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Abstract

In this paper three problems related to the analysis of facial images are addressed: the estimation of

the illuminant direction, the compensation of illumination e�ects and, �nally, the recovery of the pose of

the face, restricted to in-depth rotations. The solutions proposed for these problems rely on the use of

computer graphics techniques to provide images of faces under di�erent illumination and pose, starting

from a database of frontal views under frontal illumination.
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1 Introduction

Automated face perception (localization, recognition

and coding) is now a very active research topic in the

computer vision community. Among the reasons, the

possibility of building applications on top of existing re-

search is probably one of the most important. While

recent results on localization and recognition open the

way to automated security systems based on face identi-

�cation, breakthroughs in the �eld of facial image coding

are of practical interest for teleconferencing and database

applications.

In this paper three tasks will be addressed: learn-

ing the direction of illuminant for frontal views of faces,

compensating for non frontal illumination and, �nally,

estimating the pose of a face, limited to in-depth rota-

tions. The solutions we propose to these tasks share two

important aspects: the use of learning techniques and

the synthesis of the examples used in the learning stage.

Learning an input/output mapping from examples is a

powerful general mechanism of problem solving once a

suitably large number of meaningful examples is avail-

able. Unfortunately, gathering the needed examples is

often a time consuming, expensive process. Yet, the use

of a-priori knowledge can help in creating new, valid, ex-

amples from a (possibly limited) available set. In this

paper we use a rough model of the 3D head structure

to generate from a single, frontal, view of a face under

uniform illumination, a set of views under di�erent poses

and illumination using ray-tracing and texture mapping

techniques. The resulting extended sets of examples will

be used for solving the addressed problems using learn-

ing techniques.

2 Learning the illuminant direction

In this section the computation of the direction of the

illuminant is considered as a learning task (see [1, 2, 3, 4]

for other approaches). The images for which the direc-

tion must be computed are very constrained: they are

frontal views of faces with a �xed interocular distance [5].

Once the illuminantdirection is known it can be compen-

sated for, obtaining an image under standard illumina-

tion which can be more easily compared to a database of

faces using standard techniques such as cross-correlation.

Let us introduce a very simple lighting model [6]:

I = (A+ L� cos!)� (1)

where I represents the emitted intensity, A is the am-

bient energy, � is 1 if the point is visible from the light

source and 0 otherwise, ! is the angle between the inci-

dent light and the surface normal, � is the surface albedo

and L is the intensity of the directional light. Let us

assume that a frontal image IA of a face under di�use

ambient lighting (L = � = 0) is available:

IA = A� (2)

The detected intensity is then proportional to the sur-

face albedo. Let us now assume that a 3D model of the

same face is available. The corresponding surface can be

easily rendered using ray-tracing techniques if the light

sources and the surface albedo are given. In particular,

we can consider a constant surface albedo �0 and use a

single, directional, light source of intensity L in addition

to an appropriate level of ambient light A0. By changing
the direction 
 = (�; �)1 of the emitted light, the corre-

sponding synthetic image S(�; �;A0) can be computed:

S(�; �;A0) = (A0 + L� cos!)�0 (3)

Using the albedo information IA from the real image, a

set of images I(�; �;A0) can be computed:

I(�; �;A0) =
1

�0A
S(�; �;A0)IA / S(�; �;A0)IA (4)

In the following paragraphs it will be shown that even a

very crude 3D model of a head can be used to generate

images for training a network that learns the direction of

the illuminant. The e�ectiveness of the training will be

demonstrated by testing the trained network on a set of

real images of a di�erent face. The resulting estimates

are in good quantitative agreement with the data.

From a rather general point of view the problem of

learning can be considered as a problem of function re-

construction from sparse data [7]. The points at which

the function value is known represent the examples while

the function to be reconstructed is the input/output de-

pendence to be learned. If no additional constraints are

imposed, the problem is ill posed. The single, most im-

portant constraint is that of smoothness: similar inputs

should be mapped into similar outputs. Regularization

theory formalizes the concept and provide techniques to

select appropriate family of mappings among which an

approximation to the unknown function can be chosen.

Let us consider the reconstruction of a scalar function

y = f(x): the vector case can be solved by considering

each component in turn. Given a parametric family of

mappings G(x;�) and a set of examples f(xi; yi)g the

function which minimizes the following functional is cho-

sen:

E(�) =
X
i

(yi � G(xi;�)� p(xi))
2

(5)

where yi = f(xi) and p(xi) represent a polynomial term

related to the regularization constraints. A common

choice for the family G is that of linear superposition

of translates of a single function such as the Gaussian:

G(x; fcjg; ftjg;W ) =

X
j

cje
�(x�tj )TWTW (x�tj) (6)

where WTW is a positive de�nite matrix representing

a metric (the polynomial term is not required in this

case). The resulting approximation structure can also

be considered as an HyperBF network (see [7] for further

details). In the task of learning the illuminant direction

we would like to associate the direction of the light source

to a vector of measurements derived from a frontal image

of a face.

In order to describe the intensity distribution over the

face, the central region (see Figure 1) was divided into

four patches, each one represented by an average inten-

sity value computed using Gaussian weights (see Figure

1The angles � and � correspond to left-right and top-down
displacement respectively.
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2). The domain of the examples is then R
4
. Each input

vector x is normalized to length 1 making the input vec-

tors independent from scaling of the image intensities so

that the set of images fI(�; �;A0)g�� can be replaced by

fS(�; �;A0)IAg��.

The normalization is necessary as it is not the global

light intensity which carries information on the direction

of the light source, but rather its spatial distribution. Us-

ing a single image under (approximately) di�use lighting,

a set of synthetic images was computed using eqn. (3).

A rough 3D model of a polystyrene mannequin head was

used to generate the constant albedo images
2
. The direc-

tion of the illuminant spanned the range �; � 2 [�60; 60]
with the examples uniformly spaced every 5 degrees. The

illumination source used for ray tracing was modeled to

match the environment in which the test images were

acquired (low ambient light and a powerful studio light

with di�user).

From each image S(�; �;A0)IA an example (x��; �) is
computed. The resulting set of examples is divided into

two subsets to be used for training and testing respec-

tively. The use of two independent subsets is important

as it allows to check for the phenomenon of over�tting

usually related to the use of a network which has too

many free parameters for the available set of examples.

Experimentation with several network structures showed

that a HyperBF network with 4 centers and a diagonal

metric is appropriate for this task. A second network

is built using the examples f(x��; �)g��. The networks
are trained separately using a stochastic algorithm with

adaptive memory [8] for the minimization of the global

square error of the corresponding outputs:

E�(�) =

X
��

(� �G�(x��;�))
2

E�(�) =

X
��

(��G�(x��;�))
2

The error E� for the di�erent values of the illuminant

direction is reported in Figure 4. The network trained

on the � angle is then tested on a set of four real images

for which the direction of the illuminant is known (see

Figure 5). The response of the network is reported in

Figure 6 and is in good agreement with the true values.

Once the direction of the illuminant is known, the

synthetic images can be used to correct for it, providing

an image under standard (e.g. frontal) illumination. The

next section details a possible strategy.

3 Illumination compensation

Once the direction of the illuminant is computed, the

image can be corrected for it and transformed into an

image under standard illumination, e.g. frontal. The

compensation can proceeds along the following steps:

1. compute the direction (�; �) of the illuminant;

2A public domain rendering package, Rayshade 4.0 by
Craig Kolb, was used.

2. establish a pixel to pixel correspondence between

the image to be corrected X and the reference im-

age used to create the examples IA

(xX ; yX)
M
! (xIA; yIA) (7)

3. generate a view I(�; �;A) of the reference image

under the computed illumination;

4. compute the transformation due to the change in

illumination between IA and I(�; �;A):

�(x; y) = IA(x; y)� I(�; �;A;x; y) (8)

5. apply the transformation � to image X by using

the correspondence map M in the following way

[9]:

X(x; y) ! X(x; y) + �(Mx(x; y);My(x; y)) (9)

The pixel to pixel correspondenceM can be computed

using optical 
ow algorithms [10, 11, 12, 13]. However,

in order to use such algorithms e�ectively, it is often nec-

essary to pre-adjust the geometry of image X to that of

IA [14]. This can be done by locating relevant features

of the face, such as the nose and mouth, and warping

image X so that the location of these features is the

same as in the reference image. The algorithm for lo-

cating the warping features should not be sensitive to

the illumination under which the images are taken and

should be able to locate the features without knowing

the identity of the represented person. The usual way

to locate a pattern within an image is to search for the

maximum of the normalized cross-correlation coe�cient

�xy [15]. The sensitivity of this coe�cient to changes in

the illumination can be reduced by a suitable processing

of the images prior to the comparison (see Appendix A).

Furthermore, the identity of the person in the image is

usually unknown so that the features should be located

using generic templates (a possible strategy is reported

in Appendix B). After locating the nose and mouth the

whole face is divided into four rectangles with sides par-

allel to the image boundary: from the eyes upwards,

from the eyes to the nose base, from the nose base to

the mouth and from the mouth downwards. The two in-

ner rectangles are stretched (or shrunk) vertically so that

the nose and mouth are aligned to the corresponding fea-

tures of the reference image IA. The lowest rectangle is
then modi�ed accordingly. The image contents are then

mapped using the rectangles a�ne transformations and

a hierarchical optical 
ow algorithm is used to build a

correspondence map at the pixel level. The transforma-

tions are �nally composed to compute the mapM and

imageX can be corrected according to eqns. (8-9). One

of the examples previously used is reported in Figure 8

under the original illumination and under the standard

one obtained with the described procedure.

4 Pose Estimation

In this section we present an algorithm for estimating

the pose of a face, limited to in depth rotations. The

knowledge of the pose can be of interest both for recog-

nition systems, where an appropriate template can then
2



be chosen to speed up the recognition process [14], and

for model based coding systems, such as those which

could be used for teleconferencing applications [16]. The

idea underlying the proposed algorithm for pose estima-

tion is that of quantifying the asymmetry between the

aspect of the two eyes due to in-depth rotation and map-

ping the resulting value to the amount of rotation. It is

possible to visually estimate the in-depth rotation even

when the eyes are represented schematically such as in

some cartoons characters where eyes are represented by

small bars. This suggests that the relative amount of

gradient intensity, along the mouth-forehead direction,

in the regions corresponding to the left and right eye

respectively provides enough information for estimating

the in-depth rotation parameter.

The algorithm requires that the location of one of the

eyes is approximately known as well as the direction of

the interocular axis. Template matching techniques such

as those outlined in Appendix B can be used to locate

one of the eyes even under large left-right rotations and

the direction of the interocular axis can be computed us-

ing the method reported in [17]. Let us assume for sim-

plicity of notation that the interocular axis is horizontal.

Using the projection techniques reported in [18, 5] we

can approximately localize the region were both eyes are

con�ned. For each pixel in the region the following map

is computed:

V (x; y) =

�
j@yC(x; y)j if j@yC(x; y)j � j@xC(x; y)j
0 otherwise

(10)

where C(x; y) represent the local contrast map of the

image computed according to eqn. (13) (see Appendix

A). The resulting map assigns a positive value to pix-

els where the projection of gradient along the mouth-

forehead direction dominates over the projection along

the interocular axis. In order to estimate the asymmetry

of the two eyes it is necessary to determine the regions

corresponding to the left and right eye respectively. This

can be done by computing the projection P (x) of V (x; y)
on the horizontal axis given by the sum of the values in

each of the columns. The analysis of the projections is

simpli�ed if they are smoothed: in our experiments a

Gaussian smoother was used. The resulting projections,

at di�erent rotations are reported in Figure 9. These

data are obtained by rotating the same 3D model used

for the generation of the illumination examples: texture

mapping techniques are then used to project a frontal

view of a face onto the rotated head (see [13, 19] for al-

ternative approaches to the estimation of pose and syn-

thesis of non frontal views).

The �gure clearly shows that the asymmetry of the

two peaks increases with the amount of rotation. The

asymmetry U can be quanti�ed by the following quan-

tity:

U =

P
x<xm

P (x)�
P

x>xm
P (x)P

x<xm
P (x) +

P
x>xm

P (x)
(11)

where xm is the coordinate of the minimumbetween the

two peaks. The value of U as a function of the angle of

rotation is reported in Figure 10. Using the approximate

linear relation it is possible to quantify the rotation of a

new image. The pose recovered by the described algo-

rithm from several images is reported in Figure 11 where

for each of the testing images a synthetic image with the

corresponding pose is shown.

5 Conclusions

In this paper three problems related to the analysis of

facial images have been addressed: the estimation of the

illuminant direction, the compensation of illumination

e�ects and, �nally, the recovery of the pose of the face,

restricted to left-right rotations. The solutions proposed

for these problems rely on the use of computer graphics

techniques to provide images of faces under di�erent il-

lumination and pose starting from a database of frontal

views under frontal illumination. The algorithms trained

using synthetic images have been successfully applied to

real images.
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A Illumination sensitivity

A common measure of the similarity of visual patterns,

represented as vectors or arrays of numbers, is the nor-

malized cross correlation coe�cient:

�xy =
�xy

�xx�yy
(12)

where �xy represent the second order, centered moments.

The value of j�xyj is equal to 1 if the components of

two vectors are the same modulo a linear transforma-

tion. While the invariance to linear transformation of

the patterns is clearly a desirable property (automatic

gain and black level adjustment of many cameras in-

volve such a linear transformation) it is not enough to

cope with the more general transformations implied by

changes of the illumination sources. A common approach

to the solution of this problem is to process the visual

patterns before the estimation of similarity is done, in or-

der to preserve the necessary information and eliminate

the unwanted details. A common preprocessing opera-

tion is that of computing the intensity of the brightness

gradient and use the resulting map for the comparison

of the patterns. Another preprocessing operation is that

of computing the local contrast of the image. A possible

de�nition is the following:

C =

�
C0 if C0 � 1

2�
1
C0

if C0 > 1
(13)

where

C0 =
I

I �KG(�)

(14)

and KG(�) is a Gaussian kernel whose � is related to the

expected interocular distance. It is important to note

that C saturates in region of high and low local contrast

and is consequently less sensitive to noise.

Recently some claims have been made that the gra-

dient direction �eld has good properties of invariance to
3



changes in the illumination [20]. In the case of the di-

rection �eld, where a vector is associated to each single

pixel of the image, the similarity can be computed by

measuring the alignment of the gradient vectors at each

pixel. Let g1(x; y) and g2(x; y) be the gradient �elds of
the two images and k �k represent the usual vector norm.

The global alignment can be de�ned by

A =
1P

(x;y)w(x; y)
� (15)

�

X
kg

1
(x;y)k;kg

2
(x;y)k>0

w(x; y)
g1(x; y) � g2(x; y)

kg1(x; y)kkg2(x; y)k

where

w(x; y) =
1

2
(kg1(x; y)k + kg2(x; y)k) (16)

The formula is very similar to the one used in [20] (a nor-

malization factor has been added). The following prepro-

cessing operators were compared using either the nor-

malized cross-correlation-coe�cient � or the alignment

A:

plain: the original brightness image convolved with a

Gaussian kernel of width �;

contrast: each pixel is represented by the local image

contrast as given by eqn.(13);

gradient: each pixel is represented by the brightness

gradient intensity computed after convolving the

image with a Gaussian kernel of standard deviation

�:

kr(N� ? I(x; y))k (17)

gradient direction: each pixel is represented by the

brightness gradient of N� ? I(x; y). The similarity

is estimated through the coe�cient A of eqn.(16)

laplacian: each pixel is represented by the value of the

laplacian operator applied to the intensity image

convolved with a Gaussian kernel.

For each of the preprocessing operators, the similarity of

the original image under (nearly) di�use illumination to

the synthetic images obtained through eqn. (4) was com-

puted. The corresponding average values are reported

in Figure 12 for di�erent values of the parameter � of

the preprocessing operators. The local contrast operator

turns out to be the less sensitive to variations in the il-

luminant direction. It is also worth mentioning that the

minimal sensitivity is achieved for an intermediate value

of �: this should be compared to the monotonic behav-

ior of the other operators. Further experiments with

the template-based face recogntion system described in

[5] have practically demonstrated the advantage of using

the local contrast images for the face recognition task.

B Alternative Template Matching

The correlation coe�cient is quite sensitive to noise and

alternative estimators of pattern similarity may be pre-

ferred. Such measures can be derived from distances

other than the Euclidean, such as the L1 norm de�ned

by:

d1(x;y) =

nX
i=1

jxi � yij (18)

where n is the dimension of the considered vectors. A

similarity measure based on the L1 norm can be intro-

duced:

l(x0;y0) =
1

n

X
i

�
1�

jx0i � y0ij

jx0ij+ jy
0
ij

�
(19)

that satis�es the following relations:

l(x0;y0) 2 [0; 1]

l(x0;y0) = 1 , x0 = y0

l(x0;y0) = 0 , x0 = �y0

where x0 and y0 are normalized to have zero average and

unit variance. The characteristics of this similarity mea-

sure are extensively discussed in [21] where it is shown

that it is less sensitive to noise than �xy and technically

robust [22]. Hierarchical approaches to the computation

of correlation, such as those proposed in [23] are readily

extended to the use of this alternative coe�cient.

The in
uence of template shape can be further re-

duced by slightly modifying l(x; y). Let us assume that

the template T and the corresponding image patch are

normalized to zero average and unit variance. We de-

note by 
I(x) a the 4-connected neighborhood of point

x in image I and F
I(x)(w) the intensity value in 
I (x)
whose absolute di�erence from w is minimum: if two

values qualify, their average (w) is returned. A modi�ed

l(x; y) can then be introduced:

l0(y) =
1

n

X
x

�
1�

jF
I(x+y) � (T (x)) T (x)j

jF
I(x+y)j+ j(T (x)) T (x)j

�
(20)

The new coe�cient introduces the possibility of local de-

formation in the computation of similarity (see also [24]

for an alternative approach).
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Figure 1: The facial region used to estimate the direction of illuminant. Four intensity values are derived by

computing a weighted average, with Gaussian weights, of the intensity over the left (right) cheek and left (right)

forehead-eye regions.

Figure 2: Superimposed Gaussian receptive �elds giving the four dimensional input of the HyperBF network. Each

�eld computes a weighted average of the intensity. The coordinates of the plot represent the image plane oordinates

of Figure 1.

Figure 3: Computer generated images (left) are used to modulate the intensity of a single view under approximately

di�use illumination (center) to produce images illuminated from di�erent angles (right). The central images are

obtained by replication of a single view. The right images are obtained by multiplication of the central and left

images (see text for a more detailed description).
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Figure 4: Error made by a 4 units HyperBF network on estimating the illuminant direction on the 169 images of the

training set. The horizontal axis represents the left-right position of the illuminant while the vertical axis represents

its height. The intensity of the squares is proportional to the squared error: the lighter the square, the greater the

error is.

Figure 5: Some real images on which the algorithm trained on the synthetic examples has been applied.

Figure 6: Illuminant direction as estimated by the HyperBF network compared to the real data for the four test

images.
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Figure 7: The �rst three images represent respectively the original image, the image obtained by �xing the nose and

mouth position to that of the reference image (the last in the row) and the re�ned warped image obtained using a

hierarchical optical 
ow algorithm.

Figure 8: The original image (left) and the image corrected using the procedure described in the text.

Figure 9: The drawing reports the dependence of the gradient projection on the degrees of rotation around the

vertical image axis. The projections are smoothed using a Gaussian kernel of � = 5. Note the increasing asymmetry

of the two peaks.
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Figure 10: The drawing reports the dependence of the asymmetry of the projection peaks on the degrees of rotation

around the vertical image axis. The values are computed by averaging the data from three di�erent people.

Figure 11: The top row reports the test images while the bottom row shows the images generated using a simple 3D

model and the rotation estimated using the approximately linear dependence of the gradient projection asymmetry

on the rotation around the vertical image axis
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Figure 12: Sensitivity to illumination of some common preprocessing operators. The abscissas represent the values

of � (see text for an explanation).
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