MASSACHUSETTS [NSTITUTE OF TECHNOLOGY

FROJECT MAC

Artificial Intelligence
Memo. Mo, 149, January 1968,

REC/8

A CONVERT COMPILER OF REC FOR THE PDP-8

*
Harold V. MMeIntesh

* ESCUELA SUPERIOR DE FISICA Y MATEMATICAS
INSTITUTO POLITECHNICO MACTOMAL
MEXICD 14 D.F., MEXICO.

ABSTRACT

REC/6 is a CONVCRT program, realized in the CI155 LISP of
Project MAC, for complling REC expressions into the machine language
of the PUP-8 computer, Since the compilation consists in its majority
of subroutine calls (to be compiled, after removal of LISP parenthesss
by MACP(=8) the technique is applicable with trivial modification to
any other computer having the subroutine jump and indirect transfer
instructions, The purpose of the program is both to compile KFC
expressions and to illustrate the workings of the PEC language, and
accordingly a description of this lanpuspe is given., It contains
operators and predicates} flow of control 1s achieved by parentheses
which define subexpressioms, colen which implles iteration, and
semicolon which terminates the execution of an expressiuon. Fredicates
pass contrel to the pesition following the next colun or semicolon,
allowing the execabion of altemative expression strings,

REC (REGULAR EXPRESSION COMPILER) is a programming language of
simple structure doveloped originally for the PDPP=-8 computer, but
readily adaptable te any other general purpose computer, It has been
used extensively in teaching Algebra and Mumerical Analysis in the
ESFM, even for programming hand calculations with the Friden ¢lectTonic
desk calculator, In rather vague terms, it derives its appeal from the
fact that computers can be reparded in one way or another as Turing
Machines with very elaborate built-in shortcuts to eliminate the
protesque inafficiency of manipulating individual bits on a sinpgle
linear tape, A turing Machine consists of a finite state machine acting
as the coentrol of a tape memory; finite state machines in turn are
conveniently described by regular expressions, The REC notatiom is a
manner of writing regular expressions mor amenable to programning the
Turing Machine which they control, If one does not wish te think so
strictly in terms of Turing Machines, REC expressions still provide a means
of defining the flow of control in a program, which is quite convenient
in many applications.

Let E be an alphabet, which presumably would not contain among
its letters the operational sipgns which we shall introduce, We then
define a REC expression recursively in the following manner,

i) 4 is a REC expression

ii) () is a REC expressicn

iii) ifoe u {: '}* @ i5 a REC expression
iv) if o and g are REC expressions, so iz af
¥) if a is a REC expression, so is (a)

The operational signs are used as folloews., Parentheses are used
to denote a sinple expression, Concatination is implied by writing
expressions in sequence. Colon [:] implies iteratiom of all the
expression which precedes the colon. Semicolon [;] terminates the
concatination of a string, The large period [.] indicates a choice
between continuing to concatinate the following expressions or to pass
over them until the next following colon or semicolon (if any) of the
same parenthesis level is reached. 5Such a choice is always implied
following a parenthesized expression,

It is to he noted that parentheses have a very technical use in
REC expresainna; and are more than simmle sipgns of prouping, Thus, since
concatination is associative, it is always written in its extended form
without parentheses, When some grouping is desired to be shown, some other
symboel, such as square brackets, should be used, The non-associativity of
REC parenthesization is often exploited to achieve some economy or simplification
of expression,

To see the correspondence between regular expressions and REC
expressions, we first show how any rejular expressicn is to be written
a5 a REC expression,

b o+ k)
W i
T o+
af =+ af

alif+ (oniBi)
2* & [ani;)
For the converse process of writing the repular expression
corresponding to a REC expression, it is more convenient to show how
to use a REC expression to construct a transition system, whose regular
expression (or class of equal repular expressions) may then be deduced,
The algorithm is as follows, recursively defined.

1} For every REC expression there will be an initial
state and two final states, labelled T and F,

2) A REC expression is to be read from left to right, but
any quantity appearing within parentheses is to
be treated as a single expression, Tecursively,
with additional rules governing how to join its
initial and final states to those outside the
parentheses,

3} If o ¢ £ i5 seen, draw an arrow labelled o from the last
state to 4 new state,

4} If % is seen, do the same with a spontaneous transition.

5) if 3 is seen, draw an arrowW representing a spomtanecus
transition back to the initial state.

6) If : is seen, drow an arroWw representing a spontaneocus
transition to the final state T,

7) Whenever either : or ; is seon, a new state should be formed,

8) 'If & is seen, drawW an arrow repreésenting a spontaneous
transition to the state immediately following the next
i or 5, if any; otherwise to the final state T.

.3‘

9) If a parenthesized expression is scen, apply the

. entire algorithm to the parenthesized expression,
When this is dene, draw an arrow representing a
spontaneocus transition from the last state to the
initial state of the enclosed expression, The
last state written is the final state F of the
enclesed expression, and is to be connected by a
spontancous transition to a subsequent state in
exactly the same manner as had an s been seen,
The final state T is to be used as the current
state in continuing to process the outer level,

10) The last state to be written is the final state F of
the cuter expression; or should be connected to it
by a spontanecus transtion if the latter has
already been prepared. The final state T is the
accepting state of the transition system,

As an example of the process, let us consider the transitien
system which we would produce from the REC expression
i (R Pa i Qo (R Qozt) :W:)
by following the above rules,

L

L]

It will be seen that the three F states are all isolated because
according to this particular REC expression there is no way to arrive at
any of thes,

It will be noted that the REC expressions which are derived from
regular expressions by the prescription we have offered form a limited
class emong the possible REC expressions, In part this is due to a
desire to leave the semantics of the REC expressions relatively weak, even
though it admits a great number of expressions which would produce useless
transition diagrams; for instance we de not exclude the sequence ::

But there is also the consideration that although repular expressions
are defined with binary comnectives, such as union and concatinatiom,
these connectives are assoclative and are pencrally written in
parenthesis free form, Altheugh REC parentheses are not associative,
there nevertheless exist convenient n-ary forms equivalent to their
corresponding binary forms, For example, in a triple union one could
write

(AubB)ulC as (o{eM;B3):CH)

Au (Bucd) as (oA;(oBiC3)5)
but preferable to both is writing

AuBulC as (sA:.B:C)
with a similar notation corresponding to a more oxtensive Enion,
In fact, such merit as there might be to the REC notation arises from the
fact that although it mipht be somewhat cumbersome to make Jdirect
transcriptions of regular expressions, there will be a consequential class
of expressions which we will wish te write! whose NEC form will he simpler
and more convenient than the corresponding repular expressions., Thus the
correspondences which we have established serves to demonstrate that the
totality of REC expressions is no more nor less peneral than the totality
of repular expressions,

Since the intention of REC expressions is to control the operation
of a general purpose computer [or more specifically a Turing Machine), we
will expect the letters of the REC alphabet to represent individual
operations of which the machine is capable. For this reasen the letters
will pe called cperators, Words of the REC alphabet will ‘then correspond
to sequences of operations, carried out in the order given, The transition
system derived from a REC expression will then accept a word of this
alphabet if it corresponds to a possible series of operatiens which could be
carried out during the calculation in question. In the case of a Turing
Machine, the uﬁaratnr: will be to write a symbel, compare a symbol, move the
tape left or move the tape right, But the operators will have to be chosen
according to the circumstances,

In reality we are not so much interested in recopnizing a possible
calculation as in prescribing the particular one which we want among all
those possible., It is for this purpose that the larpe period [,] was
introduced, which is related to the operation of union in a regular
expression. At each place in a REC expression where . occurs, there
is a spontaneous transition in the transition dianrnm: indicating the

possibility of a selection among two alternatives; to continue the
repular sequence, or to start a new one by following the spontaneous
transition, To spacify a particular word among all those represented
by a given REC expression, it is only necessary to specify this choice
at each place where it becomes possible, We might even assume that
there are special operators whose purpose is to make this cheoice. They
are called predicates, and will always combine the symbol » implicitly,
Thus a predicate is a combination of an appropriate operator followed by
the symbol . We will moreovre say that a predicate takes the value

true or false sccording to whother the decisien is made to continue

in the regular sequence or to follow the spontanecus transition pas-

the nearest colon or semicolon., Every parenthesized expression is
automatically assumed to be a predicate, although analysis may show that
it is only capable of assuming one of the two pessible values, Such

was the case in our example,

The transition diagrams of REC expressions have two final states
to accomodate their usage as predicates, Thus a calculation definitely
fails, definitely succeeds, or else is in progress, Moreover the REC
notation has been particularly chesen to facilitate the formation of
Boolean combinations of its subexpressions, Thus the combination AND of
the predicates a, b, €, .., N 15 wWritten

(abe ... nji),
a notation which is valid for any number of arguments, Thas (3] always
is a true predicate, whilst a = (a;].
The combination OR of these same predicates would be written
(a; by el «oui i), :
which again holds for any nueber of arguments. () is a predicate which
is always false, and as before, (a;) = a,
The complemont of the predicate x is written
(x).
We accordinpgly always have x = {(x]].

A typical REC expression will begin with a series of operators,
followed by a predicate which will decide typical questions such as
whether the calculation is finished and be followed by ;, or whether to
repeat the whole procedure and be followed by :., When these conditions
fail, there will follew further calculation, expressed by a series of
operators, and yet another predicate, One executes as much of a string as

he can until he meets a delimiter, and es many strings as necossary to
meet a terminal condition. One practical caution which has te be

observed is that if several predicates occur in a string, and one has
reached the end of the string, the AND of all these predicates is true,

if ene arrives beyond a colen or semicolon, indicating the string has
failed, he only knows the AND has failed, but not which individual
predicate, This requires either a new test of some of the predicates, or
a more cautious rewriting of the ﬁEC expression. It is ome situation in
which one sometimes wishes there were a more direct control of the flow of
control in a REC expression; perhaps by means of labels and "GO TO's, "

To give some very simple examples of the application of REC, lot us
bear in mind the PDP-3 computer, which has a teletype coded for 64 ASLIT
characters in direct communication with the central processor, Let R
be the eperator which reads one such character, either from paper tape
or punched by hand on the keyboard, and W be the operator which sends mme
such character to the teletype, The characters are kept in a workspace
(the accumulator, say), and we may imagine 64 operators of the type “x
which place the character x in this workspace erasing the previous
contents, as well as 64 predicates =x which test the workspace for
equality tec the character x,

The REC expression

(Ro=l W' w
will doublespace everything which it reads, until the exclamation point
is encountered and it terminates operation,

Let us say that we wish to ignore all text which eccurs betweon
two stars, An appropriate expression will he

(R =l; =* (R ma*;:) :W1)
and again it will terminate when an exclamation point is encountered in the
printing text,

By including operators for the binary conversion of decimal input
and gutput, the arithmetie operatiens, and a test for negative numhars, one
could formulate REC expressions for arithmetic calculations, The domain of
applicability of REC depends upon its complement of cperators and prodicates;
however at present it is only the control structure which interests us,

Although we are describing a compiler of REC for the PDP-8, the
description i applicable to the majority of machines becsuse the compi lation

[

is made entirely in terms of subroutine calls, except for the part which
corresponds to REC's own flow of centrol, which is realized for the most

part by appropriate transfers,
In the PDP-8, a subroutine call is made by means of the instruction

JMS (Jump to Subroutine), Let us suppose we have the coding configuration

X, JMSY
LU

Y, 00
JHP T ¥

When the instruction JMS Y, located at address X, is executed, the address
¥+l is stored at Y, and transver is made to Y+1, When the subroutine is
terminated, this is done by the instruction JHP T ¥, an indirect transfer
to ¥ which is a transfer to X+1, so that the original program is resumed
in sequence.

Data of use to the subroutine Y may be located at addresses X+1,
X+#Z, and so on, and may be accessed indirectly through the address stored
at locatiem Y. By applying the instruction ISZ ¥, (Increment and skip on
zero) , this data may be gathered item by item, Moreover, the subroutine
¥ can serve as a predicate, since an ISZ preceding the return jurp can
cause a skip to X+2 rather than a return to X+1,

In this way, the predicate, sx, may be treated as a composite
predicate, formed from a general subroutine E7, which uses the character
X 85 a parameter in the calling sequence, =x would then compile into

JUS EQ
a
(return false)

{return true)
Clearly, this pattern accounts for predicates with multiple parameters,

including neone, the false return will contain = transfer, corresponding to
the spontaneous transition of the transition diagram which the REC expression
defines, while for the true return there will oceur further subroutine jumps
corresponding to subsequent operators,

With these preliminaries we may now turn to the CONVERT program
REC, an annotated listing of which we give below,

DEFINE ((

(REC (LAMBDA (L) (PRINTLIST (CONVERT
(QuoTE
o rav [(=0k= T W)
For the pampeaes of L prognar, thiee olasean of Tottars ame Sfstin E‘..r.ﬂ-‘t:...:
Cperatore (01Y, Predicates (I'R) and eorpound pradioates (CF), In caen
category ite members are llsted, and treated as PAV's by the CONVERT pregram,

PR PAV (=0R=)
;:F' PAV (=OR= EQ QU)
)
(QUOTE (
X [(xXX)

(PR ((IMS PR) (JMP FA)))
Fredicates are compiled as a subroutine call fellowed by a tramsfer to Fi.
FA is the heading eorresponding to the FALSE exit of the segment under
compilation, thie transfer {s skipped cver when the predicate ig true.

(op ((JMs OM))
Operators are compiled by a simple subroutine call,
(ce X ((IMS CP} (X) (JMP FA}))

Compound Predicates are compiled as Prediocates, but their paramcter is
ineluded ag part of the ealling aequence,
(=" ({IMP Or) FA))
The CONVERT program ie written in such a way that it does not distinguisgh
CoR of a ltat from a list. However, these have to be p]"ﬂt'.‘ﬂﬂﬂﬂd dify emn:ly
arnd are therefore distinguished by a double asterisk placed in fromt of
a fragmant which has aricen as CDOR of a list, Khen only the double
asteriek is lefi, the end of the list has been reached, the spontanecus
Eransition (JMP OF) ecorresponding to the faet that each parenthesized REC
expression i regarded as a predicate iz inserted, and the heading F4 s
placed, sineeé we have nat arrived at the first state cutside the parenthesis
to which all false exits in the last spegment muat procede.
{{** CO XXX} ((JMP HE) FA {*SKEL* FA EXPR =CMSY= (=REPT= (** XXX)1)1)
When, in examining a REC expresaion element by element, we arrive at a colom
(CTSS DOES NOT LET US WRITE ALL CHARACTERS, AN ITDIOSYNCRACY oF THE LISP INPUT
ROUTINE) , we write a spontanaous tranaition to the tnitial atate (JMP HE),
m?ta the falae exit point of all predicates in the previous segment, and define
a new false exit point for the ensuing segment, The analysis continues with the
remginder of the REC grpresaion, *% gerving as a atmal that we do not deal with
a new expression.,.
CO** SC XXX) ((JMP TR) FA [*SKEL* FA EXPR =CNSY= (=REPTs (** X%X171))
When a semioolon L2 enoowntered, a sapontanecus Eransitiom {a made to the TRUE
final atate (JMP TR}, the falae erit point of all predicates in the previous
segment ig noted, aud a new falae erxit point is established for the ensuing
arstgrrrarlt. The analyeis then procedes with the remainder of the expresaion,
((** X XXX) ((*REPT* X} (*REPT* (** XXX))))
If rlﬂthﬂr dalimiter 18 encountered, we corpile the CAR and then the CDR of the
expreaaion, Car's and COR'e are not treated wniformly because a new initial
state has to be established for each suberpression, but not for each COR.
((m==) (=SKEL= HE EXPR =GNSYs TR =EXPR: =GNSY= OF EXPR TA
(HE (*SKEL* FA EXPR =GNSY= (=REPT= (** *SAME*})) TH)))

¢ In compiling a pargnthesized expression, proviaion must be made for the
initial state, TRUE final state, and FALSE linal state, all of which are
definad ag CENSKM's. These labels must be Ineluded at appropriate peointa
in the compiled coda,
11}
111)

(PRINTLIST (LAMBOA (X) (PROG (Y) (SETQ Y X) (CLOCK ()) A (PRINT (CAR ¥))
(SETQ ¥ (COR Y)] (COND ((NULL Y) (RETURN (CLOCK T)})} (GO A))))

FPRINTLIST. i an auxtliary finotion which allews liating the compiled program
with one POP-8 instruction per line, rather them asz a eorpact list in the
usual momer that LISP would print a result.

)

As an example of the operation of REC we may consider the follewing
example. (REC L) is a functien whose argument is. the REC expression which
is to be compiled, n account of inherent limitations in the orthography
of the CTS5 LISP input routine, certain substitutions had to be made:

SC for ;, CO for :, (EQ X) for =X, (QU X) for "X,

rec ((r (eq =) co (eq :) SEWTrqwTrqwraqw)

(JMP GO3164)

GO3163 Initial Point

(JM5 R) B i
M5 EQ) =

(=) paramater

{JMP GO3165) false mq

(JMP GO3163) ' > .

GO3 165 false exit of last segment .

(JMS EQ) = .

(:) paramatear

(JMP GO3166) falee

}‘aiad exit of last segment

G035 166

{JMS W)

(IMS R} B

(JHS O] & i8 an arbitrary predioate

(JMP GO3167) falee exit -

(JMS W) W

(M5 R) R

(JM5 Q) &

(JMP GO3167) F

{JMS W) W

(JM5 R) R

(M5) q

(P GD3167) f

[JMS W) W

(I8P FA) exit from last gegment to FALSE final state
GO3167 continuation on higher level, extt of F'e in last segment
GO3164 TRUE final state, exit of all semicolong

5

{time of execution)

=10-

The prepras which is penerated is incerplete in the sonse that it

itself should be finished off as a subroutine, with a Plank entry point

bearing an appropriate label, and terminated with aporopriate 15Z's and

JUP I's,

For ease of reference we conclude with an unannotated listing of the

progran,

DEFINE ((

(REC (LAM3DA (L} (PRINTLIST (CONVERT

(QUOTE (
ap FAY
PR PAY
cr PAY
)

(QUOTE (
X (XXX)
N

L
(QUOTE (*0 (
(PR

(op

((cr x)
[{it]

((** CO XXx)
((** 5C XXX)
((X* X XXX)
((===)

1))
1)

(=0R= B W)
(=R= Q)
(=0R= EQ Q)

({45 PR) (JMP FA)))
((JMS OP}))

({5 CP) (X) (JMP FA)))
((MP 0F) FA))

((JMP HE) FA (*SKEL* FA EXPH =GNSYe (wREPT= (** XXX)))))
((MP TR) FA (*SKEL* FA EXPR =GNSY= (eREPTw (** XXX)))))
((*REPT* X) (*REPT* (** XXX))))

(=5KEL= HE EXPR =(NSYs TH EXPH sGNSYw
(HE (*SKEL* FA EXPR =GNSYw

OF EXPR FA
(=REPT= (** *5AME*))) TR)))

(PRINTLIST (LAMBDA (X) (PROG (Y) (SETQ Y X) (CLOCK ()) A (PRINT (CAR ¥))
(SETQ ¥ (CDR ¥)) (COND ((NULL ¥} (RETURN (CLOCK T)))) (GO A))))

)

RETFERENCES

REC:

Josaph E. Grimos and llarold V., McIntoesh, "SYMBOL MANIPULATION WITI! REC/S"
{unpublished) 1067,

Hareld V., McIntosh, "REGULAR DEXPRESSIONS," Lactures notes for Mathematical
Logie IT (1968) (unpublished) ESFM,

et TREGULAR EXPRESSION COMPILER, PROCRAM LISTING,™
{unpublished) (1%66),

amEa “VEMORANDUM: REC/A (ARITHMETICYVERSION OF REC) ™
(unpublished) (l966)

EEEE "MEMNPANDLM: REC/T (TAPE HANDLIMC VERSIOW OF PEC) ™
(unpublished) (1967).

I "MEMORANDUM: MODIFICATIONS TO REC/T," (unpublished) (1967).

Adolfo Guzman and Evodio Lopez, “PROGRAM LISTING FOR IBM=1130 REC,"
(unpublished) (1967).

CONVERT :

Adolfo Guzman and darold V, McIntosh, “CONVERT," Communications of the
Assoclation for Computing Machinery k] 604=615 [1966).,

Harold V. McIntosh and Adolfo Guzman, “A MISCELLANEY OF CONVERT PROGRAMMING,™
Project MAC Artificial Intelligence Group Memo 130 (April 1967).

