MASSACHUSETIS INSTITUTE OF TECANNLOCY
FROJECT MAC

Artificial Intelligence Project
Memo ¥, 1532 January 1948,

PDP-6 LAF

Jon L White

LONTENTS

Introduction
Format of LAP Usage
Yormal and Error Returns
Assembly Constituents
PIP-6 and UU0 Instructions
Appendix: Symbols Predefined Wy LAP

Availability

Example

W 00 -1 ¢ ORCA P

FDP-E LAP 2

1NTROUCTION

IAP iz a LISP FEXPR (or TSUER when complled) which is executed
primarily for its side effect -- namely assembling a symbolic lietine
into core as & machine lansuare sulroutine, £z such, it 1z sbout the
most convient and rapld way for & LISF user to add machine lansunge
primitives to the LISP system, especially if the functions in question
are in & developmental stage &nd are reasonably small (e.r. I-500
instrmuctions), Also, the LISF compller currently sives its result as &
file of IAF code, which may then b%e loaded into core hy LAP.

Tirtually any function definition, whether YW DEFFROP, LABEL, or
TAP, 1s an extension of LISF's primitives; and m: ip any actual
programming lanfusge, the side-effects and glotel interactions are often
of primary importance. Because of this, and because of the inherently
broader range of machine instructions &nd data formats, & function quite
easily described and written in FDP-E machine lansuese zay accomplish
what 1s only most painfully and artificlally written in LISP. One must,
then, consider the total amount of code in each lawuage to accomplish a
fiven task, the amount of commentary necessary to clarify the intent of
the task given the prosram (in this sense, LISP code rates wvery hish =--
a major bepefit of the confines of 1lisp is that & good progFram SErves AS
its own comment, and usuelly needs no further elucidation), and other
considerations of programming conviénce,

Experience has shown that mormy such subroutines may be asscmbled
by &2 small system, 1.2, one such as the current LAP, without conditionsl
essembly, macro, or sophisticated 1iteral peneratlon features, These
latter three features are the me jor differences in lanruspe belween LAF
and MIDAS; the major operatiomal differences are (1) IAP it one-pass and
NITWS 1s two, (2) IAP uses the LISP READ function while MIDAS is more
efficient, and (3) LAP assenbles directly into the bimary program space
of the TLISP seystem using it while MIDAS files its &ssembly on &
rerirheral device (which must then be loaded YW STIME or the ITS version
of IDT). Thue one must comsider the scope of his task in relation to
the lanpuare desired and the operational ease preferred,

Unfortunately neither IAP nor the system reported in A.I. memo
. 127 solves the protlem of loadine and munnine arbitrary blnary
prograps Jointly with LISF, Gomethine like 2 runtime primitive STIMK is
needed for LISP, &nd such wmey have to wait for further development in
the sultipropramming capabilities of the POP-C systems,

It 1z assumed that the user of PDP-6 [AP i famillar with A.L
Meporanda Yos. 116A and 144, which outline the use of the MAC PFIP-6
LISP,

POP-C LAP 2

FORMAT OF LAP USAGE

Acall to TAP is even a little more non-standard than indicated
In the iatroductlon in that wmot sll the arsuments are included in the
=expression which commences agsembly =- [AF repeatedly calls READ,
cperating on the S-expresions read=in (from the current input deviee and
file), wuntil = WIL is encounterd, &t which time assembly is terminated,
Only after successful termination of assembly is FPORC updated and the
correct flag (SUZR, FSUER or LSUBR) inserted on the property 1list of the
atoms which nome the newly assembled functlons. Thus & call to LAF

world look like the sequence

(LAF FOO SUBR)
(DEFEYM & 1)
(HLRZ &, 0(4))
{POPJ F

NIL

insteed of the followine written in & h¥ypothetical style after 7000 AP

(1AP ((FOO SUBR 2)
{HLRZ &, O(A))
(POEJ B))
((HLRZ . 554 _27.)
(POPJ . 263_27.)
(4 . 1)

(P . 14)))

The most serious drawback to the latter style 1s the strain placed aon
free storage, since the entire expression would have to be in core
before eveluation could begin,

Bence evaluation of (LAP neme indicater) or (LAP name indicater
address update) begins & LAP ascembly for & function with name "pame"™ of
type "indicator™ (such as SUBR, FSUBR, or ISUER) &nd with entry point
the firet location assembled into; if the second form is used, assembhly
berine in the core location "address™ instead of FPORG., Ordinarily at
ggsembly termimation, BPORG is set to the address following the last one
agsembled into Wy LAP, Wt if "epdate™ is ¥IL, EPORG iz undis turbed,

IAP acts on the guantities it reads &e follows:

QUANTITY ACTION

MIL
Terminate assembly and return. Literal gFenerated

cons tants are assembled Into core, symbol
definitions from DEFSYM are flushed, and worthless
atoms are removed fror the oblist. A common error
is to forsei that carriage return and FFO-Fare not
atom ‘treak cheracters; WIL should be followed W a

Epace,

atom

(IEFSYM atom sexp

(ENTRY name2)

PIP-E LAF 4

Aselen "atom™ an sssembly symbol walue equal to the
address of the current asgenbly location: no
additional assembly takes place. ‘Thus one Uses
atoms for symbolic location tass and under certain
conditions these npames are entered in DDT's symhol
table (see below).

« « « atom sexp)

Assign "atem " an assembly symbol value equal te
{EVAL sexp J; no additionel asembly takes place, and
these names are not entered into DDTs symbtol table,

Sets up "pame2"™ ag a function of type indicated in
the call fo IAP and with enty point the curreat
assembly locatiomy mo further assembly takes place,

{ COMMENT list=-frasment)

(EVAL sexp

{SYMROLS t=or=-nil)

(x)

(x

ligt=fraesment)

B & neat technique, no unnecessary atoms remain on
the oblist after assembly; however, durlng assembly,
there mist be encugh full word space to hold wprint
names for all the atoms and to hold the mumerical
values of a few LISP mumbers,

.+ » SEXD)

The expressions "sexp ™ to "sexp " are evaluated, in
order left to right, Wt otherwicse no ascembly takes
place. General commutations and side effects may
take place here, Mt caveat enptor cannot be too
strongly intoned.

WIL turne off and non-HKIL turns on the IAF feature
which pasgzez alons symbelie lecmtion names to the
Job symbol teble; currently all symbtols so entered
are treeted as global, Mt at some time in the
future this may bte modified to permit flexible
duplication of symbols in several proframs. If the
STMEDLS peeudo-op appears amwhere ip an assembly,
then the mames of functions thos defined will ke
transmitied to IODT. WOTE WELL: Althoush LISP etloms
mey be composed from upwards of 80 characters, those
used as tars which are entered in the symbol table
thauld include only upper=case letters and digits,
and only the first six charecters of the atom’s
PHAME are relevant to this feature,

x (which is not among IEFSYM, ENTEY, COMMENT, EVAL,
or SYMBOLS) 1s ewnloated 'ty LAPEVAL and the
mmerical result stored 1in the current assembly
location, which is then advanced W one, Tor the
peening of LAPEVAL, zee the next sectlon on assembly
constituents, "list=fragment"™ {8 ignored and mey
serve as commentary (see note above for COMMEYT).

PIP-E LAF £

{x ¥}

(x ¥y ; list-fragment)
Same as immediately atove, Wit (ISE (LAPEVAL ¥) 23,)
iz added into the stored result,

(x ¥ z)

(x ¥ 2§ list fragment)

same a8 immediately above, Wit (B00LE 1 (LAPEVAL z)
Trerer) is added into the stored result, Wrward
reference symbols may appear only in the z field;
that is, 1f a symbol i wuszed before it is defined,
it must be used only in the address pert of the
imstruction,
(x ¥y z w)
(x¥y zw i lizst-fragment)
Samé as immediately above, mit the mumerical wa Jue
of (LAFEVALw), treated as a Z6-Bit quantity, is
swapped left-half for rieht and then added ints the
stored result,
LAF initlally checks whether or not the atom * 15 & member of the list
forming the mssembly word, and if so sets the indireect Mt (bit 12) apd
deletes the * from the indicated asseably: thus an ° does net count as
one of x, ¥, 2, oT W,

One notices that there is a strone similarity hetween IAP format
and MIDAS format, an essential difference belng that IAP processes
assembly quantities "in order"”, lefi=to-right, to determine which is the
AG field, which the address field, and which the index fleld, (me must
remember that the LISP resd routine imposes a certaln dissimilarity 1in
text for the two assemblers, since “space", "comsa™, "left paren”, and
"rieht raren™ are the only break cherscters for atom names , Hence
Spaces are necessary on both sides of a semi-colon or at-sign when they
are used as described above, and the AC field mey mot te opmitted in
instructions 1ike (JRST O ADDRESS), The index field need not b
enclosed in parentheses as in MIDAS, tt in reneral there is no harm in
doine g0 (see “aryother list™ on page 7),

MORMAL AND ERROE RETURKS

Yormally, after terminatine assembly, IAP returms a 1ist
containing the current value of EPORG, and the names of the subroutines
Just assembled (there may be more than one entry for the routine
aseembled, the principle entry is declared in the call to LAP and others
may be declared 'ty means of the pseudo-operation EWTRY) If after
assembly, sowe referenced symbols remain undefined, the messaee "UNDEF
SYMEILS", followed W the offendine atoms, will be printed out, If
there were any multiple-defined symbols, “AMBIC SYMBOIS™ is rrinted
along with a list of the offenders. One perticular disester caught ty
IAP is indicated Wy the messare "BIWARY PROCRAM SPACE EXHAUSTET"M,

Slnce LAF uses so many free variables (and for seversl other
reasons), oné should allow a call to AP to exit by itself rather than
stepping it with "G or some other ruse,

ASSEMELY COMSTITUENTS

Fach of the parts of anassemdly word (x, ¥, 2, or w) is
evaluated Tty LAPEVAL, 1in the context of the mssembly., The assembly
quantities whose CAR 1s among DEFSYM, EVAL, COMMENT, and SYMBOLS, may be
termed pseudo-ops in that they do not sive rise to an assembly word tut
merely #ive directions to the assembler., @eand ; are treated specially
ly IAP and are not considered to be assembly constituents,

QUANTITY TALUE

mimber
Fixed=-peint numbers always evaluate to themselves,
Floatinz-polnt numabers in en address field may
Produce Rendeom Results,

NIL
same as (QUOTE MIL).

"
The address of the current assembly location, Same
as . 1In MIDAS,

atom
Except for @, ;, ®*, and WIL, a1l atoms evaluate to
thelr assembly symbol value; i.e, (GET (QUOTE ntom)
{:'.:'UEITE gTM)).

(QUOTE sexp)

(MAKWUM (QUOTE sexp) (QUOTE FIXMUM)). Tor example,
(MOVEI 1, (QUOTE (SMALL LIST))) assembles intec an
instruction which moves & pointer to the 1list
(SMALL LIST) into accumelator 1,
{SPECIAL aton)

Provides & pointer to the walue eell of "atom™,
Thus (MOVE 1, (SPECIAL ¥00)) moves the walue of OO
into 1 instead of a pointer to TOO, as would happen
if (QUOTE FOO) were vsed. In addition

(MOVE 1, (SPECIAL RAR))

(MOVEM 1, (SPECIAL ¥0O))
accomplishes in a SUER what (SET) ™0 BAR) dees in
an EXFH.

(FUNCTION atom)
Esentlally the same as (QUOTE atom), Wit is used to
emphaslze that "atom™ ie used as &2 function name
(see section en UUD instructions).

(2 xy zw)

Iiteral generation feature, like {xzy, =z (W)} in
MIDAS, Assembles (x ¥ z w) as described above and
provides the sddress thereof. Similarly, the forms
(2 x)y (Exy), (% v z) ey be used, & literal
constant is restricted to the z-field (or address
field) of a LAP insturction, Mt may appear mested
to eny finite depth., @r example, (MOVE 1, (% 1.0))
moves & machine fleatine point mumber into 1,
whereas (MOVEI 1, (QUOTZ 1.0)) moves & LISP mumber,

anyotherlist
In this case LAPEVAL merely sums the LAPETAL of
each member of the list, Tr example, (JRST O (#
=3)) 1s equivalent to JRST .3 in MIDAS, and
(MOVE A, ~4(A)) mssembles into the same thing as
(MOVE 1 -2 &),

EDE-C ARD UUO INSTRUCTIONS

Because of the current {nefficlency of the TAP s¥ymbol table, not
all PIP-E instructions are predefined, Wt only those 1isted in the
appendix. Within a egiven call to LAP, the pseud-op TEFSTM may be used
to define additional instructions ms well as other local symbols which
are fthen flushed after assesbly terminaticn, A top level function 0PFS
is provided with LAF so that perpament definitions may be mede for often
used symbols. Evalvating

(OPS atom sexp . . . aton SEXP)
takes the same action as DEFSYM, Mt these definitions are not flushed
after a call to TAP (see discusslon of HEMIAF on pare B under
“"Avellability™). Permanent definitions mey te lemporarily reset Ty
DEFSYM, and wpon termination TAP will restore the previous values,

ur UUD (trap) instructions are predefined ip IAP, which
provide the means for IAF assembled code to call other LISP furctions.
The form for calling EXPR's, SUR’s, FEXPR's, and FSUBR's is

(CALL n (FUNCTION mtom))
where n is 17 if "aton™ 1s a FSUER or FEXPR and the argument is in
accumulator 1; n is equal to the mmber of arguments when calline a SUER
or EXFR and mey not be greater than five, ‘The arsuments should be
placed successively in accumulatore 1 ta 5, To eall an ISUERR, place a
peinter to the return address on the PDL, followed Wy the arpuments to
the function, last on top; place in accumilator 6 the nepative of the
mmber of arpuments, Then do
{JCALL 16 (FUNCTION atom)).

Wot only must & LAF coded routine obey these conventions, ‘tmt
may &lso expect to find its arguments, in each case, as described,
Accumulators 1 through 7 are the only ones avallahle for use within a
subroutine, which 1s expected to return a value in accumilator 13
however accumulator 14 (F) iz still used as the system push down liet,

When a UUD is executed, the system will call the interpreter §f
“atom™ does not have a SUBR or FSUBR flae on its Property list; 1if it
does, however, the system will execute a PUSHJ (in the case of CALL and
CALLF) or e JAST (in the case of JCALL and JCALLF) to the sppropriate
rode, In favorable conditions, the UUOD instruction will actually te
chanped, in core, to a PUSHI or JRST, tut in no case is CALLF or JCALLF
ever changed, The F forms are ueed to insure that the interpreter will
be called, under conditions such as calline a FUNARG. Eveluatine
(WOUUQ T) inhibits the irstruction-modify feature zo that traceing may
be utilized durlme prosram checkout.,

AFPFEHDLX

STMBOLS PRE-TEFINED 1N LAP

(1) Move type instructions

MOVE MOVEI MOVIM MOVNI EXCH MOVSS

(11) Wmlf-word
HLAZ HRAZ HRRM HAIM HRRIS HLLZS HRL7I

(11) Conmditiomal branch
JEST JUMPE JUMPN JSP
SKIPN SKIPE S50J% SOJE AOSL
CAIE CAIN CAILE CAME CANN CAMLE

(1¥) Arithmetic
ADD SUE ADDE ADDI SURL IMUTI

(v) Stack
PUSH FPUSHJ POFP POPJ

(v1) TUO
CALL JCALL CALLF JCALLF *CALL

(vii) Miscellaneous
IFE LDB CLEARM CLEARE SETOM
TDZA TLO THRNE ANDI

(viil) Other symbol definitions
P INUM SPECBIND SPECSTR WMUMVAL FIOAT FIUA TFIR

AVAIZASILITE

A symtolic version of LAP iz found on the tape called LISP 2YS
as file ENGLSH LAP, and will sometimes reside on the COMMOY disk under
the same nape., [AP actually bootstraps some critical porticns of ftself
a¢ SU3R'e and requires about 250 (octal) cells of binary proeram space,
LAF occuples a large amount of storape, and operates more quickly when
there is plenty of full-word spece available, & top=level function
REMLAP 1is provided to reclaim some of the storare consumed W LAP and
its pecullar atoms =-- (REMLAP) will remove the EXPR's and FEXPR s
(except for OPS and KEMIAP) tut leave permanent symbol definitions
intact; (REMIAP T) REMOE's about 100 atoms pecullar to LAP and all atoms
with a 5YM property; (REMLAP NIL) merely removes the SYM praperty from
any aton which has one,

A compiled version of IAF existe on the LISP SYS tape as £1le
C TAP, which rune about twice as fast as the symbolic version {much time

1 spent in READ and hence the time savines of complled code is pot sg
large). Thiz version requires about 1350 (octal) cells of bi na ry
program srace, and performs (REMIAP) after tootstrepine in the greater
part of the nssociated LAP functions as SUBRS. lJeedless to say, it is
much slower in loading,

There is some possibllity that LAP mey be included with another
group of little-used LISP routines, which will be & mart of the ttandard
LISP system and which may be execised under progran contrel., Mt this i
E1i1) unecertain,

ELAMPLE
(UREAD C LAP COM)
COoM

qu
LOADING/ AP
BEGIN ZOOTSTRAP
5/ PHASES 2
FINISHED

(UREAD IAP XMPL DIN)
o |

0

UNDEF SYMBOLS

[HLRWISW)

AMEIG STMBOLS

{ HRLM)

“TiP
(66372 DPADD DISCNTRL)

see next page for listine, Although we have inadvertently
defined HRIM, which is already predefined by LAP, there is nothing to he
concerned about, since The message “ambig symbols™ merely indicates that
the symbol definition of HRIM was reset durine azcembly end restored to
its top level state after termination, In this case no chanse at &1}
was effected. The "undef symbols™ message helps us to find &n error =--
the incorrect spelling of ELFWISW an line 10,

The 1ine "“VEF" 1s printed W DDT upen its return to LISP just
after making additions to the Job symhol table. The symbols transmitted
were DISCNTRL, LISTOR, XIT, 1, HLFWIS, and TPATD,

[LAP DISCNTRL SUBR)
[SYMBOLS T)
(DEFSYM HRLM 506~33 AQSE 35233

-~

DI&STOP

1T
|
HLFWDSH

Al B 2)

(JUMPE A, DISTOP)

{MOVE]l Ba (QUOTE SUBRI)

{CALL 2 (FUNCTION BET))

IMOVE &s =104}

(HREM As I3

(CLEARM 0 HLRWDSW 3 0 MEANS STORE NEXT IN LEFT)
({HOVEI As 30117 2 DISPLAY PARAMETER WORD)
[JRET O BTR)

(PUSHJ P, STR)

(MOVEL As 3000 £ STOP CHARACTER)

(JRET O STR)

(ol

(o)

(SYMBOLS NIL)
(ENTRY DFADD)

STR

CHX

SKP1

NIL

(SUBL A, 1)

{ANDI Ay 1777)

(JUMPE B, CKX 3 0 MEANS X QUANTITY)
tADD] A, 220000)

(SHIPN O HLFWDEBH 2 NOMNZERD MEANS Y}
(JRET 6 SKPi1)

(ADSE @ HLFWDSEW)

(JRET O (= 4))

iHRRM ® As])

{ADSE 0 1)

(PORJ P}

{HRLM &s ® [3 POSITION OF ® [N LIST DOESNT MATTER)
(SETOM 0 HLFWDSH)

{FORJ P)

(ADD] ks 22000)

(SEIPN O HLFWDSW)

(JRST O 8TR)

(ADSE 0 1)

(ADSE 0 HLFWD3W)

(BETOM 0 HLFWODEW)

IJRST O STR)

PIP-E TAP 10

