
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

and

CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING

DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES

A.I. Memo No. 1491 June 16, 1994
C.B.C.L. Paper No. 99

Neural Network Exploration Using
Optimal Experiment Design

David A. Cohn
cohn@psyche.mit.edu

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

We consider the question \How should one act when the only goal is to learn as much as possible?" Build-
ing on the theoretical results of Fedorov [1972] and MacKay [1992], we apply techniques from Optimal
Experiment Design (OED) to guide the query/action selection of a neural network learner. We demon-
strate that these techniques allow the learner to minimize its generalization error by exploring its domain
e�ciently and completely. We conclude that, while not a panacea, OED-based query/action has much to
o�er, especially in domains where its high computational costs can be tolerated.

Copyright c Massachusetts Institute of Technology, 1994

This report describes research done at the Center for Biological and Computational Learning and the Arti�cial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support for the Center is provided in part by a grant from the Na-
tional Science Foundation under contract ASC{9217041. The author was also funded by ATR Human Information Processing
Laboratories, Siemens Corporate Research and NSF grant CDA-9309300.

1 Introduction

In many natural learning problems, the learner has the
ability to act on its environment and gather data that
will resolve its uncertainties. Most machine learning re-
search, however, treats the learner as a passive recipient
of data and ignores the role of this \active" component
of learning. In this paper we employ techniques from
the �eld of Optimal Experiment Design (OED) to guide
the actions of a learner, selecting actions/queries that
are statistically expected to minimize its uncertainty and
error.

1.1 Active learning

Exploiting the active component of learning typically
leads to improved generalization, usually at the cost of
additional computation (see Figure 1) [Angluin, 1982;
Cohn et al., 1990; Hwang et al., 1991].1 There are two
common situations where this tradeo� is desirable: In
many situations the cost of taking an action outweighs
the cost of the computation required to incorporate new
information into the model. In these cases we wish to
select queries judiciously, so that we can build a good
model with the fewest data. This is the case if, for exam-
ple, we are drilling oil wells or taking seismic measure-
ments to locate buried waste. In other situations the
data, although cheap, must be chosen carefully to en-
sure thorough exploration. Large amounts of data may
be useless if they all come from an uninteresting part
of the domain. This is the case with learning control
of a robot arm: exploring by generating random motor
torques can not be expected to give good coverage of the
domain.

As computation becomes cheaper and faster, more
problems fall within the realm where it is both desirable
and practical to pursue active learning, expending more
computation to ensure that one's exploration provides
good data. The �eld of Optimal Experiment Design,
which is concerned with the statistics of gathering new
data, provides a principled way to guide this exploration.
This paper builds on the theoretical results of Fedorov
[1972] and MacKay [1992] to empirically demonstrate
how OED may be applied to neural network learning,
and to determine under what circumstances it is an ef-
fective approach.

The remainder of this section provides a formal prob-
lem de�nition, followed by a brief review of related work
using optimal experiment design. Section 2 di�erentiates
several classes of active learning problems for which OED
is appropriate. Section 3 describes the theory behind
optimal experiment design, and Section 4 demonstrates
its application to the problems described in Section 2.
Section 5 considers the computational costs of these ex-
periments, and Section 6 concludes with a discussion of
the results and implications for future work.

1In some cases active selection of training data can
sharply reduce worst case computational complexity from
NP-complete to polynomial time [Baum and Lang, 1991], and
in special cases to linear time.

Learning
algorithm

novel
input

Training set

Final network

network weights

predicted
output

Passive learning

Learning
algorithm

new output

novel
input

Training set

Final network

network weights

predicted
output

Active learning

Environment

new input to try

Figure 1: An active system will typically evaluate/train
on its data iteratively, determining its next input based
on the previous training examples. This iterative train-
ing may be computationally expensive, especially for
learning systems like neural networks where good incre-
mental algorithms are not available.

1.2 Problem de�nition

We consider the problem of learning an input-output
mapping X ! Y from a set of m training examples
f(xi; yi)g

m
i=1, where xi 2 X, yi 2 Y .

We denote the parameterized learner fw(), where
y = fw(x) is the learner's output given input x and
parameter vector w. The learner is trained by adjust-
ing w to minimize the residual S2 = 1

2m

Pm

i=1(fw(xi) �

yi)
T (fw(xi) � yi) on the training set. Let ŵ be the

weight vector that minimizes S2. Then ŷ = fŵ(x) is
the learner's \best guess" of the mappingX ! Y : given
x, ŷ is an estimate of the corresponding y.

At each time step, the learner is allowed to select a

new training input ~x from a set of candidate inputs ~X.
The selection of ~x may be viewed as a \query" (as to an
oracle), as an \experiment," or simply as an \action."
Having selected ~x, the learner is given the correspond-
ing ~y, and the resulting new example (~x; ~y) is added to
the training set. The learner incorporates the new data,
selects another new ~x and the process is repeated.

The goal is to choose examples that minimize the ex-
pectation of the learner's mean squared error EMSE =

(fw(x) � y)T (fw(x)� y)

�
X
, where h�iX represents the

expected value over X. In contrast to some other learn-
1

ing paradigms [Valiant, 1984; Blumer et al., 1986], we
will assume that the input distribution PX is known.2

Below, we present several example problems:
Example 1: mapping buried waste. Consider a

mobile sensor array traversing a landscape to map out
subsurface electromagnetic anomalies. Its location at
time t serves as input xt, and the instrument reading
at that location is output yt. At the next time step, it
can choose its new input ~x from any location contiguous
to its present position.
Example 2: robot arm dynamics. Consider learn-

ing the dynamics of a robot arm. The input is the

state-action triplet xt = f�t; _�t; �tg, where �t and _�t

are the arm's joint angles and velocities, respectively,
and �t is the torque applied at time t. The output

yt = f�t+1; _�t+1g is the resulting state. Note that here,
although we may specify an arbitrary torque �t, the rest

of the input, f�t; _�tg is determined by yt�1.

We emphasize that while the above problem de�ni-
tion has wide-ranging application, it is by no means all-
encompassing. For some learning problems, we are not
interested in the entire mapping X ! Y , but in �nding
the x that maximizes y. In this case, we may rely on
the broad literature of optimization and response sur-
face techniques [Box and Draper, 1969]. In other learn-
ing problems there may be additional constraints that
must be considered, such as the need to avoid \failure"
states. If the learner is required to perform as it learns
(e.g. in a control task), we may also need to balance ex-
ploration and exploitation. Such constraints and costs
may be incorporated into the data selection criterion as
additional costs, but these issues are beyond the scope
of this paper. In this paper we assume that the cost of
the query ~x is independent of ~x, and that the sole aim
of active learning is to minimize EMSE .

1.3 Related work with optimal experiment
design

The literature on optimal experiment design is immense
and dates back at least 50 years. We will just mention
here a few closely related theoretical results and empiri-
cal studies; the interested reader should consult Atkinson
and Donev [1992] for a survey of results and applications
using optimal experiment design.

A canonical description of the theory of OED is given
in Fedorov [1972]. MacKay [1992] showed that OED
could be incorporated into a Bayesian framework for
neural network data selection and described several in-
teresting optimization criteria. Sollich [1994] considers
the theoretical generalization performance of linear net-
works given greedy vs. globally optimal queries and vary-
ing assumptions on teacher distributions.

Empirically, optimal experiment design techniques
have been successful when used for system identi�ca-
tion tasks. In these cases a good parameterized model
of the system is available, and learning involves �nding

2Both assumptions are reasonable in di�erent situations;
if we are attempting to learn to control a robot arm, for
example, it is appropriate to assume that we know over what
range we wish to control it.

the proper parameters. Armstrong [1989] used a form
of OED to identify link masses and inertial moments
of a robot arm, and found that automatically gener-
ated training trajectories provided a signi�cant improve-
ment over human-designed trajectories. Subrahmonia et
al. [1992] successfully used experiment design to guide
exploration of a sensor moving along the surface of an
object parameterized as an unknown quadric.

Empirical work on using OED with neural networks is
sparse. Plutowski and White [1993] successfully used it
to �lter an already-labeled data set for maximally infor-
mative points. Choueiki [1994] has successfully trained
neural networks on quadratic surfaces with data drawn
according to the D-optimality criterion, which is dis-
cussed in the appendix.

2 Learning with static and dynamic

constraints

As seen in Section 1.2, di�erent problems impose dif-
ferent constraints on the speci�cation of ~x. These con-
straints may be classi�ed as being either static or dy-
namic, and problems with dynamic constraints may be
further divided according to whether or not the dynam-
ics of the constraints are known a priori. The remainder
of this section elaborates on these distinctions. Exam-
ples, with experimental results for each category, will be
given in Section 4.

2.1 Active learning with static constraints

When a learner has static input constraints, its range
of choices for ~x is �xed, regardless of previous actions.
Examples of problems with static constraints include set-
ting mixtures of ingredients for an industrial process or
selecting places to take seismic or electromagnetic mea-
surements to locate buried waste.

The bulk of research on active learning per se has
concentrated on learning with static constraints. In
this setting, active learning algorithms are compared
against algorithms learning from randomly chosen ex-
amples. In general, the number of randomly chosen ex-
amples needed to achieve an expected error of no more
than � scales as O(1

�
log 1

�
) [Blumer et al., 1989; Baum

and Haussler 1989; Cohn and Tesauro, 1992; Haussler,
1992]. In some situations, active selection of training ex-
amples can reduce the sample complexity to O(log 1

�
),3

although worst case bounds for unconstrained querying
are no better than those for choosing at random [Eisen-
burg and Rivest, 1990]. Average case analysis indicates
that on many domains the expected performance of ac-
tive selection of training examples is signi�cantly bet-
ter than that of random sampling [Freund and Seung,
1993]; these results have also been supported by empiri-
cal studies [Cohn et al., 1990; Hwang et al., 1991; Baum
and Lang, 1991].

A limitation of the active learning algorithms men-
tioned above is that they are only applicable to speci�c
active learning problems: the algorithms of Cohn et al.,
and Hwang et al. are limited to classi�cation problems,
and Baum and Lang's algorithm is further limited to a

3Consider cases where binary search is applicable.
2

speci�c network architecture (single hidden layer with
sigmoidal units). The OED-based approach discussed
in this paper is applicable to any network architecture
whose output is di�erentiable with respect to its param-
eters, and may be used on both regression and classi�-
cation problems.

x1

x2

x3

x4 x5

x6

x7

x8

x9

Querying with
static constraints

Querying with
dynamic constraints

x1

x2

x3

x4 x5

x6

x7

x8 x9

x10

x11

x12

Figure 2: In problems with dynamic constraints, the set
of candidate ~x can change after each query. The ~xt+1
accessible to the learner on the bottom depends on the
choice made for ~xt.

2.2 Active learning with dynamic constraints

In many learners, the constraints on ~x are dynamic, and
change over time. Inputs that are available to us on
one time step may no longer be available on the next.
Typically, these constraints represent some state of the
system that is altered by the learner's actions. Training
examples then describe a trajectory through state space.

In some such problems the dynamics of the constraints
are known, and we may predict a priori what constraints
we will face at time t, given an initial state and actions
x1; x2; : : : ; xt. Consider Example 1, using a mobile sen-
sor array to locate buried waste. We can pre-plan the
course the vehicle will take, but its successive measure-
ments are constrained to lie in the neighborhood of pre-
vious ones. Alternatively, consider learning the forward
kinematics of an arm: we specify joint angles � in an

attempt to predict the arm's tip coordinates C. Barring
any unknown obstacles, we can move from our current
position �t to a neighboring �t+1, but can not select an
arbitrary �t+1 for the next time step.

A more common, and more di�cult problem is learn-
ing when the dynamics of the constraints are not known,
and must be accommodated online. Learning the dy-

namics of a robot arm f�t; _�t; �tg ! f�t+1; _�t+1g is
an example of this type of problem. At each time step

t , the model input ~x is a state-action pair f�t; _�t; �tg,

where �t and _�t are constrained to be the learner's cur-
rent state. Until the action is selected and taken, the
learner does not know what its new state, and thus its
new constraints will be (this is in fact exactly what it is
attempting to learn).

In most forms of constrained learning problems, ran-
dom exploration is a poor strategy. Taking random ac-
tions leads to a form of \drunkard's walk" over X, which
can require an unacceptably large number of examples
to give good coverage [Whitehead, 1991].

In cases where the dynamics of the constraints are
known a priori, we can plan a trajectory that will uni-
formly cover X in some prespeci�ed number of steps. In
general, though, we will have to resort to some online
process to decide \what to try next." Some success-
ful heuristic exploration strategies include trying to visit
unvisited states [Schaal and Atkeson, 1994], trying to
visit places where we perform poorly [Linden and We-
ber, 1993], taking actions that improved our performance
in similar situations [Schmidhuber and Storck, 1993], or
maintaining a heuristic \con�dence map" [Thrun and
M�oller, 1992]. Some researchers, in cases where the ex-
ploration is considered a secondary problem, provide the
learner with a uniformly distributed training set, in ef-
fect assuming the problem allows unconstrained query-
ing (e.g. Mel [1992]).

An important limitation of the above work with dy-
namic constraints is that, for the most part, the methods
are restricted to discrete state spaces. Continuous state
and action spaces must be accommodated either through
arbitrary discretization or through some form of on-line
partitioning strategy, such as Moore's Parti-Game al-
gorithm [Moore, 1994]. The OED-based approach dis-
cussed in this paper is, by nature, applicable to domains
with both continuous state and action spaces.

3 Data selection according to OED

In this section, we review the theory of optimal exper-
iment design applied to neural network learning. As
stated in the introduction, our primary goal is to mini-
mize EMSE . An alternative goal of system identi�cation
is discussed briey in the appendix, and other interesting
goals, such as eigenvalue maximization and entropy min-
imization, may be found in Fedorov [1972] and MacKay
[1992].

Error minimization is pursued in the OED framework
by selecting data to minimize model uncertainty. Uncer-
tainty in this case is manifested as the learner's estimated
output variance �2ŷ. The justi�cation for selecting data

to minimize variance comes from the nature of MSE.
3

De�ning yjx = hŷjxiY , mean squared error may be de-
coupled into variance and bias terms.

EMSE =

(ŷjx� yjx)2

�
X

=

(ŷjx� yjx)2

�
X
+

(yjx� yjx)2

�
X

= �2ŷ +

(yjx� yjx)2

�
X
:

Given an unbiased estimator, or an estimator for which
either the bias is small or independent of the training
set, error minimization amounts to minimizing the vari-
ance of the estimator. For the rest of our computations
we will neglect the bias term, and select data solely to
minimize the estimated variance of our learner.4 An in-
depth discussion of bias/variance tradeo� may be found
in Geman et al. [1992].

3.1 Estimating variance

Estimates for �2ŷ may be obtained by adopting tech-

niques derived for linear systems. We write the network's
output sensitivity as g(x) = @ŷjx=@w = @fŵ(x)=@w, and
de�ne the Fisher Information Matrix to be

A =
1

S2
@2S2

@w2

=
1

S2

mX
i=1

"
@ŷjxi

@w

@ŷjxi

@w

T

+ (ŷjxi � yi)
@2ŷjxi

@w2

#

�
1

S2

mX
i=1

g(xi)g(xi)
T : (1)

The approximation in Equation 1 holds when the net-
work �ts the data well or the error surface has relatively
constant curvature in the vicinity of ŵ. We may then
write the parameter covariance matrix as �2ŵ = A�1 and
the output variance at reference input xr as

�2ŷjxr � g(xr)
TA�1g(xr) (2)

subject to the same approximations (see Thisted [1988]
for derivations).5 Note that the estimate �2ŷjxr applies

only to the variance at a particular reference point. Our
interest is in estimating �2ŷ, the average variance over all

of X. We do not have a method for directly integrating
over X, and instead opt for a stochastic estimate based
on an average of �2ŷjxr , with xr drawn according to PX .

Writing the �rst and second moments of g as g = hg(x)iX
and ggT =

g(x)g(x)T

�
X
, this estimate can be computed

e�ciently as

�2ŷ
�
X

= gTA�1g + tr(A�1ggT); (3)

where tr() is the matrix trace. Instead of recomput-

ing Equation 2 for each reference point, g and ggT may
be computed over the reference points, and Equation 3
evaluated once.

4The bias term will in fact reappear as a limiting factor
in the experimental results described in Section 4.2.

5If the inverse A�1 does not exist, then the parameter
covariances are not well-de�ned. In practice, one could use
the pseudo-inverse, but the need to this arose very rarely in
our experiments, even with small training sets.

3.2 Quantifying change in variance

When an input ~x is queried, we obtain the resulting out-
put ~y. When the new example (~x; ~y) is added to the
training set, the variance of the model will change. We
wish to select ~x optimally, such that the resulting vari-
ance, denoted ~�2ŷ, is minimized.

The network provides a (possibly inaccurate) estimate
of the distribution P(~yj~x), embodied in an estimate of
the mean (ŷj~x) and variance (S2). Given in�nite com-
putational power then, we could use these estimates to
stochastically approximate ~�2ŷjx by drawing examples ac-

cording to our estimate of P(~yj~x), training on them, and
averaging the new variances. In practice though, we
must settle for a coarser approximation. Note that the
approximation in Equation 1 is independent of the actual
yi values of the training set; the dependence is implicit in
the choice of ŵ that minimizes S2. If P(~yj~x) conforms
to our expectations, ŵ and g() will remain essentially
unchanged, allowing us to compute the new information

matrix ~A as

~A � A +
1

S2
g(~x)g(~x)T : (4)

From the new information matrix, we may compute the
new parameter variances, and from there, the new out-
put variances. By the matrix inversion lemma

~A�1 =

�
A+

1

S2
g(~x)g(~x)T

�
�1

= A�1
�

A�1g(~x)g(~x)TA�1

S2 + g(~x)TA�1g(~x)
: (5)

The utility of querying at ~xmay be expressed in terms
of the expected change in the estimated output variance
�2ŷ. The expected new output variance at reference point
xr isD
~�2ŷjxr

E
~Y

= g(xr)
T ~A�1g(xr)

= g(xr)
T

�
A�1

�
A�1g(~x)g(~x)TA�1

S2 + g(~x)TA�1g(~x)

�
g(xr)

= g(xr)
TA�1g(xr) �

�
g(xr)

TA�1g(~x)
�2

S2 + g(~x)TA�1g(~x)

= �2ŷjxr �
�2ŷjxr~x

S2 + �2
ŷj~x

;

where �ŷjxr~x is de�ned as g(xr)
TA�1g(~x). Thus, when

~x is queried, the expected change in output variance at
xr is D

��2ŷjxr

E
~Y
j~x =

�2ŷjxr~x

S2 + �2
ŷj~x

; (6)

We compute
D
��2ŷ

E
j~x as a stochastic approximation

from
D
��2ŷjxr

E
j~x for xr drawn from PX . Reusing the

estimate ggT from the previous section, we can write
the expectation of Equation 6 over X as

��2ŷj~x

�
X;~Y

=
g(~x)TA�1ggTA�1g(~x)

S2 + g(~x)TA�1g(~x)
: (7)

4

3.3 Selecting an optimal ~x

Given Equation 7, the problem remains of how to select
an ~x that maximizes it. One approach to selecting a next
input is to use selective sampling: evaluate a number of
possible random ~x, then choose the one with the highest
expected gain. This is e�cient so long as the dimension
of the action space is small. For high-dimensional prob-
lems, we may use gradient ascent to e�ciently �nd good
~x. Di�erentiating Equation 7 with respect to ~x gives a
gradient

r~x

��2ŷ

�
X; ~Y

=
2g(~x)TA�1ggTA�1

(S2 + g(~x)TA�1g(~x))2
@g(~x)

@~x
: (8)

We can \hillclimb" on this gradient to �nd a ~x with a
locally optimal expected change in average output vari-
ance.

It is worth noting that both of these approaches are
applicable in continuous domains, and therefore well-
suited to problems with continuous action spaces. Fur-
thermore, the gradient approach is e�ectively immune
to the overabundance of candidate actions in high-
dimensional action spaces.

3.4 A caveat: greedy optimality

We have described a criterion for one-step, or greedy op-
timization. That is, each action/query is chosen to max-
imize the change in variance on the next step, without
regard to how future queries will be chosen. The glob-
ally optimal, but computationally expensive approach
would involve optimizing over an entire trajectory of m
actions/queries. Trajectory optimization entails starting
with an initial trajectory, computing the expected gain
over it, and iteratively relaxing points on the trajectory
towards optimal expected gains (subject to other points
along the trajectory being explored). After the iteration
has settled, the �rst point in the trajectory is queried,
and the relaxation is repeated on the remaining part of
the trajectory. Experiments using this form of optimiza-
tion did not demonstrate measurable improvement, in
the average case, over the greedy method, so it appears
that trajectory optimization may not be worth the ad-
ditional computational expense, except in extreme situ-
ations (see Sollich [1994] for a theoretical comparison of
greedy and globally-optimal querying).

4 Experimental Results

In this section, we describe two sets of experiments us-
ing optimal experiment design for error minimization.
The �rst attempts to con�rm that the gains predicted
by optimal experiment design may actually be realized in
practice, and the second applies OED to learning tasks
with static and dynamic constraints. All experiments
described in this section were run using feedforward net-
works with a single hidden layer of 20 units. Hidden and
output units used the 0-1 sigmoid as a nonlinearity. All
runs were performed on the Xerion simulator [van Camp
et al., 1993] using the default weight update rule (\Rudi's
Conjugate Gradient" with \Ray's Line Search") with no
weight decay term.

4.1 Expected versus actual gain

It must be emphasized that the gains predicted by OED
are expected gains. These expectations are based on the
series of approximations detailed in the previous sec-
tion, which may compromise the realization of any actual
gain. In order for the expected gains to materialize, two
\bridges" must be crossed. First, the expected decrease
in model variance must be realized as an actual decrease
in variance. Second, the actual decrease in model vari-
ance must translate into an actual decrease in model
MSE.

expected delta var

0 0.002 0.004 0.006 0.008 0.01 0.012

actual
delta

var

0

0.002

0.004

0.006

0.008

0.01

0.012

actual=expected

actual delta var

0 0.002 0.004 0.006 0.008 0.01 0.012

delta
mse

x 10^-4

-0.4

0

0.4

0.8

1.2

1.6

2

2.4

2.8

Figure 3: (top) Correlations between expected change
in output variance and actual change output variance.
(bottom) Correlations between actual change in output
variance and change in mean squared error. Correlations
are plotted for a network with a single hidden layer of 20
units trained on 50 examples from the arm kinematics
task.

5

4.1.1 Expected decreases in variance ! actual

decreases in variance

The translation from expected to actual changes in
variance requires coordination between the exploration
strategy and the learning algorithm: to predict how the
variance of a weight will change with a new piece of data,
the predictor must know how the weight itself (and its
neighboring weights) will change. Using a black box rou-
tine like backpropagation to update the weights virtually
guarantees that there will be some mismatch between
expected and actual decreases in variance. Experiments
indicate that, in spite of this, the correlation between
predicted and actual changes in variance are relatively
good (Figure 3a).

4.1.2 Decreases in variance ! decreases in

MSE

A more troubling translation is the one from model
variance to model correctness. Given the highly nonlin-
ear nature of a neural network, local minima may leave
us in situations where the model is very con�dent but
entirely wrong. Due to high con�dence, the learner may
reject actions that would reduce its mean squared error
and explore areas where the model is correct, but has low
con�dence. Evidence of this behavior is seen in the lower
right corner of Figure 3b, where some actions which pro-
duce a large decrease in variance have little e�ect on
EMSE. This behavior appear to be a manifestation of
the bias term discussed in Section 3; these queries reduce
variance while increasing the learner's bias, with no net
decrease in error. While this demonstrates a weak point
in the OED approach (which will be further illustrated
below), we �nd in the remainder of this section that its
e�ect is negligible for many classes of problems.

4.2 Querying with static constraints

Here we consider a simple learning problems with static
constraints: learning the forward kinematics of a planar
arm from examples. The input X = f�1;�2g speci-
�ed the arm's joint angles, and the learner attempted
to learn a map from these to the Cartesian coordinates
Y = fC1; C2g of the arm's tip. The \shoulder" and \el-
bow" joints were constrained to the 0�360o and 0�180o

respectively; on each time step the learner was allowed
to specify an arbitrary ~x 2 X within those limits.

For the greedy OED learner, ~x was chosen by begin-
ning at a random point in X and hillclimbing the gradi-
ent of Equation 6 to a local maximum before querying.
This strategy was compared with simply choosing ~x at
random, and choosing ~x according to a uniform grid over
X.6

We compared the variance and MSE of the OED-
based learner with that of the random and grid learn-
ers. The average variance of the OED-based learner was
almost identical to that of the grid learner and slightly
better than that of the random learner (Figure 4b). In

6Note the uniform grid strategy is not viable for incre-
mentally drawn training sets { the size of the grid must be
�xed before any examples are drawn. In these experiments,
entirely new training sets of the appropriate size were drawn
for each new grid.

terms of MSE however, the greedy OED learner did not
fare as well. Its error was initially comparable to that of
the grid strategy, but attened out at an error approx-
imately twice that of the asymptotic limit (Figure 4b).
This attening appears to be a result of bias. As dis-
cussed in Section 3, the network's error is composed of a
variance term and a bias term, and the OED-based ap-
proach, while minimizing variance, appears (in this case)
to leave a signi�cant amount of bias.

Number of examples

0 10 20 30 40 50 60 70 80 90 100

Output

variance

0.100

1.000

10.000

100.000

Random
OED
Grid

Number of examples

0 10 20 30 40 50 60 70 80 90 100

MSE

0.001

0.003

0.010

0.030

0.100

Random
OED
Grid

Figure 4: Querying with static constraints to learn the
kinematics of a planar two-joint arm. (top) Variance
using OED-based actions is better than that using ran-
dom queries, and matches the variance of a uniform
grid. (bottom) MSE using OED-based actions is ini-
tially very good, but breaks down at larger training set
sizes. Curves are averages over six runs apiece for OED
and grid learners, and 12 runs for the random learner.

6

4.3 Querying with dynamic constraints

For learning with dynamic constraints, we again used the
planar arm problem, but this time with a more realistic
restriction on new inputs. For the �rst series of experi-
ments, the learner learned the kinematics by incremen-
tally adjusting �1 and �2 from their values on the pre-
vious query. The limits of allowable movement on each
step corresponded to constraints with known dynamics.
The second set of experiments involved learning the dy-
namics of the same arm based on torque commands. The
unknown next state of the arm corresponded to con-
straints with unknown dynamics.

4.3.1 Constraints with known dynamics

To learn the arm kinematics, the learner hillclimbed
to �nd the �1 and �2 within its limits of movement that
would maximize the stochastic approximation of �var.
On each time step �1 and �2 were limited to change by
no more than �36o and �18o respectively.

We compared variance and MSE of the OED-based
learner with that of an identical learner which explored
randomly by \ailing," and with a learner trained on a
series of hand-tuned trajectories.

The greedy OED-based learner found exploration tra-
jectories that, intuitively, appear to give good global cov-
erage of the domain (see Figure 5). In terms of perfor-
mance, the average variance over the OED-based trajec-
tories was almost as good as that of the best hand-tuned
trajectory, and both were far better than that of the
random exploration trajectories. In terms of MSE, the
average error over OED-based trajectories was almost
as good as that of the best hand-tuned trajectory, and
again, both were far better than the random exploration
trajectories (Figure 6). Note that in this case, bias does
not seem to play a signi�cant role. We discuss the per-
formance and computational complexity of this task in
greater detail in Section 5.

Figure 5: Querying with dynamic constraints: learning
2D arm kinematics. Example of OED-based learner's
trajectory through angle-space.

4.3.2 Constraints with unknown dynamics

For this set of experiments, we once again used
the planar two-jointed arm, but now attempted to

Number of examples

0 10 20 30 40 50 60 70 80 90 100

Output

variance

0.100

0.300

1.000

3.000

10.000
Random
OED
Hand-tuned

Number of examples

0 10 20 30 40 50 60 70 80 90 100

MSE

0.001

0.003

0.010

0.030

0.100

0.300

Random
OED
Hand-tuned

Figure 6: Querying with dynamic constraints: learning
2D arm kinematics. (top) Variance using greedy OED
actions is better than that using random exploration,
and matches the variance of the best hand-tuned tra-
jectory. (bottom) MSE using greedy OED-based explo-
ration is much better than that of random exploration
and almost as good as that of the best hand-tuned tra-
jectory. Curves are averages over 5 runs apiece for OED-
based and random exploration.

learn the arm dynamics. The learner's input X =

f�1;�2; _�1; _�2; �1; �2g speci�ed the joint positions, ve-
locities and torques. Based on these, the learner
attempted to learn the arm's next state Y =

f�0

1;�
0

2;
_�0

1;
_�0

2g. As with the kinematics experiment,
we compared random exploration with the greedy OED
strategy described in the previous section. Without
knowing the dynamics of the input constraints, however,
we do not have the ability to specify a preset trajectory.

The performance of the learner whose exploration was
guided by OED was asymptotically much better than
that of the learner following a random search strategy
(Figure 7). It is instructive to notice, however, that this
improvement is not immediate, but appears only after
the learner has taken a number of steps.7 Intuitively,

7This behavior is visible in the other problem domains as
7

Number of training examples

0 100 200 300 400 500 600 700 800 900 1000

MSE

0.010

0.030

0.100

0.300

Random
OED

Figure 7: MSE of forward dynamic model for two-joint
planar arm.

this may be explainable by the assumptions made in the
OED formalism: the network uses its estimate of vari-
ance of the current model to determine what data will
minimize the variance. Until there is enough data for the
model to become reasonably accurate, the estimates will
be correspondingly inaccurate, and the search for \opti-
mal" data will be misled. It would be useful to have a
way of determining at what point the learner's estimates
become reliable, so that one could explore randomly at
�rst, then switch to OED-guided exploration when the
learner's model is accurate enough to take advantage of
it.

5 Computational costs and

approximations

The major concern with applying the OED techniques
described in this paper is computational cost. In this sec-
tion we consider the computational complexity of select-
ing actions via OED techniques, and consider several ap-
proximations aimed at reducing the computational costs.
These costs are summarized in Table 1, with the time
constants observed for runs performed on a Sparc 10.

We divide the learning process in three steps: train-
ing, variance estimation, and data selection. We show
that, for the case examined, in spite of increased com-
plexity, the improvement in performance more than war-
rants the use of OED for data selection.

Cost of training: Two training regimens were tested
for the OED-guided learners: batch training reinitial-
ized after each new example was added, and incremen-
tal training, reusing the previous network's weights af-
ter each new example. While the batch-trained learners'
performance was slightly better, their total training time
was signi�cantly longer than their incrementally trained
counterparts (Figure 8).

well, but is not as pronounced.

operation constant order

Batch train 0:029 mn
Incremental train 0:093 n

Compute exact A 3x10�7 mn3

Compute approx. A 7:2x10�6 mn2

Invert to get A�1 3:2x10�7 n3

Compute var(xr) 5:0x10�6 n2

Compute E[�var(X)jx] 5:4x10�6 rn2

Compute gradient 1:9x10�5 rn2

Table 1: Typical compute times, in seconds, for opera-
tions involved in selecting new data and training. Num-
ber of weights in network = n, number of training ex-
amples = m, and number of reference points (at which
variance or gradient is measures) = r. Time constants
are for runs performed on a Sparc 10 using the Xerion
simulator.

Cost of variance estimation: (Equation 3) Vari-
ance estimation requires computing and inverting the
Hessian. The inverse Hessian may then be used for an
arbitrary number of variance estimates and must only be
recomputed when the network weights are updated. The
approximate Hessian of Equation 1 may be computed in
time O(mn2), but the major cost remains the inversion.
We have experimented with diagonal and block diago-
nal Hessians, which may be inverted quickly, but with-
out the o�-diagonal terms, the learner failed to generate
reasonable training sets. Recent work by Pearlmutter
[1994] o�ers a way to bring the cost of computing the
�rst term of Equation 3, but computing the second term
remains an O(n3) operation.
Cost of data selection: (Equations 6, 7 and 8)

Computing Equation 6 is an O(n2) operation, which
must be performed on each of r reference points, and
must be repeated for each candidate ~x. Alternatively,
the \moment-based" selection (Equation 7) and gradi-
ent methods (Equation8) both require an O(n3) matrix
multiplication which must be done once, after which any
number of iterations may be performed with new ~x in
time O(n2). Using Perlmutter's approach to directly
approximate A�1g(~x) would allow an approximation of
Equation 7 to be computed in O(n2) times an \accu-
racy" constant. We have not yet determined what e�ect
this time/accuracy tradeo� has on network performance.

The payo�: cost vs. performance. Obviously, the
OED-based approach requires signi�cantly more compu-
tation time than does learning from random examples.
The payo� comes when relative performance is consid-
ered. We turn again to the kinematics problem discussed
in Section 4.3.1. The approximate total time involved in
training a learner on 100 random training examples from
this problem (as computed from Table 1) is 170 seconds.
For \full-blown" OED, using incremental training, the
total time is 790 seconds. As shown in Figure 8, ex-
ploring randomly causes our MSE to decrease roughly
as an inverse polynomial, while the various OED strate-
gies decrease MSE roughly exponentially in the number
of examples. To achieve the MSE reached by training on

8

Number of training examples

0 10 20 30 40 50 60 70 80 90 100

MSE

0.001

0.003

0.010

0.030

0.100

0.300

Random
Incremental OED
Complete OED

 exp(-0.055m -1.286)

 exp(-0.052m -0.981)

 1/(7.32e-02m + 4.02)

Figure 8: Learning curves for the kinematics problem
from Section 4.2. Best �t functional forms are plotted
for random exploration, incrementally-trained OED and
OED completely retrained on new data set.

OED-selected data, we would need to train on approx-
imately 3380 randomly selected data examples. This
would take approximately 7500 seconds, over two hours!
With this much data, the training time alone is greater
than the total OED costs, so regardless of data costs,
selecting data via OED is the preferable approach.

With the kinematics example there is the option of
hand-tuning a learning trajectory, which requires no
more data than the OED approach, and can nominally
be learned in less time. This, however, required hours of
human intervention to repeatedly re-run the simulations
trying di�erent preset exploration trajectories. In the
dynamics example and in other cases where the state
transitions are unknown, preset exploration strategies
are not an option; we must rely on an algorithm for
deciding our next action, and the OED-based strategy
appears to be a viable, statistically well-founded choice.

6 Conclusions and Future Work

The experiments described in this paper indicate that,
for some tasks, optimal experiment design is a promis-
ing tool for guiding active learning in neural networks.
It requires no arbitrary discretization of state or action
spaces, and is amenable to gradient search techniques.
The appropriateness of OED for exploration hinges on
the two issues described in the previous two sections: the
nature of the input constraints and the computational
load one is able to bear.

For learning problems with static constraints, the ad-
vantage of applying OED, or any form of intelligent ac-
tive learning appears to be problem dependent. Random
exploration appears to be reasonably good at decreasing
variance, and as seen in Section 4.2, appears to decrease
bias as well. For a problem where learner bias is likely to
be a major factor, the advantages of the OED approach
are unclear.

The real advantage of the OED-based approach ap-
pears to lie in problems where the input constraints are
dynamic, and where random actions fail to provide good

exploration. Compared with arbitrary heuristics, the
OED-based approach has the arguable advantage of be-
ing the \right thing to do," in spite of its computational
costs.

The cost, however, is a major drawback. A decision
time on the order of 1-10 seconds may be su�cient for
many applications, but is much too long to guide real-
time exploration of dynamical systems such as robotic
arms. The operations required for hessian computa-
tion and data selection may be e�ciently parallelized;
the remaining computational expense lies in retraining
the network to incorporate each new example. The re-
training cost, which is common to all on-line neural
exploration algorithms, may be amortized by selecting
queries/actions in small batches rather than purely se-
quentially. This \semi-batched" approach is a promising
direction for future work.

Another promising direction, which o�ers hope of
even greater speedups than the semi-batch approach, is
switching to an alternative, entirely non-neural learner
with which to pursue exploration.

6.1 Improving performance with alternative

learners

We may be able to bring down computational costs and
improve performance by using a di�erent architecture
for the learner. With a standard feedforward neural
network, not only is the repeated computation of vari-
ances expensive, it sometimes fails to yield estimates
suitable for use as con�dence intervals (as we saw in
Section 4.1.2). A solution to both of these problems
may lie in selection of a more amenable architecture and
learning algorithm. Two such architectures, in which
output variances have a direct role in estimation, are
mixtures of Gaussians [McLachlan and Basford, 1988;
Nowlan, 1991; Ghahramani and Jordan, 1994] and lo-
cally weighted regression [Cleveland et al., 1988; Schaal
and Atkeson, 1994]. Both have excellent statistical mod-
eling properties, and are computationallymore tractable
than feedforward neural networks. We are currently pur-
suing the application of optimal experiment design tech-
niques to these models and have observed encouraging
preliminary results [Cohn et al., 1994].

6.2 Active elimination of bias

Regardless of which learning architecture is used, the
results in Section 4.2 make it clear that minimizing vari-
ance alone is not enough. For large, data-poor problems,
variance will likely be the major source of error, but as
variance is removed (via the techniques described in this
paper), the bias will constitute a larger and larger por-
tion of the remaining error.

Bias is not as easily estimated as variance; it is usu-
ally estimated by expensive cross validation, or by run-
ning ensembles of learners in parallel (see, e.g. Geman
et al. [1992] and Connor [1993]). Future work will need
to include methods for e�ciently estimating learner bias
and taking steps to ensure that it too is minimized in an
optimal manner.

9

Acknowledgements

I am indebted to Michael I. Jordan and David J.C.
MacKay for their help in making this research possible.
Thanks are also due to the University of Toronto and the
Xerion group for use of and assistance with the Xerion
simulator, and to Cesare Alippi for useful comments on
an earlier draft of this paper.

References

D. Angluin. (1982) A note on the number of queries
needed to identify regular languages. Inform. Control,
51:76{87.

B. Armstrong. (1989) On �nding exciting trajecto-
ries for identi�cation experiments. Int. J. of Robotics

Research, 8(6):28{48.

A. Atkinson and Donev. (1992) Optimum experi-
mental designs, Clarendon Press, New York.

J. Connor. (1993) Bootstrap methods in neural net-
work time series prediction. In J. Alspector et al.,
eds., Proceedings of the International Workshop on Ap-
plication of Neural Networks to Telecommunications,
Lawrence Erlbaum, Hillsdale, NJ.

J. Craig. (1989) Introduction to robotics, Addison-
Wesley, New York.

E. Baum and D. Haussler. (1989)What size net gives
valid generalization? In D. Touretzky, ed., Advances in
Neural Information Processing Systems 1, Morgan Kauf-
mann, San Francisco, CA.

E. Baum and K. Lang. (1991) Constructing hidden
units using examples and queries. In R. Lippmann et
al., eds., Advances in Neural Information Processing Sys-
tems 3, Morgan Kaufmann, San Francisco, CA.

A. Blumer, A. Ehrenfeucht, D. Haussler, and

M. Warmuth. (1989) Learnability and the Vapnik-
Chervonenkis dimension. JACM 36(4):929{965.

G. Box and N. Draper. (1969) Evolutionary opera-
tion. Wiley, New York.

H. Choueiki. (1994) Doctoral dissertation, in prepara-
tion. Department of Industrial and Systems Engineer-
ing, Ohio State University.

W. Cleveland, S. Devlin and E. Grosse. (1988)
Regression by local �tting. Journal of Econometrics,
37:87{114.

D. Cohn, L. Atlas and R. Ladner. (1990) Training
connectionist networks with queries and selective sam-
pling. In D. Touretzky, editor, Advances in Neural In-

formation Processing Systems 2, Morgan Kaufmann, San
Francisco, CA.

D. Cohn, Z. Ghahramani and M. Jordan. (1994)
Active learning with statistical models. Submitted to
Advances in Neural Information Processing Systems 7,
Morgan Kaufmann, San Francisco, CA.

B. Eisenberg and R. Rivest. (1990) On the sample
complexity of pac-learning using random and chosen ex-
amples. In M. Fulk and J. Case, eds., ACM 3rd Annual

Workshop on Computational Learning Theory, Morgan
Kaufmann, San Francisco, CA.

V. Fedorov. (1972) Theory of Optimal Experiments.
Academic Press, New York.

Y. Freund, H. S. Seung, E. Shamir and N. Tishby.
(1993) Information, prediction, and query by commit-
tee. In S. Hanson et al., eds., Advances in Neural Infor-
mation Processing Systems 5, Morgan Kaufmann, San
Francisco, CA.

S. Geman, E. Bienenstock and R. Doursat. (1992)
Neural networks and the bias/variance dilemma. Neural
Computation, 4(1):1{58.

Z. Ghahramani and M. Jordan. (1994) Supervised
learning from incomplete data via an EM approach. In
J. Cowan et al., eds., Advances in Neural Information

Processing Systems 6, Morgan Kaufmann, San Fran-
cisco, CA.

D. Haussler. (1992) Generalizing the pac model for
neural nets and other learning applications. Information

and Computation, 100(1):78{150.

R. Jacobs, M. Jordan, S. Nowlan and G. Hin-

ton. (1991) Adaptive mixtures of local experts. Neural

Computation 3:79{87.

M. Jordan and D. Rumelhart. (1992) Forward mod-
els: Supervised learning with a distal teacher. Cognitive
Science, 16(3):307{354.

M. Kuperstein. (1988) Neural model of adaptive
hand-eye coordination for single postures. Science,
239:1308{1311.

A. Linden and F. Weber. (1993) Implementing In-
ner Drive by Competence Reection, in H. Roitblat et
al., eds., Proceedings of the 2nd International Confer-

ence on Simulation of Adaptive Behavior, MIT Press,
Cambridge, MA.

D. MacKay. (1992) Information-based objective func-
tions for active data selection, Neural Computation 4(4):
590{604.

G. McLachlan and K. Basford. (1988)Mixture Mod-

els: Inference and Applications to Clustering, Marcel
Dekker.

B. Mel. (1992) Connectionist robot motion planning: a
neurally-inspired approach to visually-guided reaching.
Academic Press, Boston, MA.

A. Moore. (1994) The parti-game algorithm for vari-
able resolution reinforcement learning in multidimen-
sional state-spaces. In J. Cowan et al., editors, Advances
in Neural Information Processing Systems 6. Morgan
Kaufmann, San Francisco, CA.

S. Nowlan. (1991) Soft Competitive Adaptation: Neu-
ral Network Learning Algorithms based on Fitting Sta-
tistical Mixtures. CMU-CS-91-126, School of Computer

10

Science, Carnegie Mellon University, Pittsburgh, PA.

B. Pearlmutter. (1994) Fast Exact Multiplication by
the Hessian. Neural Computation, 6(1):147{160.

M. Plutowski and H. White. (1993) Selecting con-
cise training sets from clean data. IEEE Trans. on Neu-

ral Networks, 4(2):305{318.

S. Schaal and C. Atkeson. (1994) Robot Juggling:
An Implementation of Memory-based Learning. Control
Systems 14(1):57{71.

J. Schmidhuber and J. Storck. (1993) Rein-
forcement driven information acquisition in nondeter-
ministic environments, Technical Report, in prepara-
tion, Fakult�at f�ur Informatik, Technische Universit�at
M�unchen.

P. Sollich. (1994) Query construction, entropy and gen-
eralization in neural network models. To appear in Phys-
ical Review E.

J. Subrahmonia, D. B. Cooper, and D. Keren.
(1992) Practical reliable recognition of 2D and 3D ob-
jects using implicit polynomials and algebraic invariants.
Technical Report LEMS-107, Division of Engineering,
Brown University, Providence, RI.

R. Thisted. (1988) Elements of Statistical Computing.
Chapman and Hall, NY.

S. Thrun and K. M�oller. (1992) Active exploration
in dynamic environments. In J. Moody et al., editors,
Advances in Neural Information Processing Systems 4.
Morgan Kaufmann, San Francisco, CA.

D. van Camp, T. Plate and G. Hinton. (1993)
The Xerion Neural Network Simulator, Department of
Computer Science, University of Toronto. For further
information, send email to xerion@cs.toronto.edu.

S. Whitehead. (1991) A study of cooperative mech-
anisms for faster reinforcement learning. Technical Re-
port 365, Department of Computer Science, Rochester
University, Rochester, NY.

Appendix { System identi�cation with

neural networks and OED

System identi�cation using OED has been successful on
tasks where the parameters of the unknown system are
explicit, but for a neural network model, system identi-
�cation is problematic. The weights in the network can
not be reasonably considered to represent real param-
eters of the unknown system being modeled, so there
is no good interpretation of their \identity." A greater
problem is the observation that unless the network is
fortuitously structured to be exactly the correct size,
there will be extra unconstrainable parameters in the
form of unused weights, about which it will be impos-
sible to gain information. Distinguishing between un-
constrainable parameters (which we wish to delete or ig-
nore) and underconstrained parameters (about which we
wish to get more information) is an unsolved problem.

Below, we review the derivation of the \D-optimality"
criterion appropriate for system identi�cation [Fedorov,
1972; MacKay, 1992], and briey discuss experiments
selecting D-optimal data.

When doing system identi�cation with a neural network,
we are interested in minimizing the covariance of the pa-
rameter estimates ŵ. For the purposes of optimization,
it is convenient to express �2ŵ as a scalar. The most
widely used scalar is the determinant D = j�2ŵj, which
has an interpretation as the \volume" of parameter space
encompassed by the variance (for other approaches see
Atkinson and Donev [1992]).

The utility of querying at ~x, from a system identi�cation
viewpoint, may be expressed in terms of the expected
change in the estimated value of D. The expected new

value ~D is

~D = j ~A�1
j =

S2jA�1
j

S2 + g(~x)TA�1g(~x)
=

S2j�2ŵj

S2 + �2
ŷj~x

; (9)

which, by subtraction from the original estimate D gives

�Dj~x =
D�2

ŷj~x

S2 + �2
ŷj~x

: (10)

Equation 10 is maximized where �2ŷj~x is at a maximum,

giving the intuitively pleasing interpretation that for sys-
tem identi�cation, parameter uncertainty is minimized
by querying where our uncertainty is largest. Such
queries are, in OED terminology, \D-optimal."

Our experiments using the above criterion to select train-
ing data had limited success. On regression problems
such as the arm kinematics the learner performed poorly,
attempting to select data at x = �1. These results are
consistent with the comments at the beginning of this
section, and with MacKay's observation that, for learn-
ing X ! Y mappings, the system identi�cation crite-
rion may be the \right solution to the wrong problem"
[MacKay, 1992]. The criterion addressed in Section 3,
also mentioned byMacKay and explored in greater detail
in this paper, appears to address the \right" problem.

11

