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1 Introduction

The geometric relation between 3D objects and their
views is a key component for various applications in com-
puter vision, image coding, and animation. For example,
the change in the 2D projection of a moving 3D object
is a source of information for 3D reconstruction, and for
visual recognition applications | in the former case the
retinal changes produce the cues for 3D recovery, and in
the latter case the retinal changes provide the cues for
factoring out the e�ects of changing viewing positions on
the recognition process.
The introduction of a�ne and projective tools into

the �eld of computer vision have brought increased ac-
tivity in the �elds of structure from motion and recogni-
tion in the recent few years. The emerging realization is
that non-metric information, although weaker than the
information provided by depth maps and rigid camera
geometries, is nonetheless useful in the sense that the
framework may provide simpler algorithms, camera cali-
bration is not required, more freedom in picture-taking is
allowed | such as taking pictures of pictures of objects
| and there is no need to make a distinction between
orthographic and perspective projections. The list of
contributions to this framework include (though not in-
tended to be complete) [17, 2, 30, 12, 46, 47, 13, 26, 7, 32,
34, 36, 25, 45, 29, 8, 10, 23, 31, 16, 15, 48] | and relevant
to this paper are the work described in [17, 7, 13, 34, 36].
The material introduced so far in the literature, con-

cerning 3D geometry frommultiple views, focuses on the
projective framework [7, 13, 36], or the a�ne framework.
The latter requires either assuming parallel projection
(cf. [17, 46, 45, 30]), or certain apriori assumptions
on object structure (for determining the location of the
plane at in�nity [7, 28]), or assuming purely translational
camera motion [24] (see also later in the text).
In this paper, we propose a uni�ed framework that

includes by generalization and specialization the Eu-
clidean, projective and a�ne frameworks. The frame-
work, we call \relative a�ne", gives rise to an equation
that captures most of the spectrum of previous results
related to 3D-from-2D geometry, and introduces new,
extremely simple, algorithms for the tasks of reconstruc-
tion from multiple views, recognition by alignment, and
certain image coding applications. For example, previ-
ous results in these areas | such as a�ne structure from
orthographic views, projective structure from perspec-
tive views, the use of the plane at in�nity for reconstruc-
tion (obtaining a�ne structure from perspective views),
epipolar-geometry related results, reconstruction under
restricted camera motion (the case of pure translation)
| are often reduced to a single-line proof under the new
framework (see Corollaries 1 to 6).
The basic idea is to choose a representation of projec-

tive space in which an arbitrarily chosen reference plane
becomes the plane at in�nity. We then show that under
general, uncalibrated, camera motion, the resulting new
representations can be described by an element of the
a�ne group applied to the initial representation. As a re-
sult, we obtain an a�ne invariant, we call relative a�ne

structure, relative to the initial representation. Via sev-
eral corollaries of this basic result we show, among other

things, that the invariant is a generalization of the a�ne
structure under parallel projection [17] and is a special-
ization of the projective structure (projective structure
can be described as a ratio of two relative a�ne struc-
tures). Furthermore, in computational terms the rela-
tive a�ne result requires fewer corresponding points and
fewer calculations than the projective framework, and is
the only next general framework after projective when
working with perspective views. Parts of this work, as
it evolved, have been presented in the meetings found in
[33, 38], and in [27].

2 Notation

We consider object space to be the three-dimensional
projective space P3, and image space to be the two-
dimensional projective space P2. An object (or scene)
is modeled by a set of points and let  i � P

2 denote
views (arbitrary), indexed by i, of the object. Given two
views with projection centers O;O0 2 P3, respectively,
the epipoles are de�ned as the intersection of the line
OO0 with both image planes. A set of numbers de�ned
up to scale are enclosed by brackets, a set of numbers
enclosed by parentheses de�ne a vector in the usual way.
Because the image plane is �nite, we can assign, without
loss of generality, the value 1 as the third homogeneous
coordinate to every observed image point. That is, if
(x; y) are the observed image coordinates of some point
(with respect to some arbitrary origin | say the geo-
metric center of the image), then p = [x; y; 1] denotes
the homogeneous coordinates of the image plane. When
only two views  o;  1 are discussed, then points in  o
are denoted by p, their corresponding points in  1 are
denoted by p0, and the epipoles are v 2  o and v

0 2  1.
When multiple views are considered, then appropriate
indecis are added as explained later in the text. The
symbol �= denotes equality up to a scale, GLn stands
for the group of n� n matrices, and PGLn is the group
de�ned up to a scale.
A camera coordinate system is an Euclidean frame

describing the actual internal geometry of the camera
(position of the image plane relative to the camera cen-
ter). If p = (x; y; 1)> is a point in the observed coordi-
nate representation, then M�1p represents the camera
coordinates, where M is an upper-diagonal matrix con-
taining the internal parameters of the camera. WhenM
is known, the camera is said to be internally calibrated,
and when M = I the camera is in \standard" calibra-
tion mode. The material presented in this paper does
not require further details of internal calibration | such
as its decomposition into the components of principle
point, image plane aspect ratios and skew | only the
mere existence ofM is required for the remaining of this
paper.

3 Relative A�ne Structure

The following theorems and corollaries introduce our
main results which are then followed by explanatory text.

Theorem 1 (Relative A�ne Structure [33]) Let �
be some arbitrary plane and let Pj 2 �, j = 1; 2; 3
projecting onto pj ; p

0

j in views  o;  1, respectively. Let
1
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Figure 1: See proof of Theorem 1.

po 2  o and p0o 2  1 be projections of Po 62 �. Let

A 2 PGL3 be a homography of P2
determined by the

equations Apj �= p0j , j = 1; 2; 3, and Av �= v0, scaled to

satisfy the equation p0o
�= Apo + v0. Then, for any point

P 2 P3
projecting onto p 2  o and p0 2  1, we have

p0 �= Ap+ kv0 (1)

The coe�cient k = k(p) is independent of  1, i.e., is

invariant to the choice of the second view, and the coor-

dinates of P are [x; y; 1; k].

Proof. We assign the
coordinates (1; 0; 0; 0); (0;1;0; 0); (0;0;1; 0) to P1; P2; P3,
respectively. Let O and O0 be the projection centers
associated with the views  o and  1, respectively, and
let their coordinates be (0; 0; 0; 1); (1; 1;1;1), respectively
(see Figure 1). This choice of representation is always
possible because the two cameras are part of P3. By
construction, the point of intersection of the line OO0

with � has the coordinates (1; 1; 1; 0).
Let P be some object point projecting onto p; p0.

The line OP intersects � at the point (�; �; 
; 0). The
coordinates �; �; 
 can be recovered by projecting the
image plane onto �, as follows. Given the epipoles
v 2  o and v0 2  1, we have by our choice of co-
ordinates that p1; p2; p3 and v are projectively (in P2)
mapped onto e1 = (1; 0; 0); e2 = (0; 1; 0); e3 = (0; 0; 1)
and e4 = (1; 1; 1), respectively. Therefore, there exists
a unique element A1 2 PGL3 that satis�es A1pj �= ej ,
j = 1; 2; 3, and A1v = e4. Note that we have made
a choice of scale by setting A1v to e4, this is simply for
convenience as will be clear later on. Let A1p = (�; �; 
).

Similarly, the line O0P intersects � at (�0; �0; 
0; 0).
Let A2 2 PGL3 be de�ned by A2p

0

j
�= ej , j = 1; 2; 3,

and A2v
0 = e4. Let A2p

0 = (�0; �0; 
0). Since P can
be described as a linear combination of two points along

each of the lines OP , and O0P , we have the following
equation:

P �=

0
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from which it readily follows that k = s (i.e., the
transformation between the two representations of P3

is a�ne). Note that since only ratios of coordinates are
signi�cant in Pn, k is determined up to a uniform scale,
and any point Po 62 � can be used to set a mutual scale
for all views | by setting an appropriate scale for A, for
example. The value of k can easily be determined from
image measurements as follows: we have
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Multiply both sides by A�1
2

to obtain �p0 = Ap + kv0,

where A = A�1
2
A1. Note that A 2 PGL3 is a homogra-

phy between the two image planes, due to �, determined
by p0j

�= Apj , j = 1; 2; 3, and Av �= v0 (therefore, can be

recovered directly without going through A1; A2). Simi-
lar proofs that a homography of a plane can be recovered
from three points and the epipoles are found in [34, 29].
Since k is determined up to a uniform scale, we need a
fourth correspondence po; p

0

o, and let A, or v0, be scaled
such that p0o

�= Apo+v
0. Finally, [x; y; 1; k] are the homo-

geneous coordinates representation of P , and the 3 � 4
matrix [A; v0] is a camera transformationmatrix between
the two views.

Theorem 2 (Further Algebraic Aspects [27]) Let

the coordinate transform from P = zp to P 0 = z0p0 be
described by P 0 = M 0RM�1P +M 0T , where R; T are

the rotational and translational parameters of the rela-

tive camera displacement, and M;M 0
are the internal

camera parameters. Given A; �; k de�ned in Theorem 1,

let n be the unit normal to the plane �, and d� the (per-

pendicular) distance of the origin to �, both in the �rst

camera coordinate frame. Then,

A �=M 0(R +
Tn>

d�
)M�1; (2)

and

k =
z

zo
�;

where zo is the depth of Po 62 �, and � = �(p) is the

a�ne structure of P in the case of parallel projection

(the ratio of perpendicular distances of P and Po from

�).

Proof. Let ~P be at the intersection of the ray OP with

�. Then ~P 0 =M 0RM�1 ~P+M 0T . Since n>M�1 ~P = d�,

we have: ~P 0 = M 0(R + Tn>

d�
)M�1 ~P . Since the term in

parentheses describes the homography due to �, we have

A �= M 0(R + Tn>

d�
)M�1 | which is the generalization

of the classical motion of planes in the calibrated case
[9, 43]. For the point P we have:

z0

z
p0 =M 0RMp+

1

z
M 0T

= Ap +

�
1

z
�
n>(M�1p)

d�

�
M 0T

�= Ap +

�
d� � n

>(M�1P )

zd�

�
v0:
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Figure 2: A�ne structure under parallel projection is dp=do.
This can be seen from the similarity of trapezoids followed

by the similarity of triangles: p
0
�~p

p
0
o
�~p

0
o

= P
0
� ~P

P
0
o
� ~P

0
o

=
dp

do
.

Let dp = d��n
>(M�1P ) the (perpendicular) distance

from P to �. We thus have

k =
zo

z

dp

do
;

where do is the (perpendicular) distance of Po from �
(see Figure 3-a). Finally, note that the ratio � = dp=do
of the distances of P and Po from � is the a�ne structure
when the projection is parallel (see Figure 2).

Corollary 1 Relative a�ne structure k approaches

a�ne structure under parallel projection when O goes

to in�nity, i.e., k �! � when O �!1.

Proof. When O �! 1, then z; zo �! 1. Thus k =
zo
z

dp
do
�!

dp
do

(see Figure 2).

Corollary 2 When the plane � is at in�nity (with re-

spect to the camera coordinate frame), then relative

a�ne structure k is a�ne structure under perspective

k = zo=z, A = M 0RM�1
, and, if in addition, the cam-

eras are internally calibrated as M = M 0 = I, then

A = R.

Proof. When � is at in�nity, then dp; do �! 1.

Thus k = zo
z

dp
do
�! zo

z
. Also, d� �! 1, thus A �!

M 0RM�1. (see Figure 3-b)

Corollary 3 (Pure Translation) In the case of pure

translational motion of the camera, and when the inter-

nal camera parameters remain �xed, i.e., M =M 0
, then

the selection of the identity homography A = I (in Equa-

tion 1) leads to an a�ne reconstruction of the scene (i.e.,

the identity matrix is the homography due to the plane

at in�nity). In other words, the scalar k in

p0 �= p+ kv0

is invariant under all subsequent camera motions that

leave the internal parameters unchanged and consist of

only translation of the camera center. The coordinates

[x; y; 1; k] are related to the camera coordinate frame by

an element of the a�ne group.

Proof. Follows immediately from Corollary 2: the ho-
mography due to the plane at in�nity is A �= M 0RM�1.
Hence, A = I when M = M 0 and R = I (pure transla-
tional motion).

Corollary 4 The projective structure of the scene can

be described as the ratio of two relative a�ne structures

each with respect to a distinct reference plane �; �̂, re-

spectively, which in turn can be described as the ratio of

a�ne structures under parallel projection with respect to

the same two planes.

Proof. Let k� and k�̂ be the relative a�ne structures
with respect to planes � and �̂, respectively. From Theo-

rem 2 we have that k� =
z
zo

dp
do

and k�̂ = z
zo

d̂p

d̂o
. The ratio

k�=k�̂ removes the dependence on the projection center
O (z=zo cancels out) and is therefore a projective invari-
ant (see Figure 4). This projective invariant is also the

ratio of cross-ratios of the rays OP and OPo with their
intersections with the two planes � and �̂, which was in-
troduced in [34, 36] as \projective depth". It is also the
ratio of two a�ne structures under parallel projection
(recall that dp=do is the a�ne structure; see Figure 2).

Corollary 5 The \essential" matrix E = [v0]R is a par-

ticular case of a generalized matrix F = [v0]A. The ma-

trix F , referred to as \fundamental" matrix in [7], is

unique and does not depend on the plane �. Further-

more, Fv = 0 and F>v0 = 0.

Proof. Let p 2  o; p
0 2  1 be two corresponding points,

and let l; l0 be their corresponding epipolar lines, i.e.,
l �= p � v and l0 �= p0 � v0. Since lines are projective
invariants, then any point along l is mapped by A to
some point along l0. Thus, l0 �= v0�Ap, and because p0 is

incident to l0, we have p0
>

(v0�Ap) = 0, or equivalently:

p0
>

[v0]Ap = 0, or p0
>

Fp = 0, where F = [v0]A. From
Corollary 2, A = R in the special case where the plane
� is at in�nity and the cameras are internally calibrated
as M = M 0 = I, thus E = [v0]R is a special case of
F . The uniqueness of F follows from substitution of
A with Equation 2 and noting that [v0]T = 0, thus F =
[v0]M 0RM�1. Finally, since Av �= v0, [v0]Av �= [v0]v0 = 0,
thus Fv = 0, and A>[v0]>v0 = �A>[v0]v0 = 0, thus
F>v0 = 0.

Corollary 6 (stream of views) Given m � 2 views,

let Aj and v0j be the homographies of � and the epipoles,

respectively, from view  o to view  j, and let the views

of an object point P be pj where the index j ranges over

the m views. Then, the least squares solution for k is

given by

k =

P
j(pj � v

0

j)
T (Ajpo � pj)P

j k pj � v
0

j k
2

: (3)

Proof. This is simply a calculation based on the observa-
tion that given a general equation of the type a �= b+kc,
then by performing a cross product with a on both sides
we get: k(a � c) = b� a. The value of k can be found
using the normal equations (treating k as a vector of
dimension 1):

k =
(b� a)T (a� c)

ka� ck2
:

3
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the rays OP and O0 ~p are parallel, thus the homography is the rotational component of motion.
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Figure 4: Projective-depth [34, 36] is the ratio of two
relative a�ne structures, each with respect to a distinct
reference plane, which is also the ratio of two a�ne struc-
tures (see Corollary 4 for more details).

Similarly, if in addition we have a0 �= b
0 + kc0, then the

overall least squares solution is given by

k =
(b � a)T (a� c) + (b0 � a0)T (a0 � c0)

ka� ck2 + ka0 � c0k2
:

3.1 Explanatory Text

The key idea in Theorem 1 was to use both camera cen-
ters as part of the reference frame in order to show that
the transformation between an arbitrary representation
Ro of space as seen from the �rst camera and the repre-
sentation R as seen from any other camera position, can
be described by an element of the a�ne group. In other
words, we have chosen an arbitrary plane � and made a
choice of representation Ro in which � is the plane at in-
�nity (i.e., � was mapped to in�nity| not an unfamiliar
trick, especially in computer graphics). The representa-
tion Ro is associated with [x; y; 1; k] where k vanishes

for all points coplanar with �, which means that � is the
plane at in�nity under the representation Ro. What was
left to show is that � remains the plane at in�nity under
all subsequent camera transformations, and therefore k
is an a�ne invariant. Because k is invariant relative
to the representation Ro we named it \relative a�ne
structure"; this should not be confused with the term
\relative invariants" used in classical invariant theory
(invariants multiplied by a power of the transformation
determinant, as opposed to \absolute invariants").

In practical terms, the di�erence between a full pro-
jective framework (like in [7, 13, 36]) and the relative
a�ne framework can be described as follows. In a full
projective framework, if we denote by f the invariance
function acting on a pair of views indexed by a �xed set
of �ve corresponding points, then f( i;  j) is �xed for
all i; j. In a relative a�ne framework, if we denote fo
as the invariance function acting on a �xed view  o and
an arbitrary view  i and indexed by a �xed set of four
corresponding points, then fo( o;  i) is �xed for all i.

The remaining theorem 2 and corollaries put the rela-
tive a�ne framework within the familiar context of a�ne
structure under parallel and perspective projections, Eu-
clidean structure and projective structure. The homog-
raphy A due to the plane � was described as a product
of the rigid camera motion parameters, the parameters
of �, and the internal camera parameters of both cam-
eras. This result is a natural extension of the classical
motion of planes found in [9, 43], and also in [22]. The
relative a�ne structure k was described as a product of
the a�ne structure under parallel projection and a term
that contains the location of the camera center of the
reference view. Geometrically, k is the product of two
ratios, the �rst being the ratio of the perpendicular1 dis-
tance of a point P to the plane � and the depth z to the

1Note that the distance can be measured along any �xed
direction. We use the perpendicular distance because it is
the most natural way of describing the distance between a
point and a plane.

4



reference camera, and the second ratio is of the same
form but applied to a �xed point Po which is used to
set a uniform scale to the system. Therefore, when the
depth goes to in�nity (projection approaches orthogra-
phy), then k approaches the ratio of the perpendicular
distances of P from � and the perpendicular distance of
Po from �|which is precisely the a�ne structure under
parallel projection [17]. Thus, relative a�ne structure is
a generalization in the sense of including the center of
projection of an arbitrary camera, and when the cam-
era center goes to in�nity we obtain an a�ne structure
which becomes independent of the reference camera.

Another specialization of relative a�ne structure was
shown in Corollary 2 by considering the case when � is
at in�nity with respect to our Euclidean frame (i.e., re-
ally at in�nity). In that case k is simply inverse depth
(up to a uniform scale factor), and the homography A
is the familiar rotational component of camera motion
(orthogonal matrix R) in the case of calibrated cameras,
or a product of R with the internal calibration param-
eters. In other words, when � is at in�nity also with
respect to our camera coordinate frame, then relative
a�ne becomes a�ne (the plane at in�nity is preserved
under all representations [7]). Notice that the rays to-
wards the plane at in�nity are parallel across the two
cameras (see Figure 3-b). Thus, there exists a rotation
matrix that aligns the two bundles of rays, and following
this line of argument, the same rotation matrix aligns the
epipolar lines (scaled appropriately) because orthogonal
matrices commute with cross products. We have there-
fore the algorithm of [18] for determining the rotational
component of standard calibrated camera motion, given
the epipoles. In practice, of course, we cannot recover
the homography due to the plane at in�nity unless we
are given prior information on the nature of the scene
structure [28], or the camera motion is purely transla-
tional ([24] and Corollary 3). Thus in the general case,
we can realize either the relative a�ne framework or the
projective framework.

In Corollary 3 we address a particular case in which
we can recover the homography due to the plane at in�n-
ity, hence recover the a�ne structure of the scene. This
is the case where the camera motion is purely transla-
tional and the internal camera parameters remain �xed
(i.e., we use the same camera for all views). This case
was addressed in [24] by using clever and elaborate geo-
metric constructions. The basic idea in [24] is that under
pure translation of a calibrated camera, certain lines and
points on the plane at in�nity are easily constructed in
the image plane. A line and a point from the plane at
in�nity are then used as auxiliaries for recovering the
a�ne coordinates of the scene (with respect to a frame
of four object points).

The relative a�ne framework provides a single-line
proof of the main result of [24], and Furthermore, pro-
vides an extremely obvious algorithm for reconstruction
of a�ne structure from a purely translating camera with
�xed internal parameters, as follows. The epipole v0 is
the focus of expansion and is determined from two cor-
responding points (v0 �= (pi � p

0

i) � (pj � p
0

j), for some

i; j). Given corresponding points p; p0 in the two views,

the coordinates (x; y; k), where k satis�es p0 �= p + kv0,
are related to the Euclidean coordinates (with respect to
a camera coordinate frame) by an element of the a�ne
group. The scalar k is determined up to scale, thus one
of the points, say po, should determine the scale by scal-
ing v0 to satisfy p0o

�= po + v0 (note that po can coincide
with one of the points, pi or pj, used for determining v0).
In case we would like to determine the a�ne coordinates
with respect to four object points P1; :::; P4, we simply
assign the standard coordinates (0; 0; 0); (1; 0;0); (0; 1;0)
and (0; 0; 1) to those points, and solve for the 3D a�ne
transformation that maps (xi; yi; ki), i = 1; :::; 4, onto
the standard coordinates (the mapping contains 12 pa-
rameters, and each of the four points determines three
linear equations).

To conclude the implications of Corollary 3, we ob-
serve that given the epipole v0, we need only one more
point match (for setting a mutual scale) in order to de-
termine a�ne structure. This is obvious because the
epipole is the translational component of camera mo-
tion, and since this is the only motion we assume to
have, the structure of the scene should follow without
additional information. This case is very similar to the
classic paradigm of stereopsis: instead of assuming that
epipolar lines are horizontal, we recover the epipole (two
point matches are su�cient), and instead of assuming
a calibrated camera we assume an uncalibrated camera
whose internal parameters remain �xed, and in turn, in-
stead of recovering depth we can recover at most the
a�ne structure of the scene. Finally, the result that
the homography due to the plane at in�nity is the iden-
tity matrix can be derived by geometric grounds as well.
Points and lines from the plane at in�nity are �xed points
of the homography; with an a�ne frame of four points
we can observe four �xed points, and thus, a homog-
raphy with four �xed points is necessarily the identity
matrix.

The connection between the relative a�ne structure
and projective structure was shown in Corollary 4. Pro-
jective invariants are necessarily described with reference
to �ve scene points [7], or equivalently, with reference
to two planes and a point laying outside of them both
[36, 34]. Corollary 4 shows that by taking the ratio of
two relative a�ne structures, each relative to a di�er-
ent reference plane, then the dependence on the camera
center (the term zo=z) drops and we are left with the
projective invariant described in [36], which is the ratio
of the perpendicular distance of a point to two planes
(up to a uniform scale factor).

Corollary 5 uni�es previous results on the nature of
what is known by now as the \fundamental matrix"
[7, 8]. It is shown, that for any plane � and its cor-
responding homography A we have F = [v0]A. First,
we see that given a homography, the epipole v0 follows
by having two corresponding points coming from scene
points not coplanar with � | an observation that was
originally made by [18]. Second, F is �xed, regardless
of the choice of �, which was shown by using the result
of Theorem 2. As a particular case, the product [v0]R
remains �xed if we add to R a element that vanishes
as a product with [v0] | an observation that was made
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previously by [13]. Thirdly, the \essential" matrix [19],
E = [v0]R, is shown to be a specialization of F in the
case � is at in�nity with respect to the world coordi-
nate frame and the cameras are internally calibrated as
M =M 0 = I.
Finally, Corollary 6 provides a practical formula for

obtaining a least-squares estimation of relative a�ne
structure which also applies for the case where a stream
of views is available| in the spirit of [46, 42, 23, 41, 1, 5].
In the next section we apply these results to obtain a
simple algorithm for relative a�ne reconstruction from
multiple m � 2 views and multiple points.

3.2 Application I: Reconstruction from a
Stream of Views

Taken together, the results above demonstrate the abil-
ity to compute relative a�ne structure using many
points over many views in a least squares manner. At
minimum we need two views and four corresponding
points and the corresponding epipoles to recover k for
all other points of the scene whose projections onto the
two views are given. Let pij, i = 0; :::; n and j = 0; :::;m
denote the i'th image point on frame j. Let Aj denote
the homography from frame 0 to frame j, vj; v

0

j the corre-

sponding epipoles such that Ajvj �= v0j, and let ki denote
the relative a�ne structure of point i. We follow these
steps:

1. Compute epipoles
vj ; v

0

j using the relation pijFjpio = 0, over all i.

Eight corresponding points (frame 0 and frame j)
are needed for a linear solution, and a least-squares
solution is possible if more points are available. In
practice the best results were obtained using the
non-linear algorithm of [21]. The epipoles follow by
Fjvj = 0 and F>v0j = 0 [7]. The latter readily fol-

lows from Corollary 5 as [v0j]Ajvj �= [v0j]v
0

j = 0 and

A>j [v
0

j]
>v0j = �A

>

j [v
0

j]v
0

j = 0.

2. Compute Aj from the equations Ajpio �= pij, i =
1; 2; 3, and Ajvj �= v0j . This leads to a linear set
of eight equations for solving for Aj up to a scale.
A least squares solution is available from the equa-
tion pij[v

0

j]Ajpio = 0 for all additional points (Corol-

lary 5). Scale Aj to satisfy poj �= Ajpoo + v0j .

3. Relative a�ne structure ki is given by (3).

3.3 Application II: Recognition by Alignment

The relative a�ne invariance relation, captured by The-
orem 1, can be used for visual recognition by alignment
([44, 14], and references therein). In other words, the
invariance of k can be used to \re-project" the object
onto any third view p00, as follows. Given two \model"
views in full correspondence pi  ! p0i, i = 1; :::; n, we
recover the epipoles and homography A from Api �= p0i,
i = 1; 2; 3, and Av �= v0. Then the corresponding points
p00i in any third view satisfy p00 �= Bp + kv00, for some
matrix B and epipole v00. One can solve for B and v00

by observing six corresponding points between the �rst
and third view. Once B; v00 are recovered, we can �nd
the estimated location of p00i for the remaining points

pi, i = 7; :::; n, by �rst solving for ki from the equation
p0i
�= Api + kiv

0, and then substituting the result in the
equation p̂00i

�= Bpi+kiv
00. Recognition is achieved if the

distance between p00i and p̂00i , i = 7; :::; n, is su�ciently
small. Other methods for achieving reprojection include
the epipolar intersection method (cf. [26, 6, 11]), or by
using projective structure instead of the relative a�ne
structure [34, 36]. In all the above methods the epipolar
geometry plays a key and preconditioned role. More di-
rect methods, that do not require the epipolar geometry
can be found in [35, 37].

3.4 Application III: Image Coding

The re-projection paradigm, described in the previous
section, can serve as a principle for model-based im-
age compression. In a sender/receiver mode, the sender
computes the relative a�ne structure between two ex-
treme views of a sequence, and sends the �rst view,
the relative a�ne scalars, and the homographies and
epipoles between the �rst frame and all the intermediate
frames. The intermediate frames can be reconstructed
by re-projection. Alternatively, the sender send the two
extreme views and the homographies and epipoles be-
tween the �rst and all other intermediate views. The
receiver recovers the correspondence �eld between the
two extreme views, and then synthesizes the remaining
views from the received parameters of homographies and
epipoles. In case the distance between the two extreme
views is \moderate", we found that optical 
ow tech-
niques can be useful for the stage of obtaining the corre-
spondence �eld between the views. Experiments can be
found later in the text, and more detailed experiments
concerning the use of optical 
ow in full registration of
images for purposes of model-based image compression
can be found in [4].

4 Experimental Results

The following experiments were conducted to illustrate
the applications that arise from the relative a�ne frame-
work (reconstruction, recognition by alignment, and im-
age coding) and to test the algorithms on real data. The
performance under real imaging situations is interesting,
in particular, because of the presence of deviations from
the pin-hole camera model (radial distortions, decenter-
ing, and other e�ects), and due to errors in obtaining
image correspondences.

Fig. 5 shows four views, out of a sequence of ten views,
of the object we selected for experiments. The object is
a sneaker with added texture to facilitate the correspon-
dence process. This object was chosen because of its
complexity, i.e., it has a shape of a natural object and
cannot easily be described parameterically (as a collec-
tion of planes or algebraic surfaces). A set of thirty-four
points were manually selected on one of the frames, re-
ferred to as the �rst frame, and their correspondences
were automatically obtained along all other frames used
in this experiment (corresponding points are marked by
overlapping squares in Fig. 5). The correspondence pro-
cess is based on an implementation of a coarse-to-�ne
optical-
ow algorithm based on [20] and described in [3].
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(a) (b)

(c) (d)

Figure 5: Four views, out of a sequence of ten views, of a sneaker. The frames shown here are the �rst, second, �fth and
tenth of the sequence (top-bottom, left-to-right). The overlayed squares mark the corresponding points that were tracked and
subsequently used for our experiments.
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(a)

(b) (c)

Figure 6: Results of 3D reconstruction of the collection of sample points. (a) Frontal view (aligned with the �rst frame of
the sneaker). The two bottom displays show a side view of the sample. (b) Result of recovering structure between the �rst
and tenth frame (large base-line); (c) Result of recovery between the �rst and second frames (small base-line).

(a) (b)

Figure 7: Results of re-projection onto the tenth frame. Epipoles were recovered using the ground plane homography (see
text). The re-projected points are marked by crosses, and should be in the center of their corresponding square for accurate
re-projection. (a) Structure was recovered between the �rst and �fth frames, then re-projected onto the tenth frame (large
base-line). Average error is 1.1 pixels with std of 0.98. (b) Structure was recovered between the �rst and second frames (small
base-line situation) and then re-projected onto the tenth frame. Average error is 7.81 pixels with std of 6.5.
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Epipoles were recovered by either one of the following
two methods. First, by using the four ground points to
recover the homography A, and then by Corollary 5 to
compute the epipoles using all the remaining points in
a least squares manner. Second, using the non-linear
algorithm proposed by [21]. The two methods gave rise
to very similar results for reconstruction, and slightly
di�erent results for re-projection (see later).

In the reconstruction paradigm, we recovered relative
a�ne structure from two views and multiple views. In
the two-view case we used either a small base-line (the
�rst two views of the sequence) or a large base-line (the
�rst and last views of the sequence). In the multiple
view case, we used all ten views of the sequence (Corol-
lary 6). The transformation to Euclidean coordinates
was done for purposes of display by assuming that the
ground plane is parallel to the image plane (it actually
is not) and that the camera is calibrated (there was no
calibration attempt made).

The 3D coordinates are shown in Fig. 6. Display (a)
shows a frontal view (in order to visually align the dis-
play with the image of the sneaker). Other displays show
a side view of the reconstructed sneaker under the fol-
lowing experimental situations. Display (b) is due to
reconstruction under large base-line situation (the two
methods for obtaining the epipoles produced very simi-
lar results; the multiple-view case produced very similar
results as well). The side view illustrates the robustness
of the reconstruction process, as it was obtained by rotat-
ing the object around a di�erent axis than the one used
for capturing the images. Display (c) is due to recon-
struction under small base-line situation (both methods
for obtaining the epipoles produced very similar results).
The quality of reconstruction in the latter case is not as
good as in the former, as should be expected. Never-
theless, the system does not totally brake-down under
relatively small base-line situations and produces a rea-
sonable result under these circumstances.

In the re-projection application (see Section 3.3), rel-
ative a�ne structure was recovered using the �rst and
in-between views, and re-projected onto the last view of
the sequence. Note that this is an extrapolation exam-
ple, thereby performance is expected to be poorer than
interpolation examples, i.e., when the re-projected view
is in-between the model views. The interpolation case
will be discussed in the next section, where relevance to
image coding applications is argued for.

In general, the performance was better when the
ground plane was used for recovering the epipoles. When
the intermediate view was the �fth in the sequence
(Fig. 5, display (c)), the average error in re-projection
was 1.1 pixels (with standard deviation of 0.98 pixels).
When the intermediate view was the second frame in the
sequence (Fig. 5, display (b)), the results were poorer
(due to small base-line and large extrapolation) with av-
erage error of 7.81 pixels (standard deviation of 6.5).
These two cases are displayed in Fig. 7. The re-projected
points are represented by crosses overlayed on the last
frame (the re-projected view).

When the second method for computing the epipoles
was used (more general, but generally less accurate), the

results were as follows. With the �fth frame, the aver-
age error was 1.62 pixels (standard deviation of 1.2); and
with the second frame (small base-line situation) the av-
erage error was 13.87 pixels (standard deviation of 9.47).
These two cases are displayed in Fig. 8. Note that be-
cause all points were used for recovering the epipoles, the
re-projection performance, only indicates the level of ac-
curacy one can obtain when all the information is being
used. In practice we would like to use much fewer points
from the re-projected view, and therefore, re-projection
methods that avoid the epipoles all together would be
preferred | an example of such a method can be found
in [35, 37].
For the image coding paradigm (see Section 3.4), rel-

ative a�ne structure of the 34 sample points were com-
puted between the �rst and last frame of the ten frame
sequence (displays (a) and (d) in Fig. 5). Display (a)
in Fig. 9 shows a graph of the average re-projection er-
ror for all the intermediate frames (from second to ninth
frames). Display (b) shows the relative error normalized
by the distance between corresponding points across the
sequence. We see that the relative error generally goes
down as the re-projected frame is farther from the �rst
frame (increase of base-line). In all frames, the average
error is less than 1 pixel, indicating a relatively robust
performance in practice.

5 Summary

The framework of \relative a�ne" was introduced and
shown to be general and sharper than the projective re-
sults for purposes of 3D reconstruction from multiple
views and for the task of recognition by alignment. One
of the key ideas in this work is to de�ne and recover
an invariant that stands in the middle ground between
a�ne and projective. The middle ground is achieved
by having the camera center of one arbitrary view as
part of the projective reference frame (of �ve points),
thus obtaining the �rst result described in Theorem 1
(originally in [33]). The result simply states that un-
der general uncalibrated camera motion, the sharpest
result we can obtain is that all the degrees of freedom
are captured by four points (thus the scene may un-
dergo at most 3D a�ne transformations) and a single
unknown projective transformation (from the arbitrary
viewer-centered representation Ro to the camera coor-
dinate frame). The invariants that are obtained in this
way are viewer-centered since the camera center is part of
the reference frame and are called \relative a�ne struc-
ture". This statement, that all the available degrees of
freedom are captured by four points and one projective
transformation, was also recently presented in [40] using
di�erent notations and tools than those used here and in
[33, 38].
This \middle ground" approach has several advan-

tages. First, the results are sharper than a full projec-
tive reconstruction approach ([7, 13]) where �ve scene
points are needed. The increased sharpness translates
to a remarkably simple framework captured by a single
equation (Equation 1). Second, the manner in which
the results were derived provides the means for unifying
a wide range of other previous results, thus obtaining a
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(a) (b)

Figure 8: Re-projection onto the tenth frame. Epipoles are computed via fundamental matrix (see text) using the implemen-
tation of [21]. (a) Large base situation (structure computed between �rst and �fth frames): average error 1.62 with std of 1.2.
(b) Small base-line situation (structure computed between �rst and second frames): average error 13.87 with std of 9.47.
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Figure 9: Error in re-projection onto the intermediate frames (2{9). Structure was computed between frames one and ten.
(a) average error in pixels, (b) relative error normalized by the displacement between corresponding points.
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canonical framework. FollowingTheorem 2, the corollar-
ies show how this \middle ground" reduces back to full
a�ne structure and extends into full projective struc-
ture (Corollaries 1 and 4). The corollaries also show
how the \plane at in�nity" is easily manipulated in this
framework, thereby making further connections among
projective a�ne and Euclidean results in general and less
general situations (Corollaries 2 and 3). The corollaries
also unify the various results related to the epipolar ge-
ometry of two views: the Essential matrix of [19], the
Fundamental matrix of [7] and other related results of
[13] (Corollary 5). All the above connections and re-
sults are often obtained as a single-line proof and follow
naturally from the relative a�ne framework.
Finally, the relative a�ne result has proven useful

for derivation of other results and applications, some of
which can be found in [39, 37, 35]. The derivation of
those results critically rely on the simplicity of the rela-
tive a�ne framework, and in some cases [37, 35] on the
sharpness of the framework compared to the projective
framework.
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