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Abstract

Building robust recognition systems requires a careful understanding of the effects of error in sensed
features. In model-based recognition, matches between model features and sensed image features typically
are used to compute a model pose and then project the unmatched model features into the image. The
error in the image features results in uncertainty in the projected model features. We first show how
error propagates when poses are based on three pairs of model and image points. In particular, we
show how to simply and efficiently compute the region in the image where an unmatched model point
might appear, for both Gaussian and bounded error in the detection of image points, and for both
scaled-orthographic and perspective projection models. This result applies to objects that are fully three-
dimensional, where past results considered only two-dimensional objects. The result is based on an
approximation that accurately linearizes the relationship between matched image points and unmatched,
projected model points. Secondly, based on the linear approximation, we show how we can utilize linear
programmang to compute the propagated error region for any number of initial matches. Finally, we use
these results to extend, from two-dimensional to three-dimensional objects, robust implementations of
alignment, interpretation-tree search, and transformation clustering.
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1 Introduction

(Given a correspondence between a set of image features
and model features, a general problem in recognition is
to evaluate the correspondence and improve it if nec-
essary. For instance, for object recognition the model
may be a sparse set of 3D points and line segments. For
aerial images, the model may be a terrain elevation map
that includes the world locations of a small set of land-
marks. In some applications, a user may supply the ini-
tial correspondence, leaving the computer to estimate
and refine the model pose (position and orientation). In
other cases, the computer must find the initial corre-
spondence as well; this may be done through a combina-
tion of grouping, indexing, and raw search. Important
computations involved in evaluating and improving the
correspondence include (1) deciding whether the corre-
spondence provides an accurate alignment, (2) determin-
ing which image features could correspond to each un-
matched model feature, and (3) choosing a new match
to extend the correspondence. These computations are
intertwined with the issue of error propagation, that is,
the issue of how error in a set of matched image fea-
tures propagates to uncertainty in the predicted image
locations of the remaining model features. We call these
predicted image locations the uncertainty regions of the
model features, and we derive either bounds on these re-
gions or probability distributions on them, depending on
our model of error.

There are several reasons why it is useful to care-
fully understand the propagation of uncertainty, as op-
posed to assuming some small, simple uncertainty re-
gion and using it in all cases. First, as we will show,
uncertainty regions can vary quite a bit in size, and
may be quite large for the predicted model features, re-
sulting in many candidate image features for each pre-
diction. In particular, grouping techniques commonly
find image features that are close together on an object
(e.g., [11, 8, 25, 31, 27, 29]), and we will see that this
easily can lead to large uncertainty regions. Even when
the matched features are far apart in the image, the un-
certainty regions of the unmatched points may still be
large, due to the depth of the 3D model. Second, both
when the image features are nearby and when they are
far apart, there are situations in which the pose of the
model is unstable, and the uncertainty regions assume
surprising shapes. By understanding the propagation of
uncertainty, then, we can determine exactly where to
look for features, and we can evaluate the stability of
the pose produced by the initial correspondence.

1.1

Given a set of matched image and model points, we de-
termine an unmatched model point’s uncertainty region.
We consider this problem for the case in which corre-
spondences are based on point features. We handle both
scaled-orthographic and perspective projection models.
We also consider two different models of error. First,
we consider image points detected with errors that have
known, independent Gaussian distributions. Second, we
consider a bounded error model, in which we suppose
that the error distributions are unknown. In this case
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we make only the weak assumption that the magnitude
of the error vectors can be bounded by some maximum
number of pixels €. Given no other information, Gaus-
sians may be the preferred error distribution, since image
features are displaced by a sum of error vectors, incurred
over a series of processes such as digitization, smoothing,
and edge detection. A bounded error model may be use-
ful, however, when errors contain a consistent bias that
results in distributions that are significantly skewed from
Gaussian. In the first case, we show how Gaussian error
in matched image points propagates to an uncertainty
region with a Gaussian distribution for an unmatched
point. In the second case, we show how bounded error
in image points propagates to a bounded uncertainty
region describing the possible location of an additional
model point.

First we compute the uncertainty regions for sets of
three matched points. We derive a simple linear ex-
pression that approximates the relationship between the
matched and unmatched points. This relationship allows
us to show that, for bounded error, the uncertainty re-
gion for a fourth point is circular, and to derive analytic
expressions for the center and radius of the circle. For
Gaussian error, this relationship implies that the prop-
agated distribution of uncertainty is also Gaussian, and
provides analytic expressions for the center and standard
deviation. We perform experiments to verify that these
expressions are accurate for the amount of error that is
of interest in most recognition applications.

We also take advantage of the linear relationship by
introducing a new algorithm that allows us to determine
the uncertainty region for any number of matched points.
To do this we approximate our bounded error regions
with convex polygons, and then show that we can use
linear programming to derive a convex polygon that de-
scribes the uncertainty region of the unmatched model
point. We experiment with both synthetic images and
a real image to observe the accuracy of the uncertainty
regions that we compute, and to determine the extent to
which they shrink as we match more points.

Finally, we show how to extend previous work for lin-
ear projection models to the cases of scaled-orthographic
and perspective projections. Using the linear approxi-
mation we show that we can use Baird’s [6] algorithm to
tell whether a set of matches between image and model
points are geometrically consistent, and that we can ap-
ply Cass’ [12] and Breuel’s [10] algorithms to find, in
polynomial time, the model pose that aligns the max-
imum number of model and image features to within
error bounds. We also extend Jacobs’ [28] and Sarachik
and Grimson’s [39] planar alignment algorithms to 3D
objects.

1.2 Projection Models

For reference, we review the models of projection that
we refer to in this paper. For perspective projection, we
can write the corresponding image position (z,y) of a
3D model point (%, 7, Z) in terms of a 3D, rigid rotation
matrix R, a 3D translation vector @, and a camera focal



length f. Letting r;; be the elements of R, we have

PLE + P12y + P13Z + Uy
P31E + r3oy + r3sz + u,
Po1® + raoy + 123z + Uy
P31 + P32y + T3z + Uy

r =

(1)
(2)

where the rows of R are orthonormal, and where we as-
sume the origin is at the center of projection. When the
focal length f is known, there are six degrees of freedom,
and consequently three corresponding model and image
points are “minimal” to determine the transformation.
Given three corresponding points, there exist up to four
solutions for the model pose [17].

This paper extensively considers scaled-orthographic
(also known as weak-perspective) projection, in which a
3D object is scaled down and projected orthographically
into the image. This projection model is appropriate
when the camera is far from the objects being viewed
with respect to their sizes. In this case, the image posi-
tion of (%,7,%) can be written in terms of the first two
rows of a scaled, 3D rotation matrix, S sR, and of

a scaled, 3D translation vector, b. Letting s;; be the
elements of S, we have

y

r =

y =

(3)

S11T + 8127 + 5137 + bo,
521 + 522U + 5237 + by, 4)

where || (s11,512,513) ||=l| (s21,822,823) || and
(811, 812, 813) - (821, 822, 823) = 0. There are six degrees
of freedom in the scaled-orthographic model-to-image
transformation, and consequently three corresponding
points are minimal to determine the transformation.
Given three corresponding points, the transformation al-
ways exists if the model points are not collinear and it
generally has two solutions [27, 2]; in particular, the scale
factor and translation are always unique, and the rigid
rotation matrix is unique up to a reflection of the rotated
model about a plane parallel to the image.

For 3D linear projection, we remove the two non-
linear constraints on the rotation parameters in the
scaled-orthographic projection model. This transfor-
mation is equivalent to applying a scaled-orthographic
transformation to the model, and then applying a scaled-
orthographic transformation to the resulting image; in
total, this is like taking a picture of a photograph [29].
There are eight degrees of freedom in linear projection,
and four corresponding points are minimal to determine
the transformation. Given a minimal set of matches, this
is the only transformation of the three in which the un-
matched model points can be written lnearly in terms
of the matched image points. In particular, let the four
image and model points be (z;,%;) and (%;,7;, %), re
spectively, for ¢ = 1,2, 3,4. Then we can obtain the first
row of the transformation by solving

T T Y 7z 1 511
o | _ | B2 Yy Z2 1 519 (5)
3 | | T3 Y3 zZ3 1 513
T4 T4 y4 Z4 1 bw

A similar equation holds for the second row of the trans-
formation. These equations give linear expressions for
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the transformation parameters in terms of the image
point coordinates. Since multiplying a matrix by a vec-
tor is a linear operation, applying the computed trans-
formation to any unmatched model point gives a linear
expression for the model point’s image position in terms
of the matched image points.

1.3 Background

Due to the value of top-down knowledge in model-based
vision, it is common to generate hypotheses about an
object’s pose based on a small amount of information,
and then to look for evidence to confirm or reject the
hypotheses. In the alignment approach, a small number
of image features are matched to model features to de-
termine the object’s pose. This pose is used to project
additional model features into the image, which are
matched to nearby image features for verification (e.g.,
Roberts [37], Clark et al. [13], Fischler and Bolles [17],
Lowe [34], Ayache and Faugeras [5], Huttenlocher and
Ullman [27]). In interpretation-tree search, additional
matches between model and image features are then
used to look for more matches, backtracking if enough
valid matches cannot be found (e.g., Bolles and Cain [§],
Goad [18], Grimson and Lozano-Pérez [23], Horaud [25]).
To obtain the object’s pose, some approaches use mini-
mal sets of matches between model and image features
(e.g., Clark et al. [13], Fischler and Bolles [17], Ayache
and Faugeras [5], Horaud [25], Huttenlocher and Ull-
man [27]). Other approaches use indexing to match more
than the minimal number before looking for confirm-
ing features (e.g., Rothwell et al. [38], Thompson and
Mundy [43], Lamdan et al. [32], Jacobs [29]).

Most recognition systems take an ad-hoc approach to
the problem of accounting for the effects of sensing er-
ror on the projected positions of unmatched model fea-
tures. Some systems match projected model features to
image features if they are separated by a distance that
is less than some threshold (e.g., Clark et al. [13], Fis-
chler and Bolles [17], Brooks [11], Bolles and Cain [8],
Huttenlocher and Ullman [27]). Other systems rank the
unmatched image features using heuristics involving dis-
tance and orientation, and then pick the feature with
highest rank (e.g., Ayache and Faugeras [5], Lowe [34]).
Many questions remain concerning the performance of
these systems. For example, although we know the min-
imal number of features needed to generate a model pose,
we do not know how accurate the pose must be to al-
low us to identify the object. In addition, some authors
stress the importance of using a minimal set of features
[17, 27], while others contend that this will not produce
a sufficiently accurate pose for recognition [34]. Tt is
in general difficult to characterize the conditions under
which these systems will succeed or fail, or to evaluate
the relative effectiveness of the different strategies for
recognition, or to understand the extent to which each
approach makes the best possible use of the information
available. A careful understanding of the effects of sens-
ing error is a prerequisite to doing all of these.

1.3.1 Two-dimensional objects

Recently, there has been considerable effort aimed at
better understanding the effects of error on the match-



ing process. Some of this work attempts to design algo-
rithms that are guaranteed to perform well in the pres-
ence of error (e.g., Baird [6], Cass [12], Breuel [10]), but
most relevant to this paper is work that also examines
the propagation of error in recognition systems.

Huttenlocher [26] examined the effects of bounded
error on the alignment approach to recognition. This
analysis considered planar objects viewed from arbitrary
3D positions, assuming scaled-orthographic projection.
Pose was determined by matching three model and im-
age points. For some situations, Huttenlocher placed
approximate bounds on the uncertainty regions.

Subsequently, Jacobs [28] showed that the true uncer-
tainty regions are discs, and gave analytic expressions
for their centers and radii. These regions are circular
because in this case the projection model is linear in
such a way that error in any of the three matched image
points causes error in a projected model point that is
identical but scaled by a constant factor. This constant
factor depends on the model structure, but not on the
viewpoint. Consequently, the sizes of the uncertainty
regions are independent of how far apart in the image
are the three matched points, which means the uncer-
tainty is independent of the pose of the model. Jacobs’
result was used by Grimson et al. [22] to analyze the
false-positive sensitivity of planar alignment.

A number of researchers have also considered the ef-
fect of Gaussian error on alignment methods. As men-
tioned above, for planar objects, each predicted model
point can be written as a linear combination of the
matched image points. Therefore, Gaussian error in the
image points leads to Gaussian uncertainty in every pre-
dicted point (e.g., [42]). Sarachik and Grimson [39] used
this observation to propose a new method of perform-
ing and evaluating alignment approaches to recognition.
Beveridge et al. [7] use a robust method to evaluate par-
ticular model poses.

Error propagation has also been studied in the context
of Geometric Hashing approaches to recognition. Costa
et al. [L5] considered the distribution of uncertainty re-
gions in terms of the affine invariant parameters that de-
scribe the image points. Rigoutsos and Hummel [35, 36]
also considered this issue for Gaussian and uniform er-
ror. Both Costa et al. and Rigoutsos and Hummel then
considered the implications of these results for recog-
nition schemes. Lamdan and Wolfson [33] considered
the related problem of determining when three image
points provide an unstable basis for Geometric Hashing.
Grimson and Huttenlocher [20] considered the effects of
bounded error on Geometric Hashing, and provided loose
bounds on this effect. Jacobs [28] determined exactly
how bounded error effects Geometric Hashing indices.
Grimson et al. [22] then further developed this result and
used it to analyze the performance of Geometric Hash-
ing algorithms. Sarachik and Grimson’s [39] results also
apply to Geometric Hashing.

1.3.2 Three-dimensional objects

Error propagation is more complex in recognition
systems that deal with fully three-dimensional objects.
Bolles et al. [9] studied how error propagates from the
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parameters of a model-to-image transformation to the
predicted model points. Bolles et al. assumed that the
errors in the parameters were independent and normally-
distributed and that estimates of the distributions would
be available. Unlike other previous work, Bolles et al.
dealt with perspective projection, which made the rela-
tionship between the error vectors in the transformation
parameters and the predicted points non-linear. In fact,
their analysis is the most similar to our own, because
they took a (first-order) approximation that linearizes
the error-vector relationship. As a result they obtained
Gaussian uncertainty distributions. The main difference
with our work, in addition to our treatment of bounded
error, is that we will let the error be in the matched
image points, instead of assuming we know the distribu-
tions for all of the transformation parameters. Further-
more, we will derive direct expressions for the predicted
points in terms of the matched points, so that we do not
explicitly go through a rigid transformation.

Recently, Grimson et al. [21] presented a formal analy-
sis of error propagation starting from the matched image
points, for three-dimensional objects. They considered
scaled-orthographic projection and bounded, circular er-
ror. Starting from three matched points, they provided
a numerical method of bounding the uncertainty in the
transformation parameters. Then they used the bounds
on the parameters to obtain complicated, loose bounds
on the uncertainty regions of the predicted points. Via
these bounds, they analyzed the false-positive sensitivity
of 3D-from-2D alignment and transformation clustering,
in the domain of point features. The numerical tech-
nique is less practical, however, for use at run-time in a
recognition system.

Using the same projection and error models ag Grim-
son et al. [21], Alter and Grimson [4] presented experi-
ments that show that the true uncertainty regions tend
to be circular to a good approximation, and presented a
numeric method for more accurately bounding the uncer-
tainty regions. This technique was used to study again
the false-positive sensitivity of 3D-from-2D alignment,
except also using line features for verification. Alter
and Grimson demonstrated that using points for gen-
erating hypotheses and lines for verification could lead
to robust recognition. As before, the numerical error-
propagation technique is less practical for a real-time
system. Furthermore, the two weak-perspective solu-
tions lead to two distinct uncertainty regions, which is
not true when the model is planar. Alter and Grimson’s
technique sometimes performed poorly when the two re-
gions overlapped, because it had difficulty distinguishing
them.

Also for 3D objects, Weinshall and Basri [46] pro-
vided analytic bounds on the amount of error in a least-
squares solution that is used to match four model and
image points. This is useful because, currently, the least-
squares solution itself can be found only through itera-
tive methods.

For both 3D and 2D objects, Wells [47, 48] used a
Bayesian approach and Gaussian error assumptions to
derive an evaluation function that measures the likeli-
hood of any given pose. Wells then used heuristic search



and gradient descent methods to find the most probable
pose.

Finally, there has been a great deal of work on find-
ing a pose that minimizes error, when enough image and
model features have been matched to overdetermine the
pose. Some of this work analyzes the effect that errors
in image features have on the accuracy of the result-
ing pose, including Kumar and Hanson [30] and Hel-Or
and Werman [24]. The work of Hel-Or and Werman is
particularly relevant to us, because they also consider
how error propagates through the pose to the projec-
tions of unmatched feature points. Assuming Gaussian
error, they use an extended Kalman filter to find the
minimal error pose resulting from a match between any
number of image and model points. The Kalman filter
then allows them to compute a Mahalanobis distance
that indicates the likelihood that error can account for
the apparent deviation between a projected model point
and a potentially matching image point.

In summary, there are simple analytic solutions for
how error propagates from three matched image points,
when the objects are two-dimensional and undergo
scaled-orthographic projection. This is true both when
the image-point error is bounded by circles and when it
1s normally distributed. In the case of circular error, ev-
ery propagated uncertainty region is a circle, whose size
is independent of the camera viewpoint.

For three-dimensional objects, it appears empirically
that circular error again propagates to circular uncer-
tainty regions. Nevertheless, there is no analytic solu-
tion, which would be preferred for building an efficient
system. As well, current numerical solutions either sig-
nificantly overestimate the uncertainty regions or can
break down when the two regions that arise from the
two weak-perspective solutions overlap. Further, it is
not known whether the uncertainty regions are exactly
or approximately circles, or whether the sizes of the re-
gions depend on the viewpoint. If the regions are circles
only approximately, one would like to know which config-
urations of the model and image points cause the regions
to deviate from circularity. Although much progress has
been made in understanding the effects of propagated
error, there are significant problems that are not yet un-
derstood.

Finally, there have been a number of sensitivity anal-
yses that determine the susceptibility of recognition sys-
tems to false-positive errors. Most of these analyses
are restricted to two-dimensional objects, because this
is where error propagation is most readily understood.
Nonetheless, there do exist sensitivity analyses for three-
dimensional objects, which use numerical techniques to
get a handle on the propagated error.

2 Fourth-Point Uncertainty Region

In this section, we address the following problem: Given
exactly three matching point pairs, (;0, mo), (;1 , 1 ),
and (;2, 7i2), where the locations of %0, 11, and 7, contain
small amounts of error, what is the error in the computed
image position of a fourth model point, 73?7 This sec-
tion presents an analytic solution to this problem, which




