MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FROJECT MAC

Artificial Intelligence

Hemo. Ne. 151 January 1988,

Functiunal'ﬁhntrnctinn In LISP and PLANMER

Carl Hewire.

2.

Presented hare Is part of the graduate work that | am
dolng In the much broader area of protocol analvsls (see
A.l, memo 137), The goal of functlonal ahstraction Is to
find a procedure that satlsfles a glven set of fragmentary
protocols.0 Thus functlonal abstractlion I1s the Inverse
operation to taklng a set of protocols of a routline, The
basie technliqua In functlional ahstraction (whiech we shal)
call IMAGE) Is to find a minimal homomorphle Image of the
set of fragmentary protocols, It Is Interastineg to note
that the technlaue of finding a minimal homomorphic Imase I3
the sama one used to compute the schematlzed goal tree In
A, 1. memo 137 . We define (a ¢{ b) to mean that a Is erased
and b Is wrltten In Its place. We shall use (a : b) to mean
that the value of b Is a, Conslder the folowlng protocol

for a function f:

arguments of £ = (3)
(() < 1)

() : (pred 3))

{1 < (3 : (fen 3 1))
(3 < (2 : (fen 3)))
() : (pred 2))

(3 € (6 : (fen 2 3)))
(2 ¢ (1 (fen 2))

({) < (pred 1))

(6 < (6 : (fen 1 6)))
(1 < (0 : (fen 1))
(T : (pred 0))

value of f = §

If IMAGF knows about the functions zerop, times, and subl
then 1t will find the following minimal homomorphle Image

for the above protocol:

(defprop £

(lambda (argl) (prog (templ)
(setq templ 1)

labell (cond ((zeropn argl) (return templ)))
(setq templ (times argl templ))
(setq argl (subl argl))

(go labell))) expr)

The next example makes use of MATCHLESS (saa A, memo
137). We use dashes to mark the ends of a frasment of a2
11st, The atoms *varse, =var=, and var have the affact
that they put the pattarn varlable which follows them In thae
var mode,

arguments of £ = ({(- =))
(T : (pred (- =) () 1)

value of £ = T

argumants of f = {((=3=))

(() : (prad (=a=) ())

({=a=): (fen (€ () < a) (-a- ¢ = =}) (=a=)))
(T = (prad a a))

(T : (pred (- =) ())

value of f = ()

arpuments of f = ((=h=))

C0) ¢ (prad (=h=) ()))

C (=b=) : (fen (€ () < B) (=h= ¢ = =} } (=b=3 1)
({) : (prad b a))

(T : (prad (= =) (1))

value of f = ()

arguments of f = ((=3 h=))

(() : (pred (=a b=) () })

({=a b=) : (fen ([() ¢ a) (=3 h- ¢ =b=)) (=a b=}))
(T : (pred a a))

(() & (pred (-h=) ())

((=b=) : (fen ((a ¢ B) (=h= ¢ = =1} (=h=) 1)

C () < (pred b a))

(T : tpred (= =) () 1)

value of f = T

In this casa IMAGE glves

(defprop €

(mlambda (*argl) (prog (=templ)

Tabell (eond ((assipn? (*arzl) ()) (return T

(asslimn ((=var= =templ) (#vars *arml)) (=argl))

(econd ((asslzn? =tampl a) (zo Tabel2)))

label? (cond ({asslgn? (=argl) ())} (return ()))
{asslgn (({=var= =templ) (*var+* *argl)) (*argl))
{cond ((asslgn? =templ a) (go lahall}))

(g 1aballl)) faxpr)

In the above mlamhda ecauses (*argl) to be assli=zned to the
1ist of arguments of f, The renerallzed asslipament
statements of MATCHLESS are "asslegn" and "asslgn?".

For some purposes In functlonal abstractlon, minimal
hoamaomarphle Images are not lIdeal representatives of
functlions. The predlcate sequence of an elemant of a
protocol Is defined tn be the seaquance of valuess taken on by
the pradicates of tha protoeol from the bapinning of the
protoecol to the element, If h Is a homomorphism then we say
that h Is a branch praserving homomorphism If h{a) = hi(hk)
implles that the predicate sequence of a Is an Inltlal
segment of the predicate sequence of h or vice-varsa, We
shall call a minimal branch preserving homomorphle Imame a

bimaga, For example a blmage for the ahove protocol s

(defprop f

{(mlambda (*argl) (prog (=stampl)

labell (cond ({asslgn? (*argl) ()} (return T)))}
{asslgn (({=var= =templ) (#var+ #argl)) (wargl))
(eond ({assTgn? =templ a) (go label3)))

label2 (cond ({asslen? (wargl) ()) {raturn ()))

(asslgn ((=var= =temp2) (wvar+ +argl)) (*argl))
(cond ((assign? =templ a) (go Tabell)))
(go laball)

label3 (cond ((asslgn? (*arpl) ()) (return ())))
(assipn ((=var=s stampl) (*yar+ *argl)) (»argl))
(cond ((asslgn? stempl a) (go laball}))

(go Vabell))) fexpr)

Bimages have certaln advantages and disadvantagas compared
to Images. As Illustrated above Images are almost always
smaller. On the other hand bimages take less time to
compute and are easler to modlfy In case of error. To
correct a bimage It Is necessary only to break some of the
feed back loops and Insert more codne,

One of the most Important appllicatlons of funetlonal
abstractlon Is for the problem of making the robat do soma
task after It has seen saveral examples of how tha task 1Is
done. Suppose that we want the robot to take al] the blacks
out of a box and stack them In a tower at tha place P, Wer
place three cubes In the box and then take them out ona by
one as the robot watches and stack them at P, After
observing the example we would 1lke for the machine to writa
out a protocol something 1lke the followlng:

{(In blockl box)
{(In block? hox)
{(In block3 box)
(erase {(In blockl box))

(assert (above blockl P))
{assert {on blockl tabla))
(arase (In hlock? hox))
(assert (above block? P))
(assert (on block? bloekl))
(erase (In bloek3 hox))
(assert (above block3 P))
(assert (on block3 block2))

(finlshad)

If we did the same thing agaln only with twa Blocks Instead
of three at the place 0 we would axpact the folowlng

protocol

{In blocks box)

{(In bloek5 hox)

(erase (In blockhy box))
(assert (above blockhk 0))
{assert (on blockk tahla))
(erase (In block5 hox})
{assert (above bloek5 0))
{assert (on bloek5 blockh))

(finlshad)

We compute the followlng Image of the above protocols:

{thprog ($varl $var? %var3d)

(consequent (tower at $varl))

(thcond ({not (erase (In $var? hox))) (finlshad)})

{assert (ahove Svar? $varl))

(assert (on $var? tahle))
labell (asslign (var $var3) $var?)

(thcond ((not (erase (in (Svar$ $var?) box))
(finished)))

(assart (above $var? $varl))

(assert (on Svar2 $var3))

(ro labell))

We can convert the above Imapge Into a funetlon that hullds
towers by Interpolating the commands necessary to carry out

the state changes:

(thprog ($varl $var2 $var3)
(consequent (tower at $varl))
(theond ((not (erase (in $var? box))) (finlshad)))
(plckup $varl)
{assert (above $var2 $varl))
(move-to $varl)
(assert (on Svarl tahlae))
(lowar=-arm=to=contact)
(release-cuba)
(chack=scene (on $var? tahle))
labell (asslign (var Svar3) $var?)
(theond ((not {erase (In ($vars Svar?) bhox))

(finlshed)))

(plckup $var?)

(assert (above $var? $varl))
(move-ta Svarl)

(assert (on Svar2 $var3))
(lower-arm=to=-contact)
{release=cuha)

(check=scene (on $var? Svar3))

(ro Taball))

| MAGE Is an Important technlique for fusactlonsd
abstractlon for a wvarlaty of reasons, IMAGE 1is self
appllicable In the sensa that glven IMAGE, we can have the
machine ahstract IMAGE from frasmentarv protocols of | MAGE ,
PLANNER Ts well sulted to the task of constructing imaxas
slnea It permits small mistakes to he madea In tha
construction without causing fatal errors. It Is useful to
allow declarations to he Ineluded with the set of protecols
to be analyzed, In the case of tha factorial funcetlion, 1t
s very wuseful to know that in the set of protocnls
arithmetic Is assumed to be done base 2, OF coUrse once an
Imare has heen constructed It ecan used to build further
images. Thus IMAGE shows one way In whieh nrovious results
can be Inecorporated to bulld up mare compl feated funetlons,
The protocol plven ahove whose functlonal ahstractlan
happans to be the factartal function [= a roae sxample of
how 1t can be very misleadlng to sAay that comnutars can Ao

only what thevy are precisealy told how tn da,

