions. Suppose that the functions
in a Hilbert space H can be represented by the integral

f(x) =

Z
M

Gt(x)d�(t) (21)

where d� is some measure on the parameter set M, and
Gt(x) is a function of H parametrized by the parameter
t, whose norm kGt(x)k is bounded by the same number
for any value of t. If d� is a �nite measure, the integral
(21) can be seen as an in�nite convex combination, and
therefore, applying lemma(D.1) one can prove that there
exists n coe�cients ci and n parameter vectors ti such
that

kf �
nX
i=1

ciGti(x)k2 � O(
1

n
)

For the class F we consider, it is clear that functions
in this class have an integral representation of the type
(21) in which Gt(x) = G(x�t), and the work in [33, 34]
shows how to apply lemma (D.1) to this class.

Notice that the bound (20), that is similar in spirit to
the result of A. Barron on multilayer perceptrons [6, 8],
is interesting because the rate of convergence does not
depend on the dimension d of the input space. This is
apparently unusual in approximation theory, because it
is known, from the theory of linear and nonlinear widths
[78, 64, 54, 55, 20, 19, 21, 56], that, if the function that
has to be approximated has d variables and a degree of
smoothness s, we should not expect to �nd an approxi-
mation technique whose approximation error goes to zero
faster than O(n�

s

d ). Here \degree of smoothness" is a
measure of how constrained the class of functions we con-
sider is, for example the number of derivatives that are
uniformly bounded, or the number of derivatives that are
integrable or square integrable. Therefore, from classi-
cal approximation theory, we expect that, unless certain
constraints are imposed on the class of functions to be

approximated, the rate of convergence will dramatically
slow down as the number of dimensions increases, show-
ing the phenomenon known as \the curse of dimension-
ality" [11].

In the case of class F we consider here, the constraint
of considering functions that are convolutions of Radon
measures with Gaussian seems to impose on this class of
functions an amount of smoothness that is su�cient to

guarantee that the rate of convergence does not become
slower and slower as the dimension increases. A longer
discussion of the \curse of dimensionality" can be found
in [34].

We notice also that, since the rate (20) is independent
of the dimension, the class F , together with the approx-
imating class Hn, de�nes a class of problems that are
\tractable" even in a high number of dimensions.

D.2 Bounding the estimation error

In this part we attempt to bound the estimation error
jI[f ] � Iemp[f ]j. In order to do that we �rst need to
introduce some basic concepts and notations.

Let S be a subset of a metric space S with metric d.
We say that an �-cover with respect to the metric d is
a set T 2 S such that for every s 2 S; there exists some
t 2 T satisfying d(s; t) � �. The size of the smallest
�-cover is N (�;S; d) and is called the covering number
of S. In other words

N (�;S; d) = min
T �S

jT j ;

where T runs over all the possible �-cover of S and jT j
denotes the cardinality of T .

A set B belonging to the metric space S is said to
be �-separated if for all x; y 2 B, d(x; y) > �. We
de�ne the the packing number M(�;S; d) as the size of
the largest �-separated subset of S. Thus

M(�;S; d) = max
B�S

jBj ;
where B runs over all the �-separated subsets of S. It is
easy to show that the covering number is always less than
the packing number, that is N (�;S; d) �M(�;S; d).

Let now P (�) be a probability distribution de�ned on
S, and A be a set of real-valued functions de�ned on S

such that, for any a 2 A,

0 � a(�) � U
2 8� 2 S :

Let also �� = (�1; ::; �l) be a sequence of l examples drawn
independently from S according to P (�). For any func-
tion a 2 A we de�ne the empirical and true expectations
of a as follows:

Ê[a] =
1

l

lX
i=1

a(�i)

E[a] =

Z
S

d�P (�)a(�)

The di�erence between the empirical and true expecta-
tion can be bounded by the following inequality, whose
proof can be found in [69] and [42], that will be crucial
in order to prove our main theorem.

Claim D.1 ([69], [42]) Let A and �� be as de�ned

above. Then, for all � > 0,

P

�
9a 2 A : jÊ[a]� E[a]j > �

�
�

� 4E
�N ( �

16
;A��; dL1)

�
e
� 1

128U4
�
2
l
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In the above result, A�� is the restriction of A to the data
set, that is:

A�� � f(a(�1); : : : ; a(�l)) : a 2 Ag : (22)

The set A�� is a collection of points belonging to the

subset [0; U ]l of the l-dimensional euclidean space. Each
function a in A is represented by a point in A�� , while
every point in A�� represents all the functions that have
the same values at the points �1; : : : ; �l. The distance
metric dL1 in the inequality above is the standard L

1

metric in R
l, that is

dL1(x;y) =
1

l

lX
�=1

jx� � y
�j

where x and y are points in the l-dimensional euclidean
space and x

� and y
� are their �-th components respec-

tively.
The above inequality is a result in the theory of uni-
form convergence of empirical measures to their under-
lying probabilities, that has been studied in great detail
by Pollard and Vapnik, and similar inequalities can be
found in the work of Vapnik [81, 82, 80], although they
usually involve the VC dimension of the set A, rather
than its covering numbers.

Suppose now we choose S = X � Y , where X is an
arbitrary subset of Rk and Y = [�M;M ] as in the for-
mulation of our original problem. The generic element
of S will be written as � = (x; y) 2 X � Y . We now
consider the class of functions A de�ned as:

A = fa : X�Y ! R j a(x; y) = (y�h(x))2 ; h 2 Hn(R
k)g

where Hn(R
k) is the class of k-dimensional Radial Basis

Functions with n basis functions de�ned in eq. 12 in
section 3. Clearly,

jy � h(x)j � jyj+ jh(x)j �M +MV;

and therefore

0 � a � U
2

where we have de�ned

U �M +MV :

We notice that, by de�nition of Ê(a) and E(a) we have

Ê(a) =
1

l

lX
i=1

(yi � h(xi))
2 = Iemp[h]

and

E(a) =

Z
X�Y

dxdy P (x; y)(y � h(x))2 = I[h] :

Therefore, applying the inequality of claim D.1 to the
set A, and noticing that the elements of A are essentially
de�ned by the elements of Hn, we obtain the following
result:

P (8h 2 Hn; jIemp[h]� I[h]j � �) �

� 1� 4E[N (�=16;A��; dL1)]e
�

1

128U4
�
2
l
:

(23)

so that the inequality of claim D.1 gives us a bound on
the estimation error. However, this bound depends on
the speci�c choice of the probability distribution P (x; y),
while we are interested in bounds that do not depend on
P . Therefore it is useful to de�ne some quantity that
does not depend on P , and give bounds in terms of that.

We then introduce the concept of metric capacity
of A, that is de�ned as

C(�;A; dL1) = sup
P

fN (�;A; dL1(P ))g

where the supremum is taken over all the probability
distributions P de�ned over S, and dL1(P ) is standard

L
1(P ) distance9

induced by the probability distribution P :

dL1(P )(a1; a2) =

Z
S

d�P (�)ja1(�)� a2(�)j a1; a2 2 A :

The relationship between the covering number and the
metric capacity is showed in the following

Claim D.2

E[N (�;A��; dL1)] � C(�;A; dL1) :
Proof: For any sequence of points �� in S, there is a triv-
ial isometry between (A��; dL1) and (A; dL1(P��)

) where

P�� is the empirical distribution on the space S given

by 1
l

P
l

i=1
�(� � �i). Here � is the Dirac delta func-

tion, � 2 S, and �i is the i-th element of the data
set. To see that this isometry exists, �rst note that
for every element a 2 A, there exists a unique point
(a(�1); : : : ; a(�l)) 2 A��: Thus a simple bijective mapping
exists between the two spaces. Now consider any two
elements g and h of A. The distance between them is
given by

dL1(P��)
(g; h) =

Z
S

jg(�)�h(�)jP��(�)d� =
1

l

lX
i=1

jg(�i)�h(�i)j:

This is exactly what the distance between the two points
(g(�1); ::; g(�l)) and (h(�1); ::; h(�l)), which are elements
of A�� , is according to the dL1 distance. Thus there is

9Note that here A is a class of real-valued functions de-
�ned on a general metric space S: If we consider an arbitrary
A de�ned on S and taking values in R

n
; the dL1(P ); norm is

appropriately adjusted to be

d
L1(P )(f ;g) =

1

n

nX
i=1

Z
S

jfi(x)� gi(x)jP (x)dx

where f(x) = (f1(x); : : : fi(x); : : : fn(x)); g(x) =
(g1(x); : : : gi(x); : : : gn(x)) are elements of A and P (x) is a
probability distribution on S. Thus dL1 and dL1(P ) should

be interpreted according to the context.
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a one-to-one correspondence between elements of A and
A�� and the distance between two elements in A is the
same as the distance between their corresponding points
in A��. Given this isometry, for every �-cover in A, there
exists an �-cover of the same size in A��, so that

N (�;A��; dL1) = N (�;A; dL1(P�)) � C(�;A; dL1):
and consequently E[N (�;A��; dL1)] � C(�;A; dL1). 2

The result above, together with eq. (23) shows that the
following proposition holds:

Claim D.3

P (8h 2 Hn; jIemp[h]� I[h]j � �) �

� 1� 4C(�=16;A; dL1)]e�
1

128U4
�
2
l
:

(24)

Thus in order to obtain a uniform bound ! on jIemp[h]�
I[h]j, our task is reduced to computing the metric capac-
ity of the functional class A which we have just de�ned.
We will do this in several steps. In Claim D.4, we �rst
relate the metric capacity of A to that of the class of ra-
dial basis functions Hn. Then Claims D.5 through D.9
go through a computation of the metric capacity of Hn.

Claim D.4

C(�;A; dL1) � C(�=4U;Hn; dL1)

Proof: Fix a distribution P on S = X � Y . Let PX
be the marginal distribution with respect to X. Sup-
pose K is an �=4U -cover for Hn with respect to this
probability distribution PX , i.e. with respect to the dis-
tance metric dL1(PX ) on Hn. Further let the size of K be

N (�=4U;Hn; dL1(PX)). This means that for any h 2 Hn,
there exists a function h

� belonging to K, such that:Z
jh(x)� h

�(x)jPX(x)dx � �=4U

Now we claim the set H(K) = f(y � h(x))2 : h 2 Kg
is an � cover for A with respect to the distance metric
dL1(P ). To see this, it is su�cient to show that

R
j(y � h(x))2 � (y � h

�(x))2jP (x; y)dxdy �

� R 2j(2y � h� h
�)jj(h� h

�)jP (x; y)dxdy �

� R 2(2M + 2MV )jh� h
�jP (x; y)dxdy � �

which is clearly true. Now

N (�;A; dL1(P )) � jH(K)j =

= calN (�=4U;Hn; dL1(PX )) �

� C(�=4U;Hn; dL1)

Taking the supremum over all probability distributions,
the result follows. 2

So the problem reduces to �nding C(�;Hn; dL1), i.e. the
metric capacity of the class of appropriately de�ned Ra-
dial Basis Functions networks with n centers. To do this
we will decompose the class Hn to be the composition of
two classes de�ned as follows.

De�nitions/Notations

HI is a class of functions de�ned from the metric space
(Rk

; dL1) to the metric space (Rn
; dL1). In particular,

HI = fg(x) = (G(kx�t1k); G(kx�t2k); : : : ; G(kx�tnk))g
where G is a Gaussian and ti are k-dimensional vectors.
Note here that G is the same Gaussian that we have been
using to build our Radial-Basis-Function Network. Thus
HI is parametrized by the n centers ti and the variance
of the Gaussian �2, in other words nk+ 1 parameters in
all.
HF is a class de�ned from the metric space

([0; V ]n; dL1) to the metric space (R; dL1). In particu-
lar,

HF = fh(x) = � � x; x 2 [0; V ]n and

nX
i=1

j�ij �Mg

where � � (�1; : : : ; �n) is an arbitrary n-dimensional
vector.

Thus we see that

Hn = fhF � hI : hF 2 HF and hI 2 HIg
where � stands for the composition operation, i.e., for
any two functions f and g, f � g = f(g(x)). It should
be pointed out that Hn as de�ned above is de�ned from
R
k to R.

Claim D.5

C(�;HI; dL1) � 2n
�
2eV

�
ln

�
2eV

�

��n(k+2)

Proof: Fix a probability distribution P on Rk. Consider
the class

G = fg : g(x) = G(kx� tk); t 2 R
kg:

Let K be an N (�;G; dL1(P ))-sized � cover for this class.
We �rst claim that

T = f(h1; ::; hn) : hi 2 Kg
is an �-cover for HI with respect to the dL1(P ) metric.

Remember that the dL1(P ) distance between two

vector-valued functions g(x) = (g1(x); ::; gn(x)) and
g�(x) = (g�1(x); ::; g

�
n(x)) is de�ned as

dL1(P )(g;g
�) =

1

n

nX
i=1

Z
jgi(x) � g

�
i (x)jP (x)dx

To see this, pick an arbitrary g = (g1; : : : ; gn) 2 HI.
For each gi, there exists a g

�
i
2 K which is �-close
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in the appropriate sense for real-valued functions, i.e.
dL1(P )(gi; g

�
i ) � �. The function g = (g�1; ::; g

�
n) is an

element of T . Also, the distance between (g1; ::; gn) and
(g�1 ; ::; g

�
n
) in the dL1(P ) metric is

dL1(P )(g;g
�) � 1

n

nX
i=1

� = � :

Thus we obtain that

N (�;HI; dL1(P )) � [N (�;G; dL1(P ))]n
and taking the supremum over all probability distribu-
tions as usual, we get

C(�;HI; dL1) � (C(�;G; dL1))n :

Now we need to �nd the capacity of G. This is done in
the Claim D.6. From this the result follows. 2

De�nitions/Notations

Before we proceed to the next step in our proof, some
more notation needs to be de�ned. Let A be a fam-
ily of functions from a set S into R. For any sequence
�� = (�1; ::; �d) of points in S, let A�� be the restriction
of F to the data set, as per our previously introduced
notation. Thus A�� = f(a(�1); : : : ; a(�d)) : a 2 Ag. If
there exists some translation of the set A��, such that

it intersects all 2d orthants of the space R
d, then �� is

said to be shattered by A: Expressing this a little more
formally, let B be the set of all possible l-dimensional
boolean vectors. If there exists a translation t 2 R

d

such that for every b 2 B, there exists some function
ab 2 A satisfying ab(�i)� ti � bi , bi = 1 for all i = 1

to d, then the set (�1; ::; �d) is shattered by A: Note that
the inequality could easily have been de�ned to be strict
and would not have made a di�erence. The largest d
such that there exists a sequence of d points which are
shattered by A is said to be the pseudo-dimension of A
denoted by pdimA. 2

In this context, there are two important theorems which
we will need to use. We give these theorems without
proof.

Theorem D.1 (Dudley) Let F be a k-dimensional

vector space of functions from a set S into R. Then

pdim(F ) = k.

The following theorem is stated and proved in a some-
what more general form by Pollard. Haussler, using tech-
niques from Pollard has proved the speci�c form shown
here.

Theorem D.2 (Pollard, Haussler) Let F be a fam-

ily of functions from a set S into [M1;M2], where

pdim(F ) = d for some 1 � d < 1. Let P be a prob-

ability distribution on S. Then for all 0 < � �M2�M1,

M(�; F; dL1(P )) < 2

�
1

�
2e(M2 �M1) log

1

�
2e(M2 �M1)

�d
Here M(�; F; dL1(P )) is the packing number of F accord-

ing to the distance metric dL1(P ).

Claim D.6

C(�;G; dL1) � 2

�
2eV

�
ln

�
2eV

�

��(k+2)

Proof: Consider the k + 2-dimensional vector space of
functions from R

k to R de�ned as

G1 � spanf1; x1; x2; �; xk; kxk2g
where x 2 R

k and x� is the �-th component of the vector
x. Now consider the class

G2 = f�e�f : f 2 G1; � =
1p
2��

g

where � is the standard deviation of the Gaussian, and
f 2 G1. We claim that the pseudo-dimension of G de-
noted by pdim(G) ful�lls the following inequality,

pdim (G) � pdim (G2) = pdim (G1) = (k + 2):

To see this consider the fact that G � G2. Conse-
quently, for every sequence of points �x = (x1; : : : ;xd),
G�x � (G2)�x. Thus if (x1; : : : ;xd) is shattered by G, it
will be shattered by G2. This establishes the �rst in-
equality.

We now show that pdim(G2) � pdim(G1). It is
enough to show that every set shattered by G2 is
also shattered by G1: Suppose there exists a sequence
(x1;x2; : : : ;xd) which is shattered by G2. This means
that by our de�nition of shattering, there exists a
translation t 2 R

d such that for every boolean vec-

tor b 2 f0; 1gd there is some function gb = �e
�fb

where fb 2 G1 satisfying gb(xi) � ti if and only
if bi = 1, where ti and bi are the i-th components
of t and b respectively. First notice that every func-
tion in G2 is positive. Consequently, we see that ev-
ery ti has to be greater than 0, for otherwise, gb(xi)
could never be less than ti which it is required to be
if bi = 0. Having established that every ti is greater
than 0, we now show that the set (x1;x2; : : : ;xd) is
shattered by G1. We let the translation in this case be
t0 = (log(t1=�); log(t2=�); : : : ; log(td=�)): We can take
the log since the ti=�'s are greater than 0. Now for ev-
ery boolean vector b, we take the function �fb 2 G1 and
we see that since

gb = �e
�fb � ti , bi = 1:

if follows that

�fb � log(ti=�) = t0i , bi = 1:

Thus we see that the set (x1;x2; : : : ;xd) can be shattered
by G1: By a similar argument, it is also possible to show
that pdim(G1) � pdim(G2):
Since G1 is a vector space of dimensionality k + 2; an
application of Dudley's Theorem [24] yields the value
k + 2 for its pseudo-dimension. Further, functions in
the class G are in the range [0; V ]. Now we see (by an
application of Pollard's theorem) that
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N (�;G; dL1(P )) �M(�;G; dL1(P )) �

� 2
�
2eV
�

ln
�
2eV
�

��pdim(G) �

� 2
�
2eV
�

ln
�
2eV
�

��(k+2)
Taking the supremum over all probability distributions,
the result follows.2

Claim D.7

C(�;HF ; dL1) � 2

�
4MeV

�
ln

�
4MeV

�

��n

Proof: The proof of this runs in very similar fashion.
First note that

HF � f� � x : x; � 2 R
ng:

The latter set is a vector space of dimensionalityn and by
Dudley's theorem[24], we see that its pseudo-dimension
pdim is n. Also, clearly by the same argument as in the
previous proposition, we have that pdim(HF ) � n. To
get bounds on the functions in HF , notice that

j
nX
i=1

�ixij �
nX
i=1

j�ijjxij � V

nX
i=1

j�ij �MV:

Thus functions in HF are bounded in the range
[�MV;MV ]. Now using Pollard's result [42], [69], we
have that

N (�;HF ; dL1(P )) �M(�;HF ; dL1(P )) �

� 2
�
4MeV

�
ln
�
4MeV

�

��n
:

Taking supremums over all probability distributions, the
result follows. 2

Claim D.8 A uniform �rst-order Lipschitz bound of

HF is Mn.

Proof: Suppose we have x; y 2 R
n such that

dL1(x;y) � �:

The quantity Mn is a uniform �rst-order Lipschitz
bound for HF if, for any element of HF , parametrized
by a vector �, the following inequality holds:

jx � � � y � �j � Mn�

Now clearly,

jx � � � y � �j = jPn

i=1 �i(xi � yi)j �

�Pn

i=1
j�ijj(xi � yi)j �

�M
Pn

i=1
j(xi � yi)j �Mn�

The result is proved. 2

Claim D.9

C(�;Hn; dL1) � C(
�

2Mn
;HI; dL1)C(

�

2
;HF ; dL1)

Proof: Fix a distribution P on R
k. Assume we have

an �=(2Mn)-cover for HI with respect to the probability
distribution P and metric dL1(P ). Let it be K where

jKj = N (�=2Mn;HI; dL1(P )):

Now each function f 2 K maps the space Rk into Rn,
thus inducing a probability distribution Pf on the space
R
n. Speci�cally, Pf can be de�ned as the distribution

obtained from the measure �f de�ned so that any mea-
surable set A � R

n will have measure

�f (A) =

Z
f�1(A)

P (x)dx :

Further, there exists a cover Kf which is an �=2-cover
for HF with respect to the probability distribution Pf .
In other words

jKf j = N (�=2;HF ; dL1(Pf )):

We claim that

H(K) = ff � g : g 2 K and f 2 Kgg
is an � cover for Hn. Further we note that

jH(K)j =P
f2K

jKf j �
P

f2K
C(�=2;HF ; dL1) �

� N (�=(2Mn);HI; dL1(P ))C(�=2;HF ; dL1)

To see that H(K) is an �-cover, suppose we are given an
arbitrary function hf � hi 2 Hn. There clearly exists a
function h�

i
2 K such thatZ

Rk

dL1(hi(x); h
�

i
(x))P (x)dx � �=(2Mn)

Now there also exists a function h�
f
2 Kh�

i
such that

R
Rk jhf � h�i (x) � h

�
f
� h�

i
(x)jP (x)dx =

=
R
Rn
jhf (y)� h

�
f
(y)jPh�

i

(y)dy � �=2 :

To show that H(K) is an �-cover it is su�cient to show
that Z

Rk

jhf � hi(x)� h
�
f � h�i (x)jP (x)dx � �:

Now R
Rk jhf � hi(x) � h

�
f
� h�

i
(x)jP (x)dx �

� R
Rk
fjhf � hi(x)� hf � h�i (x)j+

+jhf � h�i (x)� h
�
f
� h�i (x)jP (x)dxg

by the triangle inequality. Further, since hf is Lipschitz
bounded,
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R
Rk jhf � hi(x)� hf � h�i (x)jP (x)dx �

� R
Rk MndL1(hi(x); h

�
i (x))P (x)dx �Mn(�=2Mn) � �=2 :

Also,

R
Rk jhf � h�i (x)� h

�
f
� h�

i
(x)jP (x)dx =

=
R
Rn
jhf (y)� h

�
f
(y)jPh�

i

(y)dy � �=2 :

Consequently both sums are less than �=2 and the total
integral is less than �. Now we see that

N (�;Hn; dL1(P )) � N ��=(2Mn);HI; dL1(P )

� C(�=2;HF ; dL1):

Taking supremums over all probability distributions, the
result follows. 2

Having obtained the crucial bound on the metric capac-
ity of the class Hn, we can now prove the following

Claim D.10 With probability 1 � �, and 8h 2 Hn, the

following bound holds:

jIemp[h]� I[h]j � O

 �
nk ln(nl) + ln(1=�)

l

�1=2!

Proof: We know from the previous claim that

C(�;Hn; dL1) �

� 2n+1
�
4MeVn

�
ln
�
4MeVn

�

��n(k+2) � 8MeV

�
ln
�
8MeV

�

��n �
� �8MeVn

�
ln(8MeVn

�
)
�n(k+3)

:

From claim (D.3), we see that

P (8h 2 Hn; jIemp[h]� I[h]j � �) �

� 1� �

(25)

as long as

C(�=16;A; dL1)e�
1

128U4
�
2
l � �

4

which in turn is satis�ed as long as (by Claim D.4)

C(�=64U;Hn; dL1)e
� 1

128U2
�
2
l � �

4
which implies

�
1
�
256MeV Un ln

�
1
�
256MeV Un

��n(k+3) �
�e� 1

128U2
�
2
l � �

4

In other words,

�
An

�
ln

�
An

�

��n(k+3)
e
��

2
l=B � �

4

for constants A;B. The latter inequality is satis�ed as
long as

(An=�)2n(k+3)e��
2
l=B � �

4
which implies

2n(k + 3)(ln(An) � ln(�))� �
2
l=B � ln(�=4)

and in turn implies

�
2
l > B ln(4=�) + 2Bn(k + 3)(ln(An)� ln(�)):

We now show that the above inequality is satis�ed for

� =

�
B [ln(4=�) + 2n(k + 3) ln(An) + n(k + 3) ln(l)]

l

�1=2

Putting the above value of � in the inequality of interest,
we get

�
2(l=B) = ln(4=�) + 2n(k + 3) ln(An) + n(k + 3) ln(l) �

� ln(4=�) + 2n(k + 3) ln(An)+

+2n(k + 3)1
2
ln
�

l

B[ln(4=�)+2n(k+3) ln(An)+n(k+3) ln(l)]

�
In other words,

n(k + 3) ln(l) �

� n(k + 3) ln
�

l

B[ln(4=�)+2n(k+3) ln(An)+n(k+3) ln(l)]

�
Since

B [ln(4=�) + 2n(k + 3) ln(An) + n(k + 3) ln(l)] � 1

the inequality is obviously true for this value of �: Taking
this value of � then proves our claim. 2

D.3 Bounding the generalization error

Finally we are able to take our results in Parts II and III
to prove our main result:

Theorem D.3 With probability greater than 1 � � the

following inequality is valid:

kf0 � f̂n;lk2L2(P ) � O

�
1

n

�
+ O

 �
nk ln(nl) � ln �

l

�1=2!

Proof: We have seen in statement (2.1) that the gener-
alization error is bounded as follows:

kf0 � f̂n;lk2L2(P ) � "(n) + 2!(l; n; �) :

In section (D.1) we showed that

"(n) = O

�
1

n

�
and in claim (D.10) we showed that

!(l; n; �) = O

 �
nk ln(nl)� ln �

l

�1=2!
:

Therefore the theorem is proved putting these results
together. 2
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