MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FROJECT MAC

Arcificial Intelligence
Memo,. Mo, 150. January 1963,

CGRO AND CONG
CONVERT AND LISP PROGRAMS TO FIND THE

COMGRUEHCE RELATIONS OF A FINITE STATE MACHIMNE

*
Harold V. McIntosh

#

ESCUELA SUPERIOR DE FISICA Y MATEMATICAS
INSTITUTO POLITECHNICO MNACIONAL

HEXICO 14 D.F., MEXICO.

ABSTRACT

CGRU is a CONVERT program, CONG its literal transcription inte
LISP, realized in the CTS5 LISP of Project MAC, for finding all the
congruence relations of a finite state machine whese transition table
is given as an argyment., Central to both programs is the hull
construction, which forms the smallest congruence relation containing _
a given equivalence relation, This is done by examining all pairs of
equivalent elements to see if thelr images are equivalent, Otherwise the
image classes are joined and the calculation repeated, With the hull
program, one starts with the identity relation and procedes by joining
pairs of congruence classes in previcusly found partitions, and forming
the hull in order to see if he may produce a new partition, The
process terminates when all such extensions have been tried without
producing any new relatioens,

A congruence relation in a finite state machine is an equivalence
relation which satisfies the substitution property, which requires that
the imapes of equivalent states be equivalent, If M(s,w) is the transition
function, this requirement is stated formally by requiring that, for all w,
whenever states s and t are equivalent, so also are M(s,w) and M(t,w).
Congruence relations play an important role in the theory of finite state
machines; for example the minimal machine accepting a certain class of
words may be found from any other such machine by forming the factor
machine with respect to the largest congruence relation smaller than the
equivalence relation of equal outputs, If a machine has two complementary
congruence relations, it may be decomposed into the direct product of the
two factor machines, If there is one non-trivial cemgruence relatien,
the machine may be represented as a serial cosbination of the factor machine
and a fibre machine,

In order to have congruence relations available for such considerations,
we discuss two constructions, The first is the determination of the
smallest congruence relation smaller than a given congruence relationm,
which we may call its hull, The second is to systematically enumerate
all the congruence relations for a given machine, This latter is done
by first listing all the minimal equivalence relations, These are the
equivalence relations in which there is only ome point in each equivalence
class, except for a certain pair of equivalent points, There iz one '
minimal relation fnr each pair of distinct points. One then furms the
hull of each of these n(n+1)/2 equivalence relations. Among the hulls
will be included the minimal congruence relations, but there may well
be included some larger congruence relations as well, One then continues
by trying to join the equivalence classes found on the first round in all
possible p:irs,qand computing their hulls in turn. The process is then
repeated until no new congruence relations are found, and an attempt
has been made to extend those already found in all possible ways,

Two verzions of the program are described, CGRU is a CONVERT
program, while CONG is an equivalent LISP program, The existence of
the two programs has permitted a comparison of the speed of executien
of CONVERT, LISP, end compiled LISP programs,

The hull construction is quite straightforward. One examines
one by one all pairs of equivalent elements and tests their images
according to the various possible input letters. If a pair of
nonequivalent images is found, their equivalence classes are jolned,
and the precedure repeated, It terminates when all pairs of equivalent
elements and all letters have been tested and no non-equivalent image pairs

have been found,

If a pair of
equivalent pointe
have inequivalent
imagea, join the
tiage olasees.

CONVERT can be caused to carry out the searching which we have
described automatically, if we present the partition of the state set
and the transition table properly, A partition is readily described by
a list of its equivalence classes which in turn are lists of mutually
equivalent elements; thus if the integers] to 10 are partiticned inte
their residue classes modulo 3 we would write ((1 4 7 10) (2 5 B) (3 & 9))
to represent the partition. The transition table takes the form

(=== (X =msm (] ¥) ===) =u==)
to indicate that M(X,I) = ¥, In other words, for each state we form a
list headed by that state and followed by pairs of letters and the
corresponding image,

We make the following definitiens,

«T= is the transiticn table, in the above form, a VAR,

T PAT (=AND= L M)

L . PAT (== (X =u= (I U] ===) ===)

M PAT [=== (Y === (I V) =m=) ===

L] PAV (wem | m=a)

(V) PAV ~ (mmm V mms)

wlm PAT (swe (=ANDw (=s= X ===) (s== ¥ sss=)) ===)

w0n PAT (XXX (UU) YYY (VV) ZZZ)

The pattern =I= is used to see whether there is an equivalence
class containing the two equivalent elements ¥ and ¥, One might aveid
the form =AND= by using unordered varisbles, but the present form is
more transparent, Thus == matches any partition containing two egquivalent
elements (not necessarily distinet), and hence will match any partition.
The pattern T is designed to match a transitionm table but particularly
such a transition table that U appears as the successzor of X by the letter
I and simultanecusly V appears asithe successor of ¥ by the same letter
I, Since U and V are not previously bound, T will match any well-formed
transition table, but in the process will bind I, U, and V, MNext, we
see that UU and VV are fragments, namely those partition cells which contain
U and V respectively, Cecnsequently, when we expect =0= to match the
partition of the state set, we are expecting to find that U and V are in
different cells of the partitionm.

If we then present CONVERT with the list (X T X} in which X is the
partition of the state set and T is the transition table, and expect it
to match (X T X) to (=I= »Tw =0s), we are expecting it to find two
equivalent elements X and Y and an input letter T such that M(X,I]} = U
and M(Y,I}) = V, and U and V are not equivalemt, The fail procedure of
the pattern matching apparatus will exhaust all possibilities before
finally giving a negative response.

The hull construction is then effected by the functien HU,

HU REPT (((X) (=REPT= (X «Tw X] *1 (:
((=I= T =0w) (=REFTs= ((XXX{UU ¥V) YYY ZZI)
=TE
(XXX (UU VV) YYY Z22))))
(I == ==} I}
1113

Writing (HU X), we see that HU has one argument, which is listed when

we evaluate the REPT skeleton. We thus extract the argument from this
list in the first line, and make the comparison which we have described.
If there are elements with inequivalent images, their classes are joined
in the form (UU ¥V), and the entire process is repeated, Otherwise

we accept the final partition as the hull,

The hull function can be used to find all the congruence relations
for a given machine, The construction depends on the fact that we can
readily construct all the equivalence relations for a given set since it
is enly necessary to enumerate all the disjoint subsets, However, it is

enly necessary to initiate the process by an enumeration of the minimal
equivalence relations, Those are the ones for which only a single

pair of points are equivalent, all cther equivalence classes containing
only single points, If we now find the hulls of all these partitions,

we are certain to find the minimal congruence relations, but we may well
find larger ones alsec, Actually each hull has the significance that it is
the minimum congruence relation for which the given pair of points are
equivalent, but the equivalence of one pair of points may well force the
equivalence of another pair and not conversely, so that the hull of the
forced pair could be smaller than the hull of the forcing pair.

Given a minimal congruence relation, there are at least two
equivalent points, as the term "minimal" excludes the idemtity relation,
The hull of those points must be the relation with which we commenced.
Thus & minimal congruence relation is the common hull of all pairs of
points which it identifies, If some other pairs of equivalent points
generate a non-minimal congruence relation, that is another matter, Some
pairs of points are more congruent than others, depending on whether the
least congruence irelation which considers them equivalent is absolutely
minimal or not.

fur initial round then produces at least the minimal congruence
relations, and perhaps some others, We know that any larger congruence
relation will have to join at least one pair of classes of a minimal
relation, Simply jedning two congruence classes need not produce a
congruence class, so the hull construction is to be applied once more,
We therefore make all extensions possible in this manner, and
are thereby ensured of finding all congruence relations for which the
possible triples of points are equivalent, It is more efficient to
extend the first round of comgruence relations than to find the hulls of
all possible triples, in pgeneral.

_ The algorithm then procedes as follows, First we note the
identity relation, which is always a congruence relation., Then we

form the hulls which consider the possible pairs of points equivalent,

As each new hull is found, it is compared to see if the same as a
previcusly found hull, and if not is placed on a waiting list, as well as
on a list of relations to be extended. In this way wé have our initial
selection of congruence relations,

From this point on, we will take the partitions one by one from
the waiting list and adjoin them to the finished list. In additien, we
shall join its eguivalence classes in all possible pairs and form the
hull of the resulting equivalence relation, Each new hull so formed is
compared against the waiting list and the finished list to see if it is
new, When new, it is adjoined to the waiting list, Eventually no new
partitions will be found and the process will terminate when the last
waiting partition has been extended,

The comparison of two partitions is not sutomatic, neither in
LISF nor in CONVERT, no more so than the comparison of sets, because
sets may be equal without being represented by equal lists. Ome sust
either write a special compariscn function for sets which will pass through
one of them to see if all its elements are members of the other and
conversely, or as we shall do in the present case, always reduce the
list describing a set to a standard form,

To create the standard form, we maintain a list of the state set
in some arbitrary order, In our present program this state set is (*5%).
We shall require that the elements of a subset of 5, such as an equivalence
class, appear in this same order, The ordering is realized by a double
complementation, and is effected by the function (N1 X).

N1 . REPT (((X) (=COMP= (*S5*) (=COMP= (*5*) X)]))

Next, in any set of subsets which are so normalized, we require that the
subsets be listed so that their first element preserves the order of (*5%),
The function N2 achieves this ordering.

N2 REPT (((X) (=ITER= I (*S*) (*SKEL* I VAR I
(sWHEN= X (=== (T XXX) ===) ((I XXX}) (3)))))

Here we pass through (*S*) and if there is mny subset which begins with
the selected letter it is extracted and placed in order,
Finally there is a function NO which will take an arbitrary list
of partitions, normalize them and eliminate duplications,
NO REPT ((X (eUNON= (=ITER= I X (N2 (=ITERs J I (N1 J)))))))
We have now seen the essential structure of the program CGRU, It is
organized as a program, whose program variables have the followsing usage.
(*A*) is used to store the letters of the input alphabet
(*G*) is the finished list
(*5*) is the list of internal states
(*P*) is the waiting list, and a temporary workspace,
in additien,
«T= i# the trgnsition table,

As a convenience, but also as a check against errors, the prngfnn
initially computes the alphabet and the state set, These could be input
as data, but are also implicitly present in the transition table,

Bucket variables are used in the cellection; '
&b for the alphabet
55 for the state set
while the collecting patterns are
(wSw) PAT {(*OR* [wew (55 =h=) =5=) (===)))
(wR=) PAT ((*OR* ((AA 55) =R=} (}})

First, then, the alphabet and state set are found, and the results

are printed, as well as being stored in the program variables (*A*) and

(*5%),
The phrase (CONGRUENCE RELATIONS) is written,

The identity relation is printed and stored in (“GY).

(*P*) is then set to a list of the equivalence relations of single pairs,
done in two stages; pairs are formed, and the remaining unit
classes adjoined,

1 is the label for the extension loop

The hulls of each of the partitions in (*P*) are formed,

These are normalized and duplicates on the finished list are rejected.
== is written to separate partitions found in different cycles,

If no new partitions were formed, we finish, going to head 2,

The newly found partitions are printed,

and adjoined te the finished list,

Otherwise the pair-joining extension is made for each of the
newly found partitions,

and the cycle is repeated.
.2 is the label for the exit,

which consists simply in writing (===== GOODBYE =====),

Tt should be noted that the program speaks of extending the waiting
list in one step while our description of the algorithm spoke of one
partition at a time., This is because the individual steps are all
encompassed in one =ITER=, ‘and hence the order of some of the steps
is slightly different,

To illustrate the program we now consider an illustrative example.

-?-

cgru (((a (1) (0 c)) (b (0 b) (1 d)) (e (0c) (1d)) (d (0} (1d))])
(ALPHABET) . . .

(0 1)

{STATE SET)

(A BCD

(CONGRUENCE RELATIONS)

(CA) (B) () (D))

((AC) (B D)

{((a B CDY

((A) (B C) (M)

((a) (B D) (C))

((A) (B) (C D))
[(wems= GOODBYE Emmmw)

The machine is: @ i O“

The algorithm, although simple, calls for a considerable amount
of calculation. Moreover, the amount rises rather sharply with the
size of the machine since there are many processes which depend on the
square of the machine order --- the search to see if .equivalent elements
have equivalent images, the starting step which considers individual pairs
of equivalent elements, and so on, It already required about one minute
oT actual running time in CTS5 LISP to analyze a four state machine, which
made this about the limit of practical size, but hardly larger than could
be readily analyzed by hand, Accordingly, the program was rewritten almost
verbatim in LISP and compiled, The principal function, (CONG T), ran
about twice as fast as the CONVERT program CGRU when interpreted, and
38 times faster when compiled. Depending one's perspective, he would think
that CONVERT was not inordinately slow, unless he considered the CTSS LISP
interpreter inordinately slow also, However the LISP program was about
twice as long, in the volume of letters which its statement cowsumed,
and probably rather less transparent than CGRU, depending upon one's
experience in reading LISP versus CONVERT,

Since the two programs are identical in specification we shall not
describe CONG separately nor show an example of its operation. However,
in order to make the listing more understandable, we briefly describe the
auxiliary functions upon which it calls,

(CONG T) is the main function, which computes all the Congruence

| relations for the machine specified by the transition
table T, This table has the form (=== (X === (I Y] ===) ; .
===) where X is a state, I an input letter, and Y the
image state M(X,I),

It is a program whose program variables have the following
significance
A is the input alphabet
G is the finished list
5 is the state set
P is the workspace holding the extensions of one relation
W "is the waiting list

The steps of the program are nearly identical te the
corresponding steps of CGRU,

(ELEMENT X L) is a pridicaxa, true if the expression X is found on
the list L, '

(COMPLEMENT A B) is a list of all those members of A which do not
belong to B, A and B are both lists, Retained
elements occur in the original order with the same
maltiplicity,

-0

(PAIRSET A) has as its argument a partition of the state set, Its
value is a list of the various partitions which arise
by jeining together different pairs of equivalence
classes in A, For example, if A = ((A) (B) (C)),
(PAIRSET A) = (((a B) (C)) ((A €y (B)) ((8 € (A))).
The joined class appears first, followed by these
remaining. A partition of no or one class is treated

 correctly in the initialization, The significance of
the program variables is

1 ranges through A
J ranges through (CDR I)
P retains the joined partitions already found,

(UNITIZE L) produces a list whose elements are the elements of L,
listed, Thus if L = (0 1 2), (UNITIZE L) = ((0) (1) (233,

(NONREDUNDANT L) produces a list whose elements are the elements of '
L in the same order, with the exception that if there
is a multiple occurrence of an element, all but its
last instance is deleted, Thus, if L = (10 110),
(NOMREDIMNDAKT L) = (1 0).

(REMOVE 1 J L) produces a list whose elements are the elements of L,
except that both I and J are deleted; otherwise the
order of the elements is not changed. IfL=(012210),
I=0,J=1, then (REMOVE I J L) = (2 2).

C(JOIN I J L) assumes that its three arguments are lists. In the
present context, I and J are equivalence classes, while
L is a partition, I and J are sppended, and removed
from L, The value is a list of first the joined I and
J, then the list L from which they have been removed,

(IMAGE 5 L T) assumes a5 ATguments a state 5, a letter L and a
' transition table T, TIts value is the jmage of 5 by L
according to the table T, The function is a program
which searches T until it finds a sublist beginning
with 5, It then searches the COR of this sublist to
find & sublist beginning with L, whose CADR is the
value,

* (CONTAINING X L) f£inds the sublist of L which contains X, if any,
: otherwise the empty list,

(HULL P A T) is the analogue of the CONVERT function HU, which finds
the hull of the partition P according to the machine
which has alphabet A and transition table T, These latter
might well have been left as free variables,

The program variables signify:

AA which ranges through the alphabet A as we
test images by various letters

I which ranges through a class of the partition

I1 which is the class coentaining the image of 1

J -which ranges through “CDR of the class of I,
forming the second element of a pair

1] which is the class containing the image of J

¥ which ranges through the classes of P, I and
J both belong te K

-10-

The operation of HULL follows exactly our earlier
description.

(BEGINNING X L) finds the sublist of L beginning with the expression
" ¥, otherwise the empty list.

(NORL L 5) normalizes the sublists of L with respect to the set
[state set] 5, In other words, the elements in each
- sublist are made to appear im the same order in which
they appear in 5.

(NORZ L 5) normalizes the list L according to the list 5 in the
sense that the sublists of L are made to appear with
their first elements in the same order in which they
appear in 5.

(JOINNONNULL A B) CONS's A to B unless A is mull, in which case B
remains unchanged.

(NOR3 P 5) causes each element of the list P to be normalized
according to the functions NORZ and NOR1.

(HULLS P A T) causes HULL of each element of P to be computed,
(ADJOIN X L) places X on the list L if it is not already a member,

(GATHER T), where T is the transition table, gathers all the letters
of the alphabet and all the state symbols, making a
list of these two lists. Its action is exactly

. analogous to the bucket variables which perform a
similar function in CGRU,

Usape of the program variables is
A to collect the letters of the alphabet
3 to collect the state set
U to retain (CDR T) while we search (CAR T).

After compilatien, CONG required 20 seconds for a 6-state machine
while CGRU required 70 seconds for a series of 4-state machines which
indicates that the practical limit may occur for 8 or 10 state machines,
although no effort was made to make accurate timing evaluations, The
method we have presented is completely straightforward, but to handle
machines of moderate size, further consideration is necessary to see how
calculations may be simplified or avoided, For example, each time we
see that two classes need joining in calculating the hull, we start
completely anew to test the extended relation, yet one can see that he
will then uselessly have to repeat a great deal of caleulation, Perhaps
it would be worthwhile to test the resulting relation against the known
congruence relations each time a juncture was made, since such a comparison
would be mich faster than testing all the pairs,

. !
(Co.ir (LAMBDA (TT) (FROG 1 & G 5P W I)
HO
(CLCCE 1)1}
[SETQ A [GATHER TTh)
(SETQ S (CADR AD)
[SETQ A (CAR A&})
IPRINT (QUOTE (=== ALPHABET ===}1]
(PRINT A})
{PRINT (QUOTE [=== STATE S5ET ===)1}
fPRINT 5) . _
(PRINT (QUDTE (CONGRUENCE RELATIONS)))
(PRINT [QUOTE ==1})
[SETQ W ILIST [UNITIZE 5)))
H1 .
| COND FIHULL WY (GD H2)))

ISETQ G 1COMS [PRINT (CAR W)) G))

ISETQ P (NOMREDUMDANT (NOR3 [HULLS [PAIRSET (CAR W)} A TT) S}))
[SETQ P (COMPLEMENT (COMPLEMENT P W) G))

ISETO W (CDR W))

{ COND TINULL P)Y 1GD HLIED
(SETQ W (APPEND P W)

(GO H1)

H2

(PRINT [CLOCK T))

L2 .

CELEMENT (LAMBDA (X L) {AND (NOT (NULL L)) (OR (EQUAL X (CAR L)) (ELEMENT X (CDR LJ})13))

(COMPLEMENT (LAMBDA (&4 BY (COND
POMULL &) A)
[TELEMENT (CAR A) B) (COMPLEMENT (CDR A) B))
IT (CONS (CAR .A) [COMPLEMENT (CODR A} BJ))
i

(PAIRSET [LAMEDA (A) (PROG (T J P |
{COND (INULL &Y (RETURN A))1
15ETQ 1 A)
{COND [IHULL (COR &) (RETURN TLISTIN))
[SETQ J (COR A)D -
HL

(CoND TINULL (CDOR I)}) (RETURMN P))
[INULL J) (GO H21H)

~USETQ P (CONS (JOIN (CAR 1) (CAR JY A} P))
[SETQ J [COR J))

(GO HL)

H2

(SETQ I [(CDR 1))

[SETQ J [COR 1)}

(GO HIN

1 -

TUNITIZE (LAMBDA (L) [COND (INULL L) L} (T (CONS (LIST [CAR L}} (UNITIZE (CDR LYYYIDYD

[(NOMRECUNDANT [LAMEBDA (L) ICOND
. CUMULL LY L)

—t

(LELEMENT (CAR L) (COR L)) (NONRLUNDANT (COR L)1)
IT (CONS (CAR L) (NDNREDUNDANT (CDR LIN))

10

(REMOVE (LAMBTA (I J L) (COND

{INULL LD L) .
(iEQUAL T (CAR L)) (REMOVE I J (CDR L}))

{1EQUAL J (CAR LY} (REMOVE I 4 (CDR L}I})
(T (CONS {(CAR L) (REMOVE I J (CDR LID)}
11}

(JOIN (LAMBDA (I J L) (CONS (APPEND I J) (REMOVE I J L))

[IMAGE [LAMBDOA (S5 L TT)Y (PROG (1}
H1
[COND (CHULL TT) (RETURN (LISTIIN)
{COND (IEQ S [CAAR TT)) (GO H21))
{SETQ TT (CDR TT))
(GO K1)
H2 -
(SETQ TT (CDAR TT))
H3 :
(COND ({NULL TT) (RETURMN (LISTII})
(COND ({EQ L [CAAR TT)) {RETURN (CADAR TT)I))
(SETO TT (CDR TT)) '
{GD H3)
1)

{CONTAIMNING (LAMBDA (X L)} (COND
CINULL LY CLISTH)
{{ELEMENT X (CAR L)) (CAR LY}
[T (CONTAIMNING X {COR L1}

M

(HULL TLAMBDA (P & TT) (PROG (AA I II J JJ K]
(COND ({HULL P) (RETURN P)))

HO

{COND [INULL (CDR P}} [RETURN P}))
{S5ETQ K P

H1

{COND (INULL K} (RETURN P)))

H2

(SETQ I (CAR KJ))

H3

(COND [{NOT (NULL (COR IX}) (GO H4)))
(SETQ K (CDR K))

(GO H1)

My

(SETC J (COR 1))

HE

J

ISETY JJ (CONTAIMING (IMAGE (CAR J) (CAR AA) TT) PM)
(COND [(EQUAL II JJ} (GO H9M))

(SETQ P (JOIN 1L JJ P))

(GO HOD

HY

{SETO AA ICDR AAD)

GO KHT)

11}

[BEGINMING [LAMBDA (X L)} (COND
[{HULL L)Y L1
{{EQUAL X ICAAR L)) (CAR L)
(T (BEGINNING X (CDR L))
[RR} :

(NOR1 [LAMBDA (L 5) (COND
({NULL LY L)

{T (CONS (COMPLEMENT S (COMPLEMENT 5 [CAR L))} (NORL (CDR L) 5))}
'l

(NMOR2 (LAMEDA (L 5) (COND
[INULL 50 5)
(T (JOINNONNULL (BEGINNING (CAR 5) L)} (NORZ2 L (COR 51)))
i .

(JOINNOMNULL (LAMBDA (A BY (COND [IMNULL A} B) IT (CONS A B¥))D)

(NOR3 TLAMBDA (P 5) (COND
(INULL P) P)

[T (CONS [NDORZ (NDR1 (CAR P) 5) 5) (NOR3 (COR P} 5)1)
1

S

j)- (SETQ JJ (CONTAINING [IMAGE (CAR J) (C.. AR) TTY P))
[COND (LEQUAL I1 JJ) (GO H9)))
(SETQ P (JOIN 1T 44 P))
(G0 HO)
HY
[S5ETU AA [CDR AA))
(GO HT)
1

[BEGINNING (LAMBDA (X L) (COND
(INULL L)Y L)
LIECUAL X (CA&R L) [CAR LJ)
(T (BEGINMING X (CDR L))}
11} :

INORL (LAMBDA (L S) (COND
CiNULL LY L)

(T (CONS™ (COMPLEMENT S [COMPLEMENT 5 [CAR L))) WNODR1 (CDR L} 3k
IR} ’

[NORZ [LAMBDA (L S) (COND
CENULL 53 5)

[T VJOINNOMNULL (BEGINMING [CAR SI L) (NDR2 L tcor’ 5111
V1)

))

[HULL ILAMBDA (P A TT) (PROG (Aa I Il 4 JJ K)
[COND [INULL P} IRETURN Pl

HD

(COND [INULL (COR PJ) (RETURN PI})
[SETQ K P)

H1

[COND (INULL K) (RETURN P}))

H2

(SETQ I (CAR K1)

H3

{COND {INOT (NULL (CDR [)3}) (GO H4))})
{SETO K (COR K)) . -
(GO ML) :

Hb

(SETQ J (COR 1)}

HS

{ COND (INDT (NULL J)) [GD H&YD)

(SETQ 1 (COR 1))

(GO H3)

Hé&

(SETO AA A)

H7

(COND ({NOT (MULL AA})} (GO HE)))
ISETQ J (CDR J))

{GO H5)
. HB

ISETQ I (COMTAIMING (IMAGE (CAR I) (CAR AA) TTI PI)

17,

{HULLS (LAMBCA (P A TT) (COND
(TNULL P} P) '
{T (CONS (HULL (CAR P} A TT)} [HULLS (CDR P] ATTHID
(BN

(ACJOIN (LAMBCA (X L) (COND (UELEMENT X L) L) (T (CONS X L}1)))

(GATHER (LAMBDA (TT) (PROG [& 5 U)

Hl ' '
{COND (ONULL TT)Y (RETURN (LIST A 51101}
(SETQ S (ADJDIN (CAAR TTH 5))

(SETQ U (CDAR TT))
H2
{ COND {(NULL U) (GO H3)))

(SETD A (ADJOIN (CAAR U} A))
ISETQ S (ADJDIN (CADAR U} S))
(SETQ U (COR UM)

(GO HZY -

H3

[SETQ TT (COR TTI!

(GO HL)

13)

1

CEFINE 11
(CLRU (LAMBDA (TT) [CONVERT
[CONS [OUOTE =T=) ICONS (QUATE waR) [(CONS TT (QUOTE |

AA BuUv =nTO=

55 Buv =4T0=
{=5=] FAT (i=0Re {=== [55 =R=) =5=) [===}}]
{=R=} FaT [r=0Rs {{aa 55} =RA=} (}})

== PAT (=== [{=AND& [sss X ===] (=== ¥ ==x=}]) ===}
=0= PAT [EXE (LU YYY [WWl ZZZ)

T PAT {=aND= L 41

L PAT {=== X === (1l U} ===} ===}

L] PFAT === {¥ === ([¥] ===} ===aj

[y L [=== IJ ===}

vl Pay === ¥ ===}

HU REPT [LiX) [=REPT= (X =T= K] =1 |

::;I- T -?-:II-REPI- flaxNx fuw vy YYY LZZ) =T= (XkM (UL W1 YYY 222 3000

134
Ml REPT [E(XE) (=COMP= [#5&) [=COMP= (#5«)} X}1})
N2 REPT f00X) [=ITER= I [w5Se) [*5KEL® I VAR [(=WHEN= X (wss (] XXX} ===} [[D XXX)J)} C30B33)
Na REPT IIH_IIUNDN- (=ITER= 1 X (N2 (=ITER= J I (ML JI}DDDD)
RRRE
TQUOTE |
ITNSUY XY (XXR) I¥YYY) (LZX)
1
(LTSTH
(QUOTE (=0 1

== {=PRAOG= { [*&e) [efGe) [e5e«) [=pPe})
[=WHEN= =T= ([=5=) [(=PROG= (1}
{=PENT= {=0UDT= [ALPHARETI})
(=5ETA= (eh=] [=PANT= [=UNON= A40))
t=FamMT= {=0ulT= {STATE SETIN)
I=SETQ= [#5=) [=PANT= [=uNDN= 5511}
i
{=PRNT= [=0U0T= (CONGRUENCE RELATIONSI))
[=5ETQs {eGe)} [|=PRNT= [=1TER= 1 [=5«} (I110}) " ' "
[=SETQ= {(#P#) [=[TER= [{#5#) J [=SKEL= I VAR [(=WHEM= [#5#) (=== [I!i} PEXENNY €1 200 |
[=SETQ= (=Pe} [(=[TER= 1 {+Ps} (Il (+ITER= J (=COMP= [s5a) I} [J}IDD} _ ¥ -
L .
(=S5ETO= (#P#) [(=[TER= I (=P=) {HU 110}
[=5ETC= (=P+] [=COMP= (ND «Pe} ([#Gs]])
{=PRNT= ==}
{=WHEN= [#P=] [} [=G0OTO= 21} -
[=ITER= T [=Pa) {=FRNT= I}
[=SETQ= [#Ga) [sfs aGs})
[=5ETQ= [#Pe)] (=COMP= (ND [#ITERe I [eFe) [J) I [K) [=SKEL= [J) VAR [J} (=WHEN= [[=s= [J) NNX] TXXEND)
[0J E) [=COMPe T {0} UKFRIDNN QwGell) .
[=GOTO= L} !
2
[SRETN= [s®s== GODODBYE wss==j)
[} .
(RN]
[BR)
1}

ERcEd

B
(A
u=

Congruence Relations:
Michael A. Harrisen, INTRODUCTION TO SWITCHING AND AUTOMATA THEORY,
New York: McGraw-Hill Book Company, 1965

Harold V, McIntosh, "THE MATHEMATICAL THEORY OF MACHINES," Lecture Notes
for Mathematical Logic I, ESFM, 1967,

CONYERT:
Adolfo Guzman and Harold V, McIntosh, “CONVERT," Communications of the
Association fer Computing Machinery 3 604-615 (1966).

Hareld V., McIntosh and Adolfo Guzman, "A MISCELLANEY OF CONVERT PROGRAMMING "'
Frojéct MAC Artificial Intelligence Group Memo 130 (April 1967),

LISP:

John McCarthy et al, LISP 1.5 PROGRAMMER'S MANUAL, Cambridge: The M,I.T.
Press, 2d Ed, 1965,

Edmund C., Berkeley and Daniel G, Bobrow, Editors, THE PROGRAMMING LANGUAGE
LISP: ITS OPERATION AND APPLICATIONS, Cambridge: The M,I,T, Press
1964,

