MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY
and

CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING

A.l. Memo No. 1471 April 1994
C.B.C.

L.
B.C.L. Paper No. 92

A Nonparametric Approach to Pricing and Hedging
Derivative Securities Via Learning Networks

James M. Hutchinson, Andrew Lo and Tomaso Poggio

Abstract

We propose a nonparametric method for estimating the pricing formula of a derivative asset using learning
networks. Although not a substitute for the more traditional arbitrage-based pricing formulas, network
pricing formulas may be more accurate and computationally more efficient alternatives when the un-
derlying asset’s price dynamics are unknown, or when the pricing equation associated with no-arbitrage
condition cannot be solved analytically. To assess the potential value of network pricing formulas, we sim-
ulate Black-Scholes option prices and show that learning networks can recover the Black-Scholes formula
from a two-year training set of daily options prices, and that the resulting network formula can be used
successfully to both price and delta-hedge options out-of-sample. For comparison, we estimate models
using four popular methods: ordinary least squares, radial basis function networks, multilayer perceptron
networks, and projection pursuit. To illustrate the practical relevance of our network pricing approach,
we apply it to the pricing and delta-hedging of S&P 500 futures options from 1987 to 1991.

Copyright (©) Massachusetts Institute of Technology, 1994

This report describes research done within the Artificial Intelligence Laboratory and the Sloan School of Management’s
Research Program in Computational Finance at the Massachusetts Institute of Technology. This research is sponsored by
grants from the Office of Naval Research under contracts N00014-92-J-1879 (AASERT) and N00014-93-1-0385. Support for
the A.l. Laboratory’s artificial intelligence research is provided by ARPA contract N00014-91-J-4038. Additional support was
provided by the National Science Foundation under contract ASC-9217041, the Research Program in Computational Finance,
Siemens AG, ATR Audio and Visual Perception Research Laboratories. J. Hutchinson is with PHZ Partners (One Cambridge
Center, Cambridge, MA 02142). A portion of this research was conducted during A. Lo’s tenure as an Alfred P. Sloan Research
Fellow. T. Poggio is supported by the Uncas and Helen Whitaker Chair at MIT’s Whitaker College.

1 Introduction

Much of the success and growth of the market for op-
tions and other derivative securities may be traced to
the seminal papers by Black and Scholes (1973) and Mer-
ton (1973), in which closed-form option pricing formulas
were obtained through a dynamic hedging argument and
a no-arbitrage condition. The celebrated Black-Scholes
and Merton pricing formulas have now been generalized,
extended, and applied to such a vast array of securities
and contexts that it is virtually impossible to provide an
exhaustive catalog. Moreover, while closed-form expres-
sions are not available in many of these generalizations
and extensions, pricing formulas may still be obtained
numerically.

In each case, the derivation of the pricing formula
via the hedging/no-arbitrage approach, either analyti-
cally or numerically, depends intimately on the partic-
ular parametric form of the underlying asset’s price dy-
namics S(t). A misspecification of the stochastic process
for S(t) will lead to systematic pricing and hedging er-
rors for derivative securities linked to S(¢). Therefore,
the success or failure of the traditional approach to pric-
ing and hedging derivative securities, which we call a
parametric pricing method, is closely tied to the ability
to capture the dynamics of the underlying asset’s price
process.

In this paper, we propose an alternative data-driven
method for pricing and hedging derivative securities, a
nonparametric pricing method, in which the data is al-
lowed to determine both the dynamics of S(¢) and its re-
lation to the prices of derivative securities with minimal
assumptions on S(¢) and the derivative pricing model.
We take as inputs the primary economic variables that
influence the derivative’s price, e.g., current fundamen-
tal asset price, strike price, time-to-maturity, etc., and
define the derivative price to be the output into which
the learning network maps the inputs. When properly
trained, the network “becomes” the derivative pricing
formula which may be used in the same way that for-
mulas obtained from the parametric pricing method are
used: for pricing, delta-hedging, simulation exercises,
ete.

These network-based models have several important
advantages over the more traditional parametric models.
First, since they do not rely on restrictive parametric as-
sumptions such as lognormality or sample-path continu-
ity, they are robust to the specification errors that plague
parametric models. Second, they are adaptive, and re-
spond to structural changes in the data-generating pro-
cesses in ways that parametric models cannot. Finally,
they are flexible enough to encompass a wide range of
derivative securities and fundamental asset price dynam-
ics, yet relatively simple to implement.

Of course, all these advantages do not come with-
out some cost—the nonparametric pricing method is
highly data-intensive, requiring large quantities of histor-

1

ical prices to obtain a sufficiently well-trained network.
Therefore, such an approach would be inappropriate
for thinly-traded derivatives, or newly-created deriva-
tives that have no similar counterparts among existing
securities.! Also, if the fundamental asset’s price dynam-
ics are well-understood and an analytical expression for
the derivative’s price 1s available under these dynamics,
then the parametric formula will almost always dominate
the network formula in pricing and hedging accuracy.
Nevertheless, these conditions occur rarely enough that
there may still be great practical value in constructing
derivative pricing formulas by learning networks.

In Section 2, we provide a brief review of learning
networks and related statistical methods. To illustrate
the promise of learning networks in derivative pricing
applications, in Section 3 we report the results of sev-
eral Monte Carlo simulation experiments in which ra-
dial basis function (RBF) networks “discover” the Black-
Scholes formula when trained on Black-Scholes call op-
tion prices. Moreover, the RBF network pricing formula
performs as well as the Black-Scholes formula in delta-
hedging a hypothetical option, and in some cases per-
forms even better [because of the discreteness-error in
the Black-Scholes case arising from delta-hedging daily
instead of continuously]. To gauge the practical rel-
evance of our nonparametric pricing method, in Sec-
tion 4 we apply the RBF pricing model to daily call
option prices on S&P 500 futures from 1987 to 1991
and compare its pricing and delta-hedging performance
to the naive Black-Scholes model. We find that in
many cases, the network pricing formula outperforms the
Black-Scholes model. We suggest several directions for
future research and conclude in Section 5.

2 Learning Networks: A Brief Review

Over the past 15 years, a number of techniques have been
developed for modeling nonlinear statistical relations
nonparametrically. In particular, projection pursuit re-
gression, multilayer perceptrons [often called “backprop-
agation networks”?], and radial basis functions are three
popular examples of such techniques. Although origi-
nally developed in different contexts for seemingly dif-
ferent purposes, these techniques may all be viewed as
nonparametric methods for performing nonlinear regres-
sions. Following Barron and Barron (1988) we call this
general class of methods learning networks to emphasize
this unifying view and acknowledge their common his-

"However, since newly-created derivatives can often be
replicated by a combination of existing derivatives, this is
not as much of a limitation as it may seem at first.

?More accurately, the term “backpropagation” is now typ-
ically used to refer to the particular gradient descent method
of estimating parameters, while the term “multilayer percep-
tron” is used to refer to the specific functional form described
below.

tory. In the following sections, we shall provide a brief
review of their specification and properties. Readers al-
ready familiar with these techniques may wish to proceed
immediately to the Monte Carlo simulation experiments
of Section 3.

2.1 Standard Formulations

In this section we describe the standard formulations of
the learning networks to be used in this paper. For ex-
positional simplicity, we shall focus our attention on the
problem of mapping multiple input variables into a uni-
variate output variable, much like regression analysis, al-
though the multivariate-output case is a straightforward
extension.

Given the well-known trade-offs between degrees of
freedom and approximation error in general statistical
inference, we shall also consider the number of param-
eters implied by each model so that we can make com-
parisons between them on a roughly equal footing. Note,
however, that the number of free parameters is a crude
measure of the complexity of nonlinear models, and more
refined measures may be available, e.g.; the nonlinear
generalizations of the influence matrix in Wahba (1990).

A common way to visualize the structure of these net-
works is to draw them as a graph showing the connec-
tions between inputs, nonlinear “hidden” units, and out-
puts [see Figure 1].

2.1.1 Radial Basis Functions

Radial Basis Functions (RBFs) were first used to
solve the interpolation problems—fitting a curve exactly
through a set of points [see Powell (1987) for a re-
view]. More recently, the RBF formulation has been ex-
tended by several researchers to perform the more gen-
eral task of approximation [see Broomhead and Lowe
(1988), Moody and Darken (1989) and Poggio and Girosi
(1990)]. In particular, Poggio and Girosi (1990) show
how RBFs can be derived from the classical regulariza-
tion problem in which some unknown function y = f(¥)
is to be approximated given a sparse dataset (¥, 1) and
some smoothness constraints. In terms of our multiple-
regression analogy, the d-dimensional vector #; may
be considered the “independent” or “explanatory” vari-
ables, y; the “dependent” variable, and f(-) the [possi-
bly] nonlinear function that is the conditional expecta-
tion of y; given ¥, hence:

(&) + &)

The regularization [or “nonparametric estimation”]
problem may then be viewed as the minimization of the
following objective functional:

Yo = Ele|#:] = 0. (1)

T

H(f) = > (g = F(@)II° + AP F(@)I) (2)
t=1

where || - || is some vector norm and P is a differential

the distance between the approximation f(i‘}) and the
observation y;, the second term is a penalty function that
is a decreasing function of the smoothness of f(), and A
controls the trade-off between smoothness and fit.

In its most general form, and under certain conditions
[see, for example, Poggio and Girosi (1990)], the solution
to (2) is given by the following expression:

@ =Y anllE-a+r@ G

where {Z;} are d-dimensional vector prototypes or “cen-
ters”, {c¢;} are scalar coefficients, {h;} are scalar func-
tions, p(-) is a polynomial, and k is typically much less
than the number of observations 7" in the sample. Such
approximants have been termed “hyperbasis functions”
by Poggio and Girosi (1990) and are closely related to
splines, smoothers such as kernel estimators, and other
nonparametric estimators.>

For our current purposes, we shall take the vector
norm to be a weighted Euclidean norm defined by a (d x
d) weighting matrix 17, and the polynomial term shall be
taken to be just the linear and constant terms, yielding
the following specification for f()

k
f(@ = Zcihi((f_z:)’W'W(f_z;))
i=1
+ ap + a7 (4)

where ag and & are the coefficients of the polynomial
p(-). Micchelli (1986) shows that a large class of basis
functions h;(-) are appropriate, but the most common

—z/o?

choices for basis functions h(z) are Gaussians e and

multiquadrics vV + o2.

That networks of this type can generate any real-
valued output, but in applications where we have some
a priort knowledge of the range of the desired outputs,
it is computationally more efficient to apply some non-
linear transfer function to the outputs to reflect that
knowledge. This will be the case in our application to
derivative pricing models, in which some of the RBF
networks will be augmented with an “output sigmoid”,
which maps the range (—oo,00) into the fixed range
(0,1). In particular, the augmented network will be of

the form g(f(i")) where g(u) = 1/(1 4+ 7).

For a given set of inputs {#;} and outputs {y:}, RBF
approximation amounts to estimating the parameters of
the RBF network: the d(d+1)/2 unique entries of the
matrix W/W, the dk elements of the centers {Z;}, and
the d+k+ 1 coefficients «g, ai, and {¢;}. Thus the
total number of parameters that must be estimated for
d-dimensional inputs and k centers is dk+(d?/2)H3d/2)+
k+1.

®To economize on terminology, in this paper we use the
term “radial basis functions” to encompass both the in-
terpolation techniques used by Powell and its subsequent

operator. The first term of the sum in (2) is simply 5 generalizations.

2.1.2 Multilayer Perceptrons

Multilayer perceptrons (MLPs) are arguably the most
popular type of “neural network”, the general category
of methods that derive their original inspiration from
simple models of biological nervous systems. They were
developed independently by Parker (1985) and Rumel-
hart et al. (1986) and popularized by the latter. Follow-
ing the notation of Section 2.1.1, a general formulation of
MLPs with univariate outputs may be written as follows:

i) - h(z@hwﬁ@ai@wo) 6

i=1

where h(-) is typically taken to be a smooth, monotoni-
cally increasing function such as the “sigmoid” function
1/(1 4+ e "), {6} and 3 are coefficients, and k is the
number of “hidden units”. The specification (5) is gen-
erally termed an MLP with “one hidden layer” because
the basic “sigmoid-of-a-dot-product” equation is nested
once—the nesting may of course be repeated arbitrar-
ily many times, hence the term “multilayer” perceptron.
Unlike the RBF formulation, the nonlinear function h
in the MLP formulation is usually fixed for the entire
network.

For a given set of inputs {Z;} and outputs {y,;}, fit-
ting an MLP model amounts to estimating the (d+ 1)k
parameters {Bp;} and {512’}, and the k-+1 parameters
{4;}, for a total of (d+2)k+1 parameters.

2.1.3 Projection Pursuit Regression

Projection pursuit is a method that emerged from
the statistics community for analyzing high-dimensional
datasets by looking at their low-dimensional projections.
Friedman and Stuetzle (1981) developed a version for
the nonlinear regression problem called projection pur-
suit regression (PPR). Similar to MLPs, PPR models are
composed of projections of the data, i.e., dot products
of the data with estimated coefficients, but unlike MLPs
they also estimate the nonlinear combining functions
from the data. Following the notation of Section 2.1.2,
the formulation for PPR with univariate outputs can be
written as

k
f@) = 3 kil Fa) + 6 (6)
i=1
where the functions h;(-) are estimated from the data
[typically with a smoother], the {6;} and 5 are coefli-
cients, and k is the number of projections. Note that g
1s commonly taken to be the sample mean of the outputs
/().

In counting the number of parameters that PPR mod-
els require, a difficulty arises in how to treat its use of
smoothers in estimating the inner A functions. A naive
approach is to count each smoothing estimator as a sin-
gle parameter; its bandwidth. In this case, the total
number of parameters is dk projection indices, k linear

3

coefficients, and k& smoothing bandwidths, for a total of
(d+2)k parameters. However, a more refined method
of counting the degrees of freedom, e.g., Wahba (1990),
may yield a slightly different count.

2.2 Network Properties

Although the various learning network techniques origi-
nated from a variety of backgrounds, with implications
and characteristics that are not yet fully understood,
some common and well-established properties are worth
noting.

2.2.1 Approximation

All of the above learning networks have been shown to
possess some form of a universal approximation property.
For example, Huber (1985) and Jones (1987) prove that
with sufficiently many terms, any square-integrable func-
tion can be approximated arbitrarily well by PPR. Cy-
benko (1988) and Hornik (1989) demonstrate that one-
hidden layer MLPs can represent to arbitrary precision
most classes of linear and nonlinear continuous functions
with bounded inputs and outputs. Finally, Poggio and
Girosi (1990) show that RBFs can approximate arbitrar-
ily well any continuous function on a compact domain.
In a related vein, Poggio and Girosi also show that RBFs
have the “best” approximation property—there is always
a choice for the parameters that is better than any other
possible choice—a property that is not shared by MLPs.

2.2.2 Error Convergence

The universal approximation results, however, say
nothing about how easy it 1s to find those good approx-
imations, or how computationally efficient they are. In
particular, does the number of data points we will need
to estimate the parameters of a network grow exponen-
tially with its size [the so-called “curse of dimensional-
ity”]? Recent results show that this is not necessarily
true of we are willing to restrict the complexity of the
function we wish to model. For example, Barron (1991)
derives bounds on the rate of convergence of the approxi-
mation error in MLPs based on the number of examples,
given assumptions about the smoothness of the function
being approximated. Chen (1991) obtains similar results
for PPR. Girosi and Anzellotti (1992) derive bounds on
convergence in RBFs using somewhat more natural as-
sumptions about the smoothness of the function being
approximated. Niyogi and Girosi (1994) extend this re-
sult for the estimation problem, and derive a bound on
the “generalization error” of RBFs, the error an RBF
network will make on unseen data.

The importance and centrality of generalization error
bounds to the process of data-driven modeling is worth
noting. In particular, these bounds show that for a fixed
number of data points, the generalization error that we
can expect from a network first decreases as the network
complexity—number of parameters—increases, then af-
ter a certain point the error increases [see Figure 2]. For

the financial modeling problems considered in this paper,
the data set size 1s, to some extent, fixed and thus these
results indicate that there will be an optimal number of
parameters to use for that size of data set.

Other interesting estimation properties have been in-
vestigated for PPR in particular. Diaconis and Shahsha-
hani (1984) provide necessary and sufficient conditions
for functions to be represented ezactly using PPR.
Donoho and Johnstone (1989) demonstrate the duality
between PPR and kernel regression in two dimensions,
and show that PPR is more parsimonious for modeling
functions with angular smoothness.

2.2.3 Model Specification

A key question for most approximation techniques
and in particular for neural network-like schemes con-
cerns the type and the complexity of the model or the
network to be used for a specific problem. Different ap-
proaches and different network architectures correspond
to different choices of the space of approximating func-
tions. A specific choice implies a specific assumption
about the nature of the nonlinear relation to be approx-
imated. For example, Girosi, Jones and Poggio (1993)
have shown that different assumptions about smooth-
ness of the function to be approximated lead to different
approximation schemes; such as different types of Radial
Basis Functions, as well as different kinds of splines and
of ridge approximators. Certain classes of smoothness
assumptions in the different variables even lead to mul-
tilayer perceptron architectures. The number of basis
functions, and more in general of network parameters, is
a related and difficult issue. Even if one type of archi-
tecture can be chosen based on prior knowledge about
the smoothness to be expected in the specific problem,
the question remains about the appropriate complexity
of the architecture, that is the number of parameters. A
general answer does not yet exist and is unlikely to be
discovered any time soon. The standard approach to the
problem relies on cross-validation techniques and varia-
tions of them [Wahba (1990)]. A related, more funda-
mental approach—called structural risk minimization—

has been developed by Vapnik (1982).

2.2.4 Parameter Estimation Methods

In our discussion above, we have focused primarily on
the specification of f() for each method, but of course
a critical concern is how each of the model’s parame-
ters are to be estimated. To some extent, the estimation
issue may be divorced from the specification issue. In-
deed, there is a large body of literature concerned solely
with the estimation of network parameters. Much of
this literature shows that the speed and accuracy of the
estimation process depends on the kind of derivative in-
formation used, whether all parameters are estimated
simultaneously or sequentially, and whether all the data
is used at once in a “batch” mode or sequentially in an

4

“on-line” mode. In Hutchinson (1993), estimation tech-
niques for RBF networks are more fully explored.

However, a rigorous comparison of estimation meth-
ods is not the primary goal of our paper; rather, our
objective is to see if any method can yield useful results.
As such we have adopted the most common estimation
schemes for our use of the other types of learning net-
works. In particular we adopt Levenberg-Marquardt for
batch mode estimation of the RBF networks, gradient
descent [with momentum)] for on-line mode estimation
of the MLP networks, and the Friedman and Stuetzle
algorithm for PPR [which uses a Newton method to com-
pute the projection directions and the “supersmoother”
for finding the nonlinear functions h].

Although not pursued here, readers interested in ex-
ploring the trade-offs between on-line and batch-mode
estimation are encouraged to consult the “stochastic ap-
proximation” literature [see Robbins and Monro (19510,
Ljung & Soderstrom (1986), and Widrow and Stearns
(1985)]. In general, it is not known why on-line methods
used with neural network techniques often seem to per-
form better than batch methods on large-scale, noncon-
vex problems. It seems difficult to extract any general
conclusions from the diverse body of literature reporting
the use of different on-line and batch techniques across
many disparate applications.

2.2.5 Equivalence of Different Learning
Networks

There is another reason that we do not focus on the
merits of one type of learning network over another: re-
cent theoretical developments suggest that there are sig-
nificant connections between many of these networks.
For example, Maruyama, Girosi, and Poggio (1991) show
an equivalence between MLP networks with normal-
ized inputs and RBF networks. Girosi, Jones and Pog-
gio (1993) prove that a wide class of approximation
schemes can be derived from regularization theory, in-
cluding RBF networks and some forms of PPR and MLP
networks. Nevertheless, we expect each formulation to
be more efficient at approximating some functions than
others, and as argued by Ng and Lippman (1991), the
practical differences in using each method, e.g., in run-
ning time or memory used, may be more important than
model accuracy.

3 Learning the Black-Scholes Formula

Given the power and flexibility of learning networks to
approximate complex nonlinear relations, a natural ap-
plication is to derivative securities whose pricing for-
mulas are highly nonlinear even when they are avail-
able in closed form. In particular, we pose the follow-
ing challenge: if option prices were truly determined by
the Black-Scholes formula exactly, can learning networks
“learn” the Black-Scholes formula? In more standard

statistical jargon: can the Black-Scholes formula be es-
timated nonparametrically via learning networks with a
sufficient degree of accuracy to be of practical use?

In this section, we face this challenge by performing
Monte Carlo simulation experiments in which various
learning networks are trained on artificially generated
Black-Scholes option prices, and then compared to the
Black-Scholes formula both analytically and in out-of-
sample hedging experiments to see how close they come.
Even with training sets of only six months of daily data,
learning network pricing formulas can approximate the
Black-Scholes formula with remarkable accuracy.

While the accuracy of the learning network prices
is obviously of great interest, this alone i1s not suffi-
cient to ensure the practical relevance of our nonpara-
metric approach. In particular, the ability to hedge
an option position is as important, since the very ex-
istence of an arbitrage-based pricing formula is predi-
cated on the ability to replicate the option through a
dynamic hedging strategy. This additional constraint
motivates the regularization techniques and, in particu-
lar, the RBF networks used in this study. Specifically,
delta-hedging strategies require an accurate approxima-
tion of the derivative of the underlying pricing formula,
and the need for accurate approximations of derivatives
leads directly to the smoothness constraint imposed by
regularization techniques such as RBF networks.? Of
course, whether or not the delta-hedging errors are suf-
ficiently small in practice is an empirical matter, and we
shall investigate these errors explicitly in our simulation
experiments and empirical application described below.

However, the accuracy we desire cannot be achieved
without placing some structure on the function to be
approximated. For example, we begin by asserting that
the option pricing formula f(-) is smooth in all its ar-
guments, and that its arguments are: the stock price
S(1), the strike price X, and the time-to-maturity 7—t¢.
In fact, we know that the Black-Scholes formula also de-
pends on the risk-free rate of interest r and the volatility
o of the underlying asset’s continuously-compounded re-
turns, e.g.,

C(t) = SE)®(di) — Xe " T=D(dy) (7)
*In fact, it is well known that the problem of numerical
differentiation is ill-posed. The classical approach [Rhein-
sch (1967)] is to regularize it by finding a sufficiently smooth
function that solves the variational problem in (2). As we dis-
cussed earlier, RBF networks as well as splines and several
forms of MLP networks follow directly from the regulariza-
tion approach and are therefore expected to approximate not
only the pricing formula but also its derivatives [provided the
basis function corresponding to a smoothness prior is of a suf-
ficient degree, see (Poggio and Girosi, 1991): in particular,
the Gaussian is certainly sufficiently smooth for our problem)].
A special case of this general argument is the result of Gal-
lant and White (1992) and Hornik, Stinchcombe, and White
(1990) who show that single-hidden-layer MLP networks can
approximate the derivative of an arbitrary nonlinear mapping
arbitrarily well as the number of hidden units increases.

5

where
L WSO/ + ()T D)
b o1 —1t ’
d2 = d1 — U\/T —1

and ®(-) is the standard normal cumulative distribution
function. However, if » and ¢ are fixed throughout the
network’s training sample as we shall assume, then the
dependence of the option’s price on these two quantities
cannot be identified by any nonparametric estimator of
f(-) in the way that (7) does.5 Of course, if interest rates
and volatility vary through time as they do in practice,
learning networks can readily capture their impact on
option prices explicitly.

One further simplification we employ is to assume that
the statistical distribution of the underlying asset’s re-
turn is independent of the level of the stock price S(t),
hence by Theorem 8.9 of Merton (1990, Chapter 8), the
option pricing formula f(-) is homogeneous of degree
one in both S(¢) and X, so that we need only estimate
F(S(t)/X,1,T—1). By requiring only two rather than
three inputs to our learning networks we may be lessen-
ing the number of data points required for learning, but
it should also be possible to relax these assumptions and
use all three inputs.

We can now outline the components of our Monte
Carlo simulation experiment, which consists of two
phases: training and testing. The training phase en-
tails generating sample paths of stock and option prices
on which the learning networks are “trained”, i.e.; the
network parameters are fitted to each sample path so
as to minimize a quadratic loss function. This yields a
network pricing formula which is then “tested” on newly-
simulated sample paths of stock and option prices, 1.e.,
various performance measures are calculated for the net-
work pricing formula using the test path.

To obtain a measure of the success of the “average”
network pricing formula, we repeat the training phase
for many independent option/stock price sample paths,
apply each network formula to the same test path, and
average the performance measures across training paths.
To obtain a measure of the “average success” of any
given network pricing formula, we do the reverse: for
a single training path, we apply the resulting network
pricing formula on many independent option/stock price
test paths, and average the performance measures across
test paths.

Since we conduct multiple training-path and test-path
simulations, our simulation design is best visualized as
a matrix of results: each row corresponds to a separate
and independent training path, each column corresponds
to a separate and independent test path, and each cell
contains the performance measures for a network trained

®This is one sense in which analytical pricing formulas for
derivative securities are preferred whenever available.

on a particular training path and applied to a particu-
lar test path. Therefore, the “average success” of a given
network may be viewed as an average of the performance
measures across the columns of a given row, and the per-
formance of the “average network” on a given test path
may be viewed as an average of the performance mea-
sures across the rows of a given column. Although these
two averages obviously closely related, they do address
different aspects of the performance of learning networks,
and the results of each must be interpreted with the ap-
propriate motivation in mind.

3.1 Calibrating the Simulations

In the first phase of our Monte Carlo simulation
experiment—the training phase—we simulate a two-year
sample of daily stock prices, and create a cross-section
of options each day according to the rules used by the
Chicago Board Options Exchange (CBOE) with prices
given by the Black-Scholes formula. We refer to this
two-year sample of stock and [multiple] option prices as
a single “training path”, since the network is trained on
this sample.

We assume that the underlying asset for our sim-
ulation experiments is a “typical” NYSE stock, with
an initial price S(0) of $50.00, an annual continuously-
compounded expected rate of return p of 10%, and an
annual volatility o of 20%. Under the Black-Scholes as-
sumption of a geometric Brownian motion:

dS(t) = pSt)dt + oS(t)dW(t) (8)

and taking the number of days per year to be 253,
we draw 506 pseudorandom variates Z; from the dis-
tribution N(p/253,07/253) to obtain two years of daily
continuously-compounded returns, which are converted

to prices with the usual relation S(¢) = S(O)eZ:ﬂ Zi for
t>0.

Given a simulated training path {S(¢)} of daily stock
prices, we construct a corresponding path of option
prices according to the rules of the Chicago Board
Options Exchange (CBOE) for introducing options on
stocks. Since a thorough description of these rules is un-
necessary for our purposes, we summarize only the most
salient features here.® At any one time, CBOE stock op-
tions outstanding on a particular stock have four unique
expiration dates: the current month, the next month,
and the following two expirations from a quarterly sched-
ule. The CBOE sets strike prices at multiples of $5 for
stock prices in the $25 to $200 range, which all of our
simulated prices fall into. When options expire and a
new expiration date is introduced, the two strike prices
closest to the current stock price are used. If the current
price is very close to one of those strike prices—within $1
in our simulations—a third strike price is used to better
bracket the current price. If the stock price moves out-
side of the current strike-price range, another strike price

6See Hull (1993) for more details.

6

is generally added for all expiration dates to bracket that
price.” We assume that all of the options generated ac-
cording to these rules are traded every day, although in
practice, far-from-the-money and long-dated options are
often very illiquid.

A typical training path is shown in Figure 3. We can
also plot the training path as a 3-dimensional surface if
we normalize stock and option prices by the appropri-
ate strike price and consider the option price as a func-
tion of the form f(S/X,1,T—t) [see Figure 4]. Because
the options generated for a particular sample path are
a function of the [random] stock price path, the size of
this data matrix [in terms of number of options and total
number of data points] varies across sample paths. For
our training set, the number of options per sample path
range from 71 to 91, with an average of 81. The total
number of data points range from 5,227 to 6,847, with
an average of 6,001.

3.2 Training Network Pricing Formulas

Now we are set to estimate or train pricing formulas
of the form of f(S/X,1,T—t) on the simulated train-
ing paths, using two “inputs”: S(¢)/X and T—¢. For
comparison, we first estimate two simple linear models
estimated using ordinary least squares (OLS). The first
model is linear regression of the option price on S(¢)/X
and T'—t. The second is a pair of linear regressions, one
for options currently in the money, and another for those
currently out of the money. Typical estimates of these
models are shown in Table 2.

Although these linear models seem to fit quite well,
with R?s well above 80%, they have particularly naive
implications for delta-hedging strategies. In particular,
delta-hedging with the first linear model would amount
to purchasing a certain number of shares of stock in
the beginning [0.6886 in the example in Table 2] and
holding them until expiration, regardless of stock price
movements during the option’s life. The second linear
model improves on this slightly by switching between
hedging with a large number [0.9415 in Table 2b] and a
small number of shares [0.1882 in Table 2¢] depending
on whether the current stock price is less than or greater
than the strike price.

The nonlinear models obtained from learning net-
works, on the other hand, yield estimates of option prices
and deltas that are difficult to distinguish visually from
the true Black-Scholes values. An example of the esti-
mates and errors for an RBF network is shown in Fig-
ure b, which was estimated from the same data as the
linear models from Table 2. The estimated equation for
this particular RBF network is shown in Table 1. Ob-
serve from Table 1 that the centers in the RBF model
are not constrained to lie within the range of the inputs,
and in fact do not in the third and fourth centers in

"In our simulations, this was not done for options with
less than one week to expiration.

our example. The largest errors in these networks tend
to occur at the kink-point for options at the money at
expiration, and also along the boundary of the sample
points.

PPR and MLP networks of similar complexity gener-
ate similar response surfaces, although as we shall see in
the next section, each method has its own area of the
input space that it models slightly more accurately than
the others.

Our choice of model-complexity is not arbitrary, and
in fact 1s motivated by our desire to minimize error and
maximize “fit” for out-of-sample data. In this regard, a
critical issue in specifying learning networks is how many
nonlinear terms—“hidden units”, basis functions, pro-
jections, etc.—to use in the approximation. Following
the discussion in Section 2.2.2, for actual market data,
we might expect an optimal number of parameters that
minimizes out-of-sample error. But in the simulations
of this section, the data are noise-free [in the sense that
there is a deterministic formula generating the outputs
from the inputs], hence we are interested primarily in
how quickly adding more parameters reduces the error.
Preliminary out-of-sample tests with independent sam-
ple paths have indicated diminishing returns beyond 4
nonlinear terms [as measured by the percent of variance
explained], thus we adopt this specification for all the
learning networks considered in this paper.® In the next
sections we will assess how well we have done in meeting
our goal of minimizing out-of-sample error.

3.3 Performance Measures

Our learning networks estimate the option prices C'//E(,
thus our first performance measure is simply the usual
coefficient of determination, R?, of those estimated val-
ues compared with the true option prices C/X, com-
puted for the out-of-sample data.

However, the R? measure is not ideal for telling us
the practical value of any improvement in pricing accu-
racy that the learning networks might give us. A more
meaningful measure of performance for a given option
pricing formula is the “tracking error” of various repli-
cating portfolios designed to delta-hedge an option posi-
tion, using the formulain question to calculate the hedge
ratios or deltas. In particular, suppose at date 0 we sell
one call option and undertake the usual dynamic trad-
ing strategy in stocks and bonds to hedge this call during
its life. If we have correctly identified the option pricing
model, and if we can costlessly and continuously hedge,
then at expiration the combined value of our stock and
bond positions should exactly offset the value of the call.
The difference between the terminal value of the call and
the terminal combined value of the stock and bond po-
sitions may then serve as a measure of the accuracy of
our network approximation. Of course, since it is impos-

84 nonlinear terms corresponds to approximately 20 total
parameters.

sible to hedge continuously in practice, there will always
be some tracking error due to discreteness, therefore we
shall compare the RBF tracking error with the tracking
error of discrete delta-hedging under the exact Black-
Scholes formula.

More formally, denote by V() the dollar value of our
replicating portfolio at date ¢ and let

V() = Vs) + Ve(t) + Ve()) (9)

where Vg(t) is the dollar value of stocks, Vg (#) is the
dollar value of bonds, and Ve (¢) is the dollar value of
call options held in the portfolio at date t. The initial
composition of this portfolio at date 0 is assumed to be:

Vs(0) = S(0)Arpr(0) (10)
Ve(0) = — Fgs(0) (11)
Vs(0) = - (vs<o> T vc<o>) (12)

where Fpg(+) is the Black-Scholes call option pricing for-
mula, Frpr(+) is its RBF approximation, and

IFrBr(t)
as

The portfolio positions (10) — (12) represent the sale of
one call option at date 0, priced according to the theo-
retical Black-Scholes formula Fg(0), and the simultane-
ous purchase of Agrpr(0) shares of stock at price S(0),
where Arpp(0) is the derivative of the RBF approxima-
tion Frpr(0) with respect to the stock price.? Since the
stock purchase 1s wholly financed by the combination
of riskless borrowing and proceeds from the sale of the
call option, the initial value of the replicating portfolio
is identically zero, thus

V(0) = Vs(0) + VB(0) + Ve(0) = 0.

ARBF (t) =

Prior to expiration, and at discrete and regular intervals
of length 7 [which we take to be one day in our simu-
lations], the stock and bond positions in the replicating
portfolio will be rebalanced so as to satisfy the following
relations:

Vg(t)
Ve(t) =

S(t)Arpr(t), (13)
" Vp(t—71) —

S(t) (ARBF(t) - ARBF(t—T)) (14)

where ¢ = k7 < T for some integer k. The tracking
error of the replicating portfolio is then defined to be
the value of the replicating portfolio V(T') at expiration

°Note that for the RBF and MLP learning networks, A
can be computed analytically by taking the derivative of the
network approximation. For PPR, however, the use of a
smoother for estimating the nonlinear functions h forces a
numerical approximation of A, which we accomplish with
a first-order finite-difference with an increment 05 of size
1/1000 of the range of S.

date 7. From this, we obtain the following performance
measure:

¢ = e TE[V(D)]] (15)

The quantity £ 1s simply the present value of the ex-
pected absolute tracking error of the replicating portfo-
lio. Although for more complex option portfolios, ¢ may
not be the most relevant criterion, nevertheless & does
provide some information about the accuracy of our op-
tion pricing formula.!®

A third measure of performance may be defined by
combining the information contained in the expected
tracking error with the variance of the tracking error.
In particular, we define the “prediction error” 7 as:

n = e "T/EAV(T)] + Var[V(T)] (16)
which is the present value of the square root of the sum
of the squared expected tracking error and its variance.
The inclusion of the variance of V(T) is significant—the
expected tracking error of a delta-hedging strategy might
be zero, but the strategy is a poor one if the variance
of the tracking error were large. We shall use all three
measures R, £, and 7 in our performance analysis below.

3.4 Testing Network Pricing Formulas

To assess the quality of the RBF pricing formula ob-
tained from each training path, we simulate an inde-
pendent six-month sample of daily stock prices—a “test
path”—and use the trained network to delta-hedge var-
ious options [individually, not as a portfolio] introduced
at the start of the test path. By simulating many inde-
pendent test paths, 500 in our case, and averaging the
absolute tracking errors over these paths, we can ob-
tain estimates £ and 7 of the expected absolute tracking
error ¢ and the prediction error 5 for each of the ten
network pricing formulas. The performance of the net-
work delta-hedging strategy may then be compared to
the performance of a delta-hedging strategy using the
Black-Scholes formula.

3.4.1 Out-of-Sample R? Comparisons

As a preliminary check of out-of-sample performance,
we observe that the pricing errors of the direct model

outputs C'//E(are typically quite small for all of the net-
works examined, with out-of-sample R?’s of 99% and
above for the “average” network [except for the single
linear model]. These results are presented in Table 3.
From the minimum R? values, it is also evident that not
all types of networks yield consistently good results, per-
haps because of the stochastic nature of the respective
estimation processes.

1%Tn particular, other statistics of the sample path {V (¢)}
for the entire portfolio may be of more concern, such as its
maximum and minimum, and the interaction between {V (¢)}
and other asset returns.

8

3.4.2 Tracking Error Comparisons

Table 4 reports selected raw simulation results for a
call option with 3 months to expiration and a strike price
X of $50. In each row, the absolute tracking errors for
delta-hedging this option are reported for the network
pricing formula training on a single training path, the
entries in each column corresponding to a different test
path for which the absolute tracking error is calculated.
For example, the (1,2)-entry 0.2719 is the absolute track-
ing error for delta-hedging this 3-month $50-strike option
over test path #100, using the network pricing formula
trained on training path #1.

For comparison, over the same test path the abso-
lute tracking error for a delta-hedging strategy using the
Black-Scholes formula is 0.3461, reported in the last row.
The fact that the RBF network pricing formula can yield
a smaller delta-hedging error than the Black-Scholes for-
mula may seem counterintuitive. After all, the Black-
Scholes formula is indeed the correct pricing formula in
the context of our simulations. The source of this appar-
ent paradox lies in the fact that we are delta-hedging dus-
cretely [once a day], whereas the Black-Scholes formula
is based on a continuously-adjusted delta-hedging strat-
egy. Therefore, even the Black-Scholes formula will ex-
hibit some tracking error when applied to Black-Scholes
prices at discrete time intervals. In such cases, an RBF
pricing formula may well be more accurate since it is
trained directly on the discretely-sampled data, and not
based on a continuous-time approximation.

Of course, other columns in Table 4 show that Black-
Scholes can perform significantly better than the RBF
formula [for example, compare the (1, 1)-entry of 0.6968
with the Black-Scholes value of 0.0125]. Moreover, as the
delta-hedging interval shrinks, the Black-Scholes formula
will become increasingly more accurate and, in the limit,
will have no tracking error whatsoever. However, since
such a limit is empirically unattainable for a variety of
institutional reasons, the benefits of network pricing for-
mulas may be quite significant.

For a more complete comparison between RBF net-
works and the Black-Scholes formula across all 500 test
paths, Table b reports the fraction of test paths for which
each of the ten RBF networks exhibit lower absolute
tracking error than the Black-Scholes formula. Similar
comparisons are also performed for the single-regression
model [“Linear-1"], the two-regression model [“Linear-
2”], a projection pursuit regression [“PPR”] with four
projections, and a multilayer perceptron [“MLP”] with
one hidden layer containing four units.

The third column of entries in Table 5 show that in
approximately 36 percent of the 500 test paths, RBF net-
works have lower tracking error than the Black-Scholes
formula. For this particular option RBF networks and
PPR networks have quite similar performance, and both
are superior to the three other pricing models—the next
closest competitor 1s the MLP, which outperforms the

Black-Scholes formula for approximately 26 percent of
the test paths.

Of course, tracking errors tend to vary with the terms
of the option such as its time-to-maturity and strike
price. To gauge the accuracy of the RBF and other pric-
ing models across these terms, we report in Tables 6 — 10
the fraction of test paths for which each of the four pric-
ing models outperforms Black-Scholes for strike prices
X = 40, 45, 50, 55, and 60, and times-to-maturity
T—t =1, 3, and 6 months.

Table 6 shows that the average RBF network—
averaged over the ten training paths—performs reason-
ably well for near-the-money options at all three maturi-
ties, outperforming Black-Scholes between 12% and 36%
of the time for options with strike prices between $45
and $55. As the maturity increases, the performance of
the average RBF network improves for deep-out-of-the
money options as well, outperforming Black-Scholes for
30% of the test paths for the call with a strike price of
$60.

Tables 7 and 8 provides similar comparisons for
the average MLP and PPR networks, respectively—
averaged over the same training paths as the RBF
model—with similar results: good performance for near-
the-money options at all maturities, and good perfor-
mance for deep-out-of-the-money options at longer ma-
turities.

Not surprisingly, Tables 9 and 10 show that the linear
models exhibit considerably weaker performance than ei-
ther of the network models, with fractions of outperform-
ing test paths between 0.0% and 10.3% for the single-
regression model, and between 0.0% and 14.6% for the
two-regression model. However, these results do offer one
important insight: even simple linear models can some-
times, albeit rarely, outperform the Black-Scholes model
when delta-hedging is performed on a daily frequency.

Finally it is important to note that network pricing
formulas should be monitored carefully for extrapolation.
Because the networks are trained on a sampling of points
covering a specific region of input space, it should not be
surprising that they may not perform as well on points
outside of this region. For example, Figure 6 illustrates
that the worst tracking error for RBF networks in our
simulations occurred for test data that was well outside
of the range of the training data.

3.4.3 Prediction Error Comparisons

To complete our performance analysis of the network-
ing option pricing formulas, we compare the estimated
prediction errors 7 of the network delta-hedging strate-
gies to those of the Black-Scholes formula. Recall from
(16) that the prediction error combines the expectation
and variance of the absolute tracking error, hence the
estimated prediction error is calculated with the sam-
ple mean and sample variance of |V(7T')]|, taken over the
500 test paths. The benchmarks for comparison are the

9

estimated prediction errors for the Black-Scholes delta-
hedging strategy, given in Table 11.

Once again, we see from Table 11 that delta-hedging
with the Black-Scholes at discrete intervals does not yield
a perfect hedge. The estimated prediction errors are
all strictly positive, and are larger for options near the
money and with longer times-to-maturity.

However, under the prediction error performance
measure the Black-Scholes formula is superior to all of
the learning network approaches for this simulated data
[see Tables 12 — 16]. For example, these tables show that
the average RBF network has larger estimated prediction
errors than Black-Scholes for all option types [although
RBF networks have smaller errors than the other learn-
ing network types| and that the linear models are signif-
icantly worse than the others.!! We also note that the
pattern of errors is somewhat different for each learning
network, indicating that each may have its own area of
dominance.

Overall, we are encouraged by the ease with which the
learning networks achieved error levels similar to those
of the Black-Scholes formula, and on a problem posed in
the latter’s favor. We suspect that the learning network
approach will be a promising alternative for pricing and
hedging derivatives where there is uncertainty about the
specification of the asset return process.

4 An Application to S&P 500 Futures
Options

In Section 3 we have shown that learning networks can
efficiently approximate the Black-Scholes pricing formula
if the data were generated by it, and this provides some
hope that our nonparametric approach may be useful in
practice. After all, if there 1s some uncertainty about the
parametric assumptions of a typical derivative pricing
model, it should come as no surprise that a nonparamet-
ric model can improve pricing and hedging performance.
To gauge the practical relevance of learning networks in
at least one context, we apply it to the pricing and hedg-
ing of S&P 500 futures options, and compare it to the
Black-Scholes model applied to the same data. Despite
the fact that the Black-Scholes model is generally not
used in its original form in practice, we focus on it here
because it is still a widely-used benchmark model, and
because 1t serves as an example of a parametric model
whose assumptions are questionable in the context of
this data.

1'We caution the reader from drawing too strong a conclu-
sion from the ordering of the RBF, MLP, and PPR results,
however, due to the sensitivity of these nonparametric tech-
niques to the “tuning” of their specifications, e.g., number
of hidden nodes, network architecture, etc. In particular,
the superiority of the RBF network results may be due to
the fact that we have had more experience in tuning their
specification.

4.1 The Data and Experimental Setup

The data for our empirical analysis are daily closing
prices of S&P 500 futures and futures options for the
b-year period from January 1987 to December 1991. Fu-
tures prices over this period are shown in Figure 7. There
were 24 different futures contracts and 998 futures call
options active during this period.'? The futures con-
tracts have quarterly expirations, and on a typical day
40 to 50 call options based on 4 different futures con-
tracts were traded.

Our specification is similar to that given in Section 3.1
for the simulated data. We divide the S&P 500 data
into 10 non-overlapping six-month subperiods for train-
ing and testing the learning networks. Six-month subpe-
riods were chosen to match approximately the number of
data points in each training path with those of our sim-
ulations in Section 3. Data for the second half of 1989 is
shown in Figures 8 and 9. Notable differences between
this data and the simulated data of Section 3 are the
presence of “noise” in the real data and the irregular
trading activity of the options, especially for near-term
out-of-the-money options.

For the S&P 500 data, the number of futures call
options per subperiod ranged from 70 to 179, with an
average of 137. The total number of data points per
subperiod ranged from 4,454 to 8,301, with an average
of 6,246. To limit the effects of nonstationarities and
to avoid data-snooping, we trained a separate learning
network on each of the first 9 subperiods, and tested
those networks only on the data from the immediately
following subperiod, thus yielding 9 test paths for each
network. We also considered the last 7 test paths sep-
arately, i.e., data from July 1988 to December 1991, to
assess the influence of the October 1987 crash on our
results.

4.2 Estimating Black-Scholes Prices

Estimating and comparing models on the S&P 500 data
will proceed much as it did in Section 3 for the linear and
learning network models. However, the Black-Scholes
parameters r and ¢ must be estimated when using actual
market data. From a theoretical perspective, the Black-
Scholes model assumes that both of these parameters are
constant over time, and thus we might be tempted to
estimate them using all available past data. Few practi-
tioners adopt this approach, however, due to substantial
empirical evidence of nonstationarities in interest rates
and asset-return distributions. A common compromise
i1s to estimate the parameters using only a window of
the most recent data. We follow this latter approach for
the S&P 500 data. Specifically, we estimate the Black-
Scholes volatility o for a given S&P 500 futures contract

2For simplicity, we focus only on call options in our
analysis.

10

using

& =s/V60 (17)
where s is the standard deviation of the 60 most recent
continuously-compounded daily returns of the contract.
We approximate the risk free rate r for each futures op-
tion as the yield of the 3-month Treasury bill on the close
of the month before the initial activity in that option [see
Figure 10].

4.3 Owut-of-Sample Pricing and Hedging

In this section we present the out-of-sample results of fit-
ting the various models to the S&P 500 data. Based on
our experience with the simulated data, we chose learn-
ing networks with 4 nonlinear terms as a good compro-
mise between accuracy and complexity, although it may
be worth re-examining this trade-off on actual S&P 500
data.!3

The out-of-sample tests show some evidence that the
learning networks outperform the naive Black-Scholes
model on this data. This is hardly surprising, given the
fact that many of the assumptions of the Black-Scholes
formula are violated by the data, e.g., geometric Brown-
ian motion, constant volatility, frictionless markets, etc.

As with the simulated-data-trained learning networks,
the performance of each of actual-data-trained networks
varied over the input space. To see how the performance
varies in particular, we divide each dimension of the in-
put space into three regimes: long-, medium-, and short-
term for the time-to-expiration (7'—1t) input, and in-,
near-, and out-of-the-money for the stock-price/strike-
price (S/X) input. Specifically, breakpoints of 2 and b
months for the T—t input and 0.97 and 1.03 for the S/X
input were chosen to yield approximately the same num-
ber of datapoints in each of the 9 paired categories. The
delta-hedging prediction errors, broken down by these
maturity /richness groups, are shown in Tables 17 and 18.
Interestingly, results from the subperiods influenced by
the October 1987 crash still yield lower prediction er-
rors for the learning networks than for the Black-Scholes
model, except for near-term in-the-money options.

For completeness we also show the out-of-sample R?’s
[see Table 19] and the absolute hedging error compari-
son [see Table 20] as we did in Section 3.4 for the syn-
thetic data. Table 19, for instance, shows that the aver-
age out-of-sample R? of roughly 85% for the estimated
Black-Scholes model 1s somewhat worse than that of the
other network models. Note however that unlike the
case for our synthetic data, the options in the S&P 500
data set are not independent, and thus we must look at
these results with caution. Furthermore, we only have
one test set for each trained network, and thus for the
hedging error comparison in Table 20 we show these re-
sults broken down by test period instead of the summary

13 A sample re-use technique such as cross-validation would
be appropriate in this context for choosing the number of
nonlinear terms.

statistics shown in Section 3.4.2. Nonetheless, this table
shows that the learning networks exhibit less hedging
error than the estimated Black-Scholes formula in a sub-
stantial fraction of the options tested—up to 65% of the
options tested against the MLP network for the July —
December 1990 testing period.

From these results, it is difficult to infer which net-
work type performs best in general. Hypothesis tests
concerning the relative sizes of hedging error are diffi-
cult to formulate precisely because of the statistical de-
pendence of the option-price paths. Focusing on a sin-
gle non-overlapping sequence of options would solve the
dependence problem, but would throw out 98% of the
available options. Instead, we present a less formal test
on all of the data, but caution the reader not to give
it undue weight. Since we have hedging errors for each
option and learning network, we can use a paired t-test
to compare the Black-Scholes absolute hedging error on
each option with the network’s absolute hedging error
on the same option. The null hypothesis is that the av-
erage difference of the two hedging errors is zero, and
the [one-sided] alternative hypothesis is that the differ-
ence is positive, i.e., the learning network hedging error
is smaller. Results of this simple test show evidence that
all three learning networks outperform the Black-Scholes
model, while the linear models do not [see Table 21].

It is also interesting to compare the computing time
required to estimate these models, although no effort
was made to optimize our code, nor did we attempt to
optimize the estimation method for each type of learn-
ing network. With these qualifications in mind, we find
that second order methods seem preferred for our ap-
plication. For example, the MLP network gradient de-
scent equations were updated for 10,000 iterations, re-
quiring roughly 300 minutes per network on a multiuser
SUN SPARCstation II, while the Levenberg-Marquardt
method for the RBF networks used from 10 to 80 itera-
tions and took roughly 7 minutes per network. Similarly,
the PPR networks [with a Newton method at the core]
took roughly 120 minutes per network.

5 Conclusions

Although parametric derivative pricing formulas are pre-
ferred when they are available, our results show that
nonparametric learning-network alternatives can be use-
ful substitutes when parametric methods fail. While our
findings are promising, we cannot yet claim that our
approach will be successful in general—for simplicity,
our simulations have focused only on the Black-Scholes
model, and our application has focused only on a single
instrument and time period, S&P 500 futures options for
1987 to 1991. In particular, there are a host of paramet-
ric derivative pricing models, as well as many practical
extensions of these models that may improve their per-
formance on any particular data set. We hope to provide

11

a more comprehensive analysis of these alternatives in
the near future.

However, we do believe there is reason to be cautiously
optimistic about our general approach, with a number
of promising directions for future research. Perhaps the
most pressing item on this agenda is the specification of
additional inputs, inputs that are not readily captured
by parametric models such as the return on the market,
general market volatility, and other measures of busi-
ness conditions. A related issue is the incorporation of
the predictability of the underlying asset’s return, and
cross-predictability among several correlated assets [see
Lo and Wang (1993) for a parametric example]. This
may involve the construction of a factor model of the
underlying asset’s return and volatility processes.

Other research directions are motivated by the need
for proper statistical inference in the specification of
learning networks. First, we require some method of
matching the network architecture—number of nonlin-
ear units, number of centers, type of basis functions,
etc.—to the specific dataset at hand in some optimal
[and, preferably, automatic] fashion.

Second, the relation between sample size and approx-
imation error should be explored, either analytically
or through additional Monte Carlo simulation experi-
ments. Perhaps some data-dependent metric can be con-
structed, such as the model prediction error, that can
provide real-time estimates of approximation errors in
much the same way that standard errors may be ob-
tained for typical statistical estimators.

And finally, the need for better performance measures
is clear. While typical measures of goodness-of-fit such
as R? do offer some guidance for model selection, they
are only incomplete measures of performance. Moreover,
the notion of degrees of freedom is no longer well-defined
for nonlinear models, and this has implications for all
statistical measures of fit.

Further Acknowledgements: We thank Harrison Hong
and Terence Lim for excellent research assistance, and
Petr Adamek, Federico Girosi, Chung-Ming Kuan, Bar-
bara Jansen, Blake LeBaron, and seminar participants
at the DAIS Conference, the Harvard Business School,
and the American Finance Association for helpful com-
ments and discussion.

References

[1] A.R. Barron. Universal approximation bounds for
Techni-
cal Report 58, Department of Statistics, University

superpositions of a sigmoidal function.
of Hlinois at Urbana-Champaign, Champaign, 1L,
March 1991.

A.R. Barron and R.L. Barron.

ing networks: a unifying view. In 20th Symposium

Statistical learn-

[2]

[3]

[4]

[5]

[10]

on the Interface: Computing Science and Statistics,

pages 192-203, 1988.
D.S. Broomhead and D. Lowe. Multivariable func-

tional interpolation and adaptive networks.

plex Systems, 2:321-355, 1988.

Com-

H. Chen. Estimation of a projection-pursuit type
regression model. Ann. Statistics, 19:142-157,1991.

G. Cybenko. Approximation by superpositions of
a sigmoidal function. Technical Report 856, Uni-
versity of Illinois, Dept. of Electrical and Computer
Engineering, 1988.

P. Diaconis and M. Shahshahani.
functions of linear combinations. SIAM J. Sci. Stat.
Comput., 5(1):175-191, 1984.

D.L. Donoho and I. Johnstone.

approximation and a duality with kernel methods.

Ann. Stat., 17:58-106, 1989.
J.H. Friedman and W. Stuetzle.

suit regression. Journal of the American Statistical
Association, Theory and Methods Section, T6(376),
December 1981.

A. Gallant and H. White. On learning the deriva-
tives of an unknown mapping with multilayer feed-
Neural Networks, 5:128-138,

On nonlinear

Projection-based

Projection pur-

forward networks.

1992.

F. Girosi and G. Anczellotti. Rates of convergence
of approximation by translates. A.I. Memo 1288,
Massachusetts Institute of Technology Artificial In-
telligence Laboratory, 1992.

F. Girosi, M. Jones, and T. Poggio. Priors, sta-
bilizers and basis functions: from regularization to
radial, tensor and additive splines. Artificial Intelli-
gence Memo 1430, Massachusetts Institute of Tech-

nology, 1993.

Networks and the best
Biological Cybernetics,

F. Girosi and T. Poggio.
approximation property.
63:169-176, 1990.

K. Hornik. Multilayer feedforward networks are uni-

versal approximators. Neural Networks, 2(5):359-
366, 1989.

K. Hornik, M. Stinchcombe, and H. White. Univer-
sal approximation of an unknown mapping and its
derivatives. Neural Networks, 3:551-560, 1990.

P.J. Huber. Projection pursuit. Ann.
13(2):435-525, 1985.

Stat.,

12

[16]

[24]

J. C. Hull. Options, Futures, and Other Derivative
Securities. Prentice-Hall, Englewood Cliffs, New
Jersey, 2nd edition, 1993.

L.K. Jones.
ing the convergence of projection pursuit regression.

Ann. Stat., 15(2):880-882, 1987.

On a conjecture of Huber concern-

L. Lyung and T. Soderstrom. Theory and Practice
of Recursive Identification. MIT Press, Cambridge,
1986.

A. Lo and J. Wang. Implementing option pricing
models when asset returns are predictable. Research
Program in Computational Finance Working Paper
RPCF-1001-93, MIT Sloan School of Management,
1993.

M. Maruyama, F. Girosi, and T. Poggio. A con-
nection between GRBF and MLP. Artificial Intelli-
gence Memo 1291, Massachusetts Institute of Tech-
nology, 1991.

Charles A. Micchelli.
data:

tive definite functions. Constructive Approzimation,

2:11-22, 1986.

Interpolation of scattered

Distance matrices and conditionally posi-

J. Moody and C. Darken. Fast learning in networks
of locally tuned processing units. Neural Computa-
tion, 1(2):281-294, 1989.

K. Ng and R. Lippman. A comparative study of
the practical characteristics of neural network and
conventional pattern classifiers. In R. Lippman,
J. Moody, and D. Touretsky, editors, Advances in
Neural Information Processing Systems 3. Morgan-
Kaufman, 1991.

P. Niyogi and F. Girosi. On the relationship be-
tween generalization error, hypothesis complexity,
and sample complexity for radial basis functions.
Al Memo 1467, MIT Artificial Intelligence Labo-
ratory, 1994.

D.B. Parker. Learning logic. Technical Report 47,
Center for Computational Research in Economics
and Management Science, MIT, April 1985.

T. Poggio and F. Girosi. Networks for approxima-
tion and learning. Proceedings of IEEE, 78(9):1481-
1497, 1990.

M. J. D. Powell.

variable interpolation: A review. In J. C. Mason and

Radial basis functions for multi-

M. G. Cox, editors, Algorithms for Approzimation,
pages 143-167. Clarendon Press; Oxford, 1987.

[28]

[29]

[30]

C. H. Reinsch. Smoothing by spline functions. Nu-
mer Math, 10:177-183, 1967.

H. Robbins and S. Monro. A stochastic approxi-
mation model. Annals of Mathematical Statistics,

22:400-407, 1951.
D.E. Rumelhart, G.E. Hinton, and R.J. Williams.

Learning internal representation by error prop-
agation. In D.E. Rumelhart and J.L. McClel-
land, editors, Parallel Distributed Processing: Ei-
plorations in the Microstructure of Cognition, Vol-
ume 1: Foundations, chapter 8. MIT Press, Cam-
bridge, MA, 1986.

V. N. Vapnik. Estimation of Dependences Based on
Empirical Data. Springer-Verlag, Berlin, 1982.

G. Wahba. Spline Models for Observational Data,
volume 59 of Regional Conference Series in Applied
Mathematics. STAM Press, Philadelphia, 1990.

B. Widrow and S. D. Stearns. Adaptive Signal Pro-
cessing. Prentice-Hall, Englewood Cliffs, NJ, 1985.

13

/X — 0.06

—0.03

+ 0.03

+ 0.10\/

+0.145/X — 0.24(T—t) — 0.01 .

Table 1: Example estimated RBF equation from Section 3.2.

Residual Standard Error = 0.027, R? = 0.9098, N = 6782
Iy srro-statistic = 34184.97, p-value = 0

Intercept
S/X
T—1t

std.err
0.0028
0.0027
0.0018

coef
-0.6417
0.6886
0.0688

{-stat
-231.4133
259.4616
38.5834

p-value
0
0
0

[5/X-135][5979 003 [§/X-135]
| T—t—045 | | =003 1024 || T—t—-045 | 7%
S/X—118 1" 59.79 —0.03][S/X —1.18] LT
| T—t—024 | | =003 1024 || T—t—-024 | T
S/X =098 1 59.79 —0.03 [S/X—-098] 000
| T—t4020 | | =003 1024 || T—t4020 | "
S/X —1.05 1T 59.79 —0.03 [S/X—1.05] 169
| T—t+4010 | | =003 1024 | | T—t4010 | T

(a) Single linear model.

Residual Standard Error = 0.0062, R?
I 3486-statistic = 385583.4, p-value = 0

0.9955, N = 3489

coef std.err t-stat p-value

Intercept —0.9333 0.0012 -763.6280 0
S/X 09415 0.0011 875.0123 0
T—¢ 0.0858 0.0006 150.6208 0

(b) “In-the-money” linear model.

Residual Standard Error = 0.007, R? = 0.8557, N = 3293
Iy 3990-statistic = 9753.782, p-value = 0

coef std.err t-stat p-value

Intercept —-0.1733 0.0022 -80.3638 0
S/X 0.1882 0.0023 80.6965 0
T—t¢ 0.0728 0.0007 108.2335 0

(¢) “Out-of-the-money” linear model.

Table 2: Regression summaries for typical linear models.

14

|Linear—1 Linear-2 RBF PPR MLP B-S

Min 14.72 94.34 98.58 55.23 76.60 100.00
Mean 83.40 99.27 99.95 99.08 99.48 100.00
Max 95.57 99.82 99.99 100.00 99.96 100.00

Table 3: Out-of-sample R? values [in percent] for the learning networks, summarized across all training and out-of-
sample test sets. “Linear-1” refers to the single-regression model of the data; “Linear-2” refers to the two-regression
model, one for in-the-money options and one for out-of-the-money options; “RBF” refers to a radial-basis-function
network with 4 multiquadric centers and an output sigmoid; “PPR” refers to a projection pursuit regression with
four projections; and “MLP” refers to a multilayer perceptron with a single hidden layer containing four units.

Test #£100 Test #200 Test #300 Test #400 Test #500
Train #1 0.6968 0.2719 0.1154 0.0018 0.5870
Train #2 0.6536 0.2667 0.0882 0.0903 0.5523
Train #3 0.6832 0.2622 0.0698 0.0370 0.5534
Train #4 0.7175 0.2682 0.0955 0.0155 0.5918
Train #5 0.6938 0.2767 0.1055 0.0229 0.5993
Train #6 0.6755 0.2692 0.1085 0.0083 0.5600
Train #7 0.6971 0.2690 0.1104 0.0054 0.5809
Train #8 0.7075 0.2717 0.1087 0.0022 0.5859
Train #9 0.6571 0.2652 0.1016 0.0013 0.5389
Train #10 0.7105 0.2706 0.1135 0.0038 0.5913
B-S 0.0125 0.3461 0.0059 0.0677 0.0492

Table 4: Simulations of absolute delta-hedging errors for RBF networks for an at-the-money call option with X = 50,
T—t = 3 months, and Black-Scholes price $2.2867. The current stock price S(0) is assumed to be $50. The last row
displays the same errors for the Black-Scholes formula.

Linear-1 Linear-2 RBF PPR MLP

Train #1 0.062 0.102 0.354 0.362 0.260
(0.011) (0.014) (0.021) (0.021) (0.020)

Train #2 0.048 0.112 0.340 0.390 0.264
(0.010) (0.014) (0.021) (0.022) (0.020)

Train #3 0.088 0.108 0.380 0.350 0.268
(0.013) (0.014) (0.022) (0.021) (0.020)

Train #4 0.084 0.098 0.370 0.340 0.254
(0.012) (0.013) (0.022) (0.021) (0.019)

Train #5 0.062 0.100 0.358 0.360 0.278
(0.011) (0.013) (0.021) (0.021) (0.020)

Train #6 0.056 0.108 0.364 0.378 0.274
(0.010) (0.014) (0.022) (0.022) (0.020)

Train #7 0.084 0.102 0.368 0.362 0.272
(0.012) (0.014) (0.022) (0.021) (0.020)

Train #8 0.080 0.104 0.358 0.328 0.262
(0.012) (0.014) (0.021) (0.021) (0.020)

Train #9 0.066 0.104 0.368 0.374 0.272
(0.011) (0.014) (0.022) (0.022) (0.020)

Train #10 0.080 0.104 0.354 0.382 0.280
(0.012) (0.014) (0.021) (0.022) (0.020)

Table 5: Fraction of 500 test sets in which the absolute delta-hedging error was lower than Black-Scholes for an
at-the-money call option with X = 50, T—¢ = 3 months, and Black-Scholes price $2.2867 [standard errors are given
in parentheses]. The current stock price S(0) is assumed to be $50.

15

RBF X=40 X=45 X=50 X=55 X=60
T—t=1 Mean | 0001 0.120 0278 0266 0.032
(SE) | (0.000) (0.005) (0.006) (0.006) (0.003)
Min 0.000 0108 0270 0.176 0.022
Max 0.002 0.140 0.284 0.332 0.040
T—t=3 Mean | 0072 0296 0.361 0269 0.254
(SE) | (0.004) (0.006) (0.007) (0.006) (0.006)
Min 0.054 0242 0340 0248 0.170
Max 0084 0336 038 0322 0.336
T—t=6 Mean | 0.164 0263 0316 0243 0.304
(SE) | (0.005) (0.006) (0.007) (0.006) (0.007)
Min 0120 0220 0298 0234 0.276
Max 0200 0310 0324 0258 0.320

Table 6: Fraction of 500 test sets in which the absolute delta-hedging error using an RBF network with 4 multiquadric
centers and an output sigmoid is lower than the Black-Scholes delta-hedging error, for call options with strike price
X and time-to-maturity 7—¢ months on a non-dividend-paying stock currently priced at $50. Within each panel, the
top entry of each column is the average of this fraction across the 10 training paths, the second entry [in parentheses]
is the standard error of that average, and the third and fourth entries are the minimum and maximum across the 10
training paths.

MLP X=40 X=45 X=50 X=55 X=60
T—t=1 Mean | 0000 0046 0238 0.125 0.019
(SE) | (0.000) (0.003) (0.006) (0.005) (0.002)
Min 0.000 0034 0228 0110 0.008
Max 0.000 0066 0246 0132 0.028
T—t=3 Mean | 0022 0174 0268 0354 0.280
(SE) | (0.002) (0.005) (0.006) (0.007) (0.006)
Min 0.004 0.130 0254 0324 0.216
Max 0040 0220 0280 0.386 0.384
T—t=6 Mean | 0030 0187 0252 0330 0.253
(SE) | (0.002) (0.006) (0.006) (0.007) (0.006)
Min 0.004 0.152 0204 0298 0.216
Max 0074 0212 0302 0354 0.274

Table 7: Fraction of 500 test sets in which the absolute delta-hedging error using an MLP network with a single
hidden layer containing four units is lower than the Black-Scholes delta-hedging error, for call options with strike
price X and time-to-maturity 7'—¢ months on a non-dividend-paying stock currently priced at $50. See Table 6 for
details.

16

PPR X=40 X=45 X=50 X=55 X=60
T—t=1 Mean | 0000 0.165 0.316 0303 0.024
(SE) | (0.000) (0.005) (0.007) (0.006) (0.002)
Min 0.000 0118 0272 0.208 0.006
Max 0002 0198 0394 0364 0.052
T—t=3 Mean | 0060 0282 0363 0325 0.177
(SE) | (0.003) (0.006) (0.007) (0.007) (0.005)
Min 0.006 0202 0328 0244 0.076
Max 0126 0344 0390 0420 0.286
T—t=6 Mean | 0125 0287 0315 0293 0.197
(SE) | (0.005) (0.006) (0.007) (0.006) (0.006)
Min 0.020 0.190 0.290 0234 0.116
Max 0202 0346 0352 0.358 0.286

Table 8: Fraction of 500 test sets in which the absolute delta-hedging error using a PPR network with four projections
is lower than the Black-Scholes delta-hedging error, for call options with strike price X and time-to-maturity 7'—¢
months on a non-dividend-paying stock currently priced at $50. See Table 6 for details.

Linear-1 X=40 X =45 X =50 X =55 X =60
T—t=1 Mean 0.000 0.020 0.103 0.016 0.002
(SE) (0.000) (0.002) (0.004) (0.002) (0.001)
Min 0.000 0.012 0.068 0.010 0.002
Max 0.000 0.032 0.124 0.026 0.002
T—t =3 Mean 0.003 0.029 0.071 0.018 0.007
(SE) (0.001) (0.002) (0.004) (0.002) (0.001)
Min 0.000 0.016 0.048 0.010 0.006
Max 0.010 0.060 0.088 0.032 0.012
T—t=6 Mean 0.012 0.035 0.039 0.037 0.019
(SE) (0.002) (0.003) (0.003) (0.003) (0.002)
Min 0.010 0.026 0.024 0.034 0.010
Max 0.016 0.046 0.050 0.042 0.026

Table 9: Fraction of 500 test sets in which the absolute delta-hedging error using a single-regression model is lower
than the Black-Scholes delta-hedging error, for call options with strike price X and time-to-maturity 7'—¢ months
on a non-dividend-paying stock currently priced at $50. See Table 6 for details.

Linear-2 X=40 X =45 X =50 X =55 X =60
T—t=1 Mean 0.000 0.080 0.146 0.068 0.004
(SE) (0.000) (0.004) (0.005) (0.004) (0.001)
Min 0.000 0.060 0.128 0.058 0.004
Max 0.000 0.090 0.170 0.092 0.004
T—t =3 Mean 0.018 0.107 0.104 0.095 0.033
(SE) (0.002) (0.004) (0.004) (0.004) (0.003)
Min 0.010 0.088 0.098 0.080 0.020
Max 0.024 0.116 0.112 0.112 0.052
T—t=6 Mean 0.045 0.082 0.072 0.082 0.059
(SE) (0.003) (0.004) (0.004) (0.004) (0.003)
Min 0.032 0.074 0.056 0.068 0.038
Max 0.054 0.090 0.080 0.096 0.072

Table 10: Fraction of 500 test sets in which the absolute delta-hedging error using a two-regression model is lower
than the Black-Scholes delta-hedging error, for call options with strike price X and time-to-maturity 7'—¢ months
on a non-dividend-paying stock currently priced at $50. See Table 6 for details.

17

B-S |X:4O X=45 X =50 X=55 X=60
T-t=1 0.001 0.069 0.217 0.116 0.007
T—t=3 0.043 0.146 0.213 0.155 0.098
T-t=56 0.088 0.157 0.208 0.211 0.147

Table 11: Estimated prediction errors for the absolute tracking error of a delta-hedging strategy using the Black-
Scholes formula, for call options with strike price X and time-to-maturity 7'—¢ months on a non-dividend-paying
stock currently priced at $50, estimated across 500 independent test paths. Since the Black-Scholes parameters are
assumed to be known, not estimated, these errors do not vary across training paths.

RBF X=40 X=45 X=50 X=55 X=60
T—t=1 Mean | 0044 0.164 0310 0.157 0.039
(SE) | (0.003) (0.002) (0.002) (0.001) (0.001)
Min 0031 0150 0.298 0.152 0.035
Max 0059 0172 0316 0.163 0.045
T—t=3 Mean | 0.142 0215 0296 0257 0.155
(SE) | (0.008) (0.002) (0.001) (0.001) (0.001)
Min 0.113 0208 0291 0249 0.152
Max 0177 0225 0299 0263 0.161
T—t=6 Mean | 028 0271 0309 0340 0214
(SE) | (0.011) (0.006) (0.002) (0.002) (0.001)
Min 0236 0243 0299 0.329 0.207
Max 0334 0300 0315 0347 0.224

Table 12: Estimated prediction errors for the absolute tracking error of a delta-hedging strategy using an RBF network
with 4 multiquadric centers and an output sigmoid, for call options with strike price X and time-to-maturity 7T'—¢
months on a non-dividend-paying stock currently priced at $50, estimated across 500 independent test paths. Within
each panel, the top entry of each column is the average of the estimated prediction error across the 10 training paths,
the second entry [in parentheses] is the standard error of that average, and the third and fourth entries are the
minimum and maximum across the 10 training paths.

MLP X=40 X=45 X=50 X=55 X =060
T—t=1 Mean | 0214 0264 0389 0209 0.060
(SE) | (0.024) (0.008) (0.006) (0.004) (0.002)
Min 0124 0228 0365 0194 0.050
Max 038 0314 0429 0234 0.075
T—t=3 Mean | 0690 0323 0366 028 0.178
(SE) | (0.118) (0.016) (0.003) (0.004) (0.002)
Min 0271 0261 0356 0270 0.171
Max 1477 0417 0388 0.308 0.194
T—t=6 Mean | 1.187 0.733 0400 0356 0.264
(SE) | (0.174) (0.087) (0.007) (0.004) (0.002)
Min 0538 0425 0373 0344 0.255
Max 2377 1352 0448 0377 0.274

Table 13: Estimated prediction errors for the absolute tracking error of a delta-hedging strategy using an MLP
network with a single hidden layer containing four units, for call options with strike price X and time-to-maturity
T'—t months on a non-dividend-paying stock currently priced at $50, estimated across 500 independent test paths.
See Table 12 for further details.

18

PPR X=40 X=45 X=50 X=55 X=60
T—t=1 Mean | 0198 0.121 0271 0147 0.081
(SE) | (0.094) (0.005) (0.006) (0.004) (0.024)
Min 0.028 0.101 0245 0.131 0.028
Max 0991 0.144 0301 0.167 0.261
T—t=3 Mean | 1.180 0275 0276 0238 0.247
(SE) | (0.299) (0.056) (0.006) (0.011) (0.046)
Min 0.134 0.174 0254 0202 0.136
Max 3113 0759 0.309 0320 0.555
T—t=6 Mean | 2140 1056 0383 0367 0443
(SE) | (0.383) (0.201) (0.045) (0.029) (0.074)
Min 0511 0246 0259 0.268 0.224
Max 4337 2325 0.719 0589 0931

Table 14: Estimated prediction errors for the absolute tracking error of a delta-hedging strategy using a PPR network
with four projections, for call options with strike price X and time-to-maturity 7—t months on a non-dividend-paying
stock currently priced at $50, estimated across 500 independent test paths. See Table 12 for further details.

Linear-1 X=40 X =45 X =50 X =55 X =60
T—t=1 Mean 1.047 0.967 0.911 1.672 1.879
(SE) (0.096) (0.091) (0.036) (0.091) (0.098)
Min 0.561 0.507 0.813 1.251 1.425
Max 1.492 1.393 1.132 2.135 2.375
T—t =3 Mean 1.849 1.486 1.697 2.624 3.015
(SE) (0.172) (0.117) (0.049) (0.153) (0.163)
Min 0.983 0.959 1.580 1.936 2.260
Max 2.649 2.091 2.013 3411 3.845
T—t=6 Mean 2.276 2.124 2.170 2.910 3.780
(SE) (0.213) (0.149) (0.073) (0.173) (0.214)
Min 1.208 1.495 2.000 2.170 2.805
Max 3.275 2.926 2.629 3.821 4.879

Table 15: Estimated prediction errors for the absolute tracking error of a delta-hedging strategy using a single-
regression model, for call options with strike price X and time-to-maturity 7'—¢ months on a non-dividend-paying
stock currently priced at $50, estimated across 500 independent test paths. See Table 12 for further details.

Linear-2 X=40 X =45 X =50 X =55 X =60
T—t=1 Mean 0.212 0.207 0.724 0.455 0.518
(SE) (0.018) (0.013) (0.011) (0.034) (0.045)
Min 0.154 0.168 0.681 0.335 0.344
Max 0.340 0.304 0.776 0.628 0.739
T—t =3 Mean 0.371 0.555 1.054 0.836 0.790
(SE) (0.029) (0.003) (0.013) (0.024) (0.067)
Min 0.277 0.539 0.995 0.767 0.539
Max 0.586 0.566 1.118 0.972 1.130
T—t=6 Mean 0.500 0.955 1.544 1.454 1.042
(SE) (0.027) (0.008) (0.022) (0.019) (0.055)
Min 0.412 0.909 1.452 1.373 0.880
Max 0.709 0.988 1.650 1.563 1.342

Table 16: Estimated prediction errors for the absolute tracking error of a delta-hedging strategy using a two-regression
model, for call options with strike price X and time-to-maturity 7— months on a non-dividend-paying stock currently
priced at $50, estimated across 500 independent test paths. See Table 12 for further details.

19

Short term Linear-1 Linear-2 RBF PPR MLP B-S | C(0)
In the money 6.70 492 5.04 452 494 4.42 | 24.26
Near the money 8.70 4.12 3.49 3.37 342 276 8.04
Out of the money 8.38 271 217 231 1.63 1.59 1.00
Medium term Linear-1 Linear-2 RBF PPR MLP B-S C’(O)
In the money 9.48 6.41 6.70 6.53 5.62 5.93 | 35.88
Near the money 8.82 6.93 4.18 5.02 454 5.31 | 10.62
Out of the money 11.27 469 253 273 232 255 274
Long term Linear-1 Linear-2 RBF PPR MLP B-S | C(0)
In the money 8.23 6.14 7.24 1140 5.60 7.58 | 39.27
Near the money 8.55 8.68 6.37 555 517 6.18 | 16.14
Out of the money 12.13 735 354 539 436 5.02 6.86

Table 17: Delta-hedging prediction error for the out-of-sample S&P 500 data from July 1988 to December 1991, i.e.,
excluding the subperiods directly influenced by the October 1987 crash, averaged across all training/test sets.

Short term Linear-1 Linear-2 RBF PPR MLP B-S | C(0)
In the money 10.61 8.80 727 923 9.12 3.94]| 20.18
Near the money 16.30 1273 777 748 8.08 9.09 | 10.76
Out of the money 23.76 8.48 7.43 5.51 5.34 10.53 | 5.44
Medium term Linear-1 Linear-2 RBF PPR MLP B-S C’(O)
In the money 9.18 11.17 7.13 1257 13.90 16.00 | 36.05
Near the money 24.48 13.36 7.59 5.65 5.11 6.12 | 12.98
Out of the money 34.31 14.80 1230 944 9.64 1346 | 7.45
Long term Linear-1 Linear-2 RBF PPR MLP B-S | C(0)
In the money 24.97 22.37 13.84 23.75 27.13 30.36 | 28.08
Near the money 35.06 12.93 10.78 10.11 12.27 16.03 | 16.98

Out of the money 29.07 14.06 9.50 8.59 810 10.86 | 10.26

Table 18: Delta-hedging prediction error for the out-of-sample S&P 500 data from July 1987 to July 1988, i.e., the
subperiods directly influenced by the October 1987 crash, averaged across all training/test sets.

|Linear—1 Linear-2 RBF PPR MLP B-S

Min 7.85 82.63 81.33 92.26 92.28 37.41
Mean 75.57 9554 93.26 96.56 95.53 84.76
Max 95.74 99.44 98.41 99.54 98.98 99.22

Table 19: Out-of-sample R? values [in percent] for the learning networks, summarized across the 9 out-of-sample
S&P 500 futures options test sets.

20

Linear-1 Linear-2 RBF PPR MLP
Jul 87 - Dec 87 0.160 0.377 0.506 0.593 0.580
Jan 88 - Jun 88 0.189 0.357 0476 0.497 0.538
Jul 88 - Dec 88 0.122 0.341 0.382 0.358 0.301
Jan 89 - Jun 89 0.221 0.405 0.534 0.550 0.481
Jul 89 - Dec 89 0.355 0.428 0.529 0.609 0.543
Jan 90 - Jun 90 0.329 0.423 0.557 0.550 0.631
Jul 90 - Dec 90 0.230 0.425 0.540 0.569 0.649
Jan 91 - Jun 91 0.296 0.419 0.497 0.346 0.313
Jul 91 - Dec 91 0.248 0.337 0.218 0.327 0.317

Table 20: Fraction of out-of-sample test set S&P 500 futures options in which the absolute delta-hedging error for
each learning network was lower than the Black-Scholes delta-hedging error, shown for each test period.

Pair t-statistic p-value
Linear-1 vs B-S | -15.1265 1.0000
Linear-2 vs B-S -5.7662 1.0000

RBF vs B-S 2.1098 0.0175
PPR vs B-S 2.0564 0.02
MLP vs B-S 3.7818 0.0001

Table 21: Paired t-test comparing relative magnitudes of absolute hedging error, using results from all S&P 500
test sets, 1.e., data from July 1987 to December 1991. The degrees of freedom for each test were 1299, although see
comments in the text concerning dependence.

21

Figure 1: Structure of the learning networks used in this paper.

22

ND

E(r,

Figure 2: Generalization error E(N,n) for a Gaussian RBF network as a function of the number of data points N
and the number of network parameters n [reprinted with permission from Niyogi and Girosi (1994)].

23

70

Underlying Price
55

50

45

0 100 200 300 400 500
Day

Figure 3: Typical simulated training path [see the text for parameters]. Dashed line represents stock price, while the
arrows represent the options on the stock. The y-coordinate of the tip of the arrow indicates the strike price [arrows
are slanted to make different introduction and expiration dates visible].

24

0.4 05 0.6

53 1% 00

o ,

~N % 0 £ tgyc ‘Oy
S s ol
i, ot ’.‘pc:»}‘
© e te

Figure 4: Simulated call option prices normalized by strike price and plotted versus stock price and time to expiration

Points represent daily observations. Note the denser sampling of points close to expiration is due to the CBOE
strategy of always having options which expire in the current and next month.

25

; 7253558
LSS
s
ALK LA LALT K 5

e e e rests

30405

CIX

01 001020

<>

<
B 9305252030520 59528520 %4 %6 %4 ’ %5
W‘o{, S8
SIS ¢
SRS &

SISOSSSS
SSSOSSSSS
SSSSSSS.
SRSISSSS>

S oS
S SRS
O S o 0 %4
SIS SIS

2>
0 2 20524

S5 0020524
S S S S S SRS SIS SIS. SRSERLELHLFS 7
“‘.":::‘:’ ’:"‘:‘«%{04 ‘;?’ g

SRS
SIS
SIS
SSSSSSSSSSS
SISSSSSS
=SS

CIX Error
-0.040.020.020.01 0 0.010.02

(¢) Call price error C'//E(-C/X

e

SEEE

SoSeeses
58

0520

Delta
0.2 0020406 08 1 12

0ot

%
55
'Oozo
S8

%
258

(b) Network delta

Delta Error
.0.6-04-02 0 0.2 04 06

(d) Delta error

Figure 5: Typical behavior of 4 nonlinear term RBF model.

26

’;"":ff%"/é%.;;:::
% Rt
-
s
A
%Y o
o
tase e e, 0y Uy i Uy
{?@»{m@,‘,'z,,;'
SN]
"0:',;{:3.’0"0'

Gy
"’""""5!"

S5
s
7550

%

X

Jy

)

o5}
IS

—

o5}
3}
o5}
3}

@
n
@
n

2.0

X Test Set 425: T=6, X=40 option

| &é%&(0 Training Set 10
g

SIX
14 1.6 1.8

1.2

1.0

Figure 6: Input points in the training set and test set for the RBF network with the largest error measure €.

27

300 350 400

Futures Price

250

200

rr o 111111 1 T T T 1771

870187058709880188058809890189058909900190059009910191059109
Date

Figure 7: Overlay of S&P 500 futures prices for all contracts active from January 1987 to December 1991.

28

400

380

Wi

/ ' Uk
i | iy I

360
=
=
=
—=
S|
=
—
I I
F
=
— |
I A
| —
R
c:: .

Futures Price
320 340
b =

300

280

260

Sep89 Dec89 Mar90 Jun90 Sep90
Futures Contract

Figure 8: S&P 500 futures and futures options active from July thru December 1989. Dashed line represents futures
price, while the arrows represent the options on the future. The y-coordinate of the tip of the arrow indicates the
strike price [arrows are slanted to make different introduction and expiration dates visible].

29

03 04

CIX

Figure 9: July thru December 1989 S&P 500 futures call option prices, normalized by strike price and plotted versus

stock price and time to expiration. Points represent daily observations. Note the bumpiness of the surface, and the
irregular sampling away from the money.

3mo T-bill Yield

1987

1988

1989

(a) Risk free rate 7

1990

1991

1992

80

Volatility (%)

40

20

60

v

#
l"
\
)
. ‘-J~ s }z‘
. ° 4
T o, _§ W
'\qnh”-‘=,¢5 R ad .h\ﬂfx,-

870187058709880188058809890189058909900190059009910191059109

Date

(b) Volatility &

Figure 10: Black-Scholes parameters estimated from S&P 500 data (see text for details). Values for & fall between

9.63% and 94.39%, with a median of 16.49%.

30

