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Abstract

For many types of learners one can compute the statistically \optimal" way to select data. We review how
these techniques have been used with feedforward neural networks [MacKay, 1992; Cohn, 1994]. We then
show how the same principles may be used to select data for two alternative, statistically-based learning
architectures: mixtures of Gaussians and locally weighted regression. While the techniques for neural
networks are expensive and approximate, the techniques for mixtures of Gaussians and locally weighted
regression are both e�cient and accurate.
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1 ACTIVE LEARNING {

BACKGROUND

An active learning problem is one where the learner has
the ability or need to in
uence or select its own training
data. Many problems of great practical interest allow
active learning, and many even require it.

We consider the problem of actively learning a map-
ping X ! Y based on a set of training examples
f(xi; yi)g

m
i=1, where xi 2 X and yi 2 Y . The learner

is allowed to iteratively select new inputs ~x (possibly
from a constrained set), observe the resulting output ~y,
and incorporate the new examples (~x; ~y) into its training
set.

The primary question of active learning is how to
choose which ~x to try next. There are many heuristics for
choosing ~x based on intuition, including choosing places
where we don't have data [Whitehead, 1991], where we
perform poorly [Linden andWeber, 1993], where we have
low con�dence [Thrun and M�oller, 1992], where we ex-
pect it to change our model [Cohn et al, 1990], and
where we previously found data that resulted in learning
[Schmidhuber and Storck, 1993].

In this paper we consider how one may select ~x \op-
timally" from a statistical viewpoint. We �rst review
how the statistical approach can be applied to neu-
ral networks, as described in MacKay [1992] and Cohn
[1994]. We then consider two alternative, statistically-
based learning architectures: mixtures of Gaussians and
locally weighted regression. While optimal data selec-
tion for a neural network is computationally expensive
and approximate, we �nd that optimal data selection for
the two statistical models is e�cient and accurate.

2 ACTIVE LEARNING { A

STATISTICAL APPROACH

We denote the learner's output given input x as ŷ(x).
The mean squared error of this output can be expressed
as the sum of the learner's bias and variance. The vari-
ance �2ŷ(x) indicates the learner's uncertainty in its esti-

mate at x.1 Our goal will be to select a new example ~x
such that when the resulting example (~x; ~y) is added to
the training set, the integrated variance IV is minimized:

IV =

Z
�2ŷP (x)dx: (1)

Here, P (x) is the (known) distribution over X. In prac-
tice, we will compute a Monte Carlo approximation of
this integral, evaluating �2ŷ at a number of random points

drawn according to P (x).
Selecting ~x so as to minimize IV requires comput-

ing ~�2ŷ, the new variance at x given (~x; ~y). Until we

actually commit to an ~x, we do not know what corre-
sponding ~y we will see, so the minimization cannot be
performed deterministically.2 Many learning architec-

1Unless explicitly denoted, ŷ and �
2

ŷ
are functions of x.

For simplicity, we present our results in the univariate setting.
All results in the paper extend easily to the multivariate case.

2This contrasts with related work by Plutowski and White
[1993], which is concerned with �ltering an existing data set.

tures, however, provide an estimate of P (~yj~x) based on
current data, so we can use this estimate to compute the
expectation of ~�2ŷ. Selecting ~x to minimize the expected

integrated variance provides a solid statistical basis for
choosing new examples.

2.1 EXAMPLE: ACTIVE LEARNING WITH
A NEURAL NETWORK

In this section we review the use of techniques from Op-
timal Experiment Design (OED) to minimize the es-
timated variance of a neural network [Fedorov, 1972;
MacKay, 1992; Cohn, 1994]. We will assume we have
been given a learner ŷ = fŵ(), a training set f(xi; yi)g

m
i=1

and a parameter vector ŵ that maximizes a likeli-
hood measure. One such measure is the minimum sum
squared residual

S2 =
1

m

mX
i=1

(yi � ŷ(xi))
2
:

The estimated output variance of the network is

�2ŷ � S2
�
@ŷ(x)

@w

�T �
@2S2

@w2

��1�
@ŷ(x)

@w

�

The standard OED approach assumes normality and
local linearity. These assumptions allow replacing the
distribution P (~yj~x) by its estimated mean ŷ(~x) and vari-
ance S2. The expected value of the new variance, ~�2ŷ, is

then:



~�2ŷ
�
� �2ŷ �

�2ŷ(x; ~x)

S2 + �2ŷ(~x)
; [MacKay, 1992]: (2)

where we de�ne

�ŷ(x; ~x) � S2
�
@ŷ(x)

@w

�T �
@2S2

@w2

��1�
@ŷ(~x)

@w

�
:

For empirical results on the predictive power of Equa-
tion 2, see Cohn [1994].

The advantages of minimizing this criterion are that
it is grounded in statistics, and is optimal given the as-
sumptions. Furthermore, the criterion is continuous and
di�erentiable. As such, it is applicable in continuous
domains with continuous action spaces, and allows hill-
climbing to �nd the \best" ~x.

For neural networks, however, this approach has many
disadvantages. The criterion relies on simpli�cations
and strong assumptions which hold only approximately.
Computing the variance estimate requires inversion of a
jwj � jwj matrix for each new example, and incorporat-
ing new examples into the network requires expensive
retraining. Paass and Kindermann [1995] discuss an ap-
proach which addresses some of these problems.

3 MIXTURES OF GAUSSIANS

The mixture of Gaussians model is gaining popularity
among machine learning practitioners [Nowlan, 1991;
Specht, 1991; Ghahramani and Jordan, 1994]. It as-
sumes that the data is produced by a mixture of N Gaus-
sians gi, for i = 1; :::; N . We can use the EM algorithm

1



[Dempster et al, 1977] to �nd the best �t to the data,
after which the conditional expectations of the mixture
can be used for function approximation.

For each Gaussian gi we will denote the estimated in-
put/output means as �x;i and �y;i and estimated covari-

ances as �2x;i, �
2

y;i and �xy;i. The conditional variance of
y given x may then be written

�2yjx;i = �2y;i �
�2xy;i

�2x;i
:

We will denote as ni the (possibly fractional) number
of training examples for which gi takes responsibility:

ni =

mX
j=1

P (xj; yjji)PN

k=1P (xj; yjjk)
:

For an input x, each gi has conditional expectation ŷi
and variance �2ŷ;i:

ŷi = �y;i +
�xy;i

�2x;i
(x� �x;i);

�2ŷ;i =
�2yjx;i

ni

 
1 +

(x� �x;i)
2

�2x;i

!
:

These expectations and variances are mixed according
to the prior probability that gi has of being responsible
for x:

hi � hi(x) =
P (xji)PN

j=1P (xjj)
:

For input x then, the conditional expectation ŷ of the
resulting mixture and its variance may be written:

ŷ =

NX
i=1

hi ŷi;

�2ŷ =

NX
i=1

h2i�
2

yjx;i

ni

 
1 +

(x� �x;i)
2

�2x;i

!
:

In contrast to the variance estimate computed for a neu-
ral network, here �2ŷ can be computed e�ciently with no
approximations.

3.1 ACTIVE LEARNING WITH A
MIXTURE OF GAUSSIANS

Wewant to select ~x to minimize
D
~�2ŷ

E
. With a mixture of

Gaussians, the model's estimated distribution of ~y given
~x is explicit:

P (~yj~x) =

NX
i=1

~hiP (~yj~x; i) =

NX
i=1

~hiN (ŷi(~x); �
2

yjx;i(~x));

where ~hi � hi(~x). Given this, calculation of
D
~�2ŷ

E
is

straightforward: we model the change in each gi sep-
arately, calculating its expected variance given a new
point sampled from P (~yj~x; i) and weight this change by
~hi. The new expectations combine to form the learner's
new expected variance



~�2ŷ
�

=

NX
i=1

~h2i

D
~�2
yjx;i

E
ni + ~hi

 
1 +

(x� ~�x;i)
2

~�2x;i

!
(3)

where the expectation can be computed exactly in closed
form:

~�x;i =
ni�x;i + ~hi~x

ni + ~hi
;

~�2x;i =
n�2x;i

n+ ~hi
+

n~hi(~x � �x;i)
2

(n + ~hi)2
;



~�2y;i
�

=
n�2y;i +

~hi�
2

y;i(~x)

n+ ~hi
+
n~hi(ŷi(~x) � �y;i)

2

(n+ ~hi)2
;

h~�xy;ii =
n�xy;i

n+ ~hi
+

n~hi(~x � �x;i)(ŷi(~x)� �y;i)

(n+ ~hi)2
;



~�2xy;i

�
= h~�xy;ii

2
+
n2~h2i�

2

y;i(~x)(~x� �x;i)
2

(n + ~hi)4
;

D
~�2yjx;i

E
=



~�2y;i
�
�



~�2xy;i

�
~�2x;i

:

4 LOCALLY WEIGHTED

REGRESSION

We consider here two forms of locally weighted regression
(LWR): kernel regression and the LOESS model [Cleve-
land et al, 1988]. Kernel regression computes ŷ as an
average of the yi in the data set, weighted by a kernel
centered at x. The LOESS model performs a linear re-
gression on points in the data set, weighted by a kernel
centered at x. The kernel shape is a design parameter:
the original LOESS model uses a \tricubic" kernel; in
our experiments we use the more common Gaussian

hi(x) � h(x� xi) = exp(�k(x� xi)
2);

where k is a smoothing constant. For brevity, we will
drop the argument x for hi(x), and de�ne n =

P
i hi.

We can then write the estimated means and covariances
as:

�x =

P
i hixi

n
; �2x =

P
i hi(xi � x)2

n
;

�y =

P
i hiyi

n
; �2y =

P
i hi(yi � �y)

2

n
;

�2yjx = �2y �
�2xy

�2x
; �xy =

P
i hi(xi � x)(yi � �y)

n
:

We use them to express the conditional expectations and
their estimated variances:

kernel: ŷ = �y;

�2ŷ =
�2y

n

LOESS: ŷ = �y +
�xy

�2x
(x � �x);

�2ŷ =
�2
yjx

n

�
1 +

(x� �x)
2

�2x

�

4.1 ACTIVE LEARNING WITH LOCALLY
WEIGHTED REGRESSION

Again we want to select ~x to minimize
D
~�2ŷ

E
. With LWR,

the model's estimated distribution of ~y given ~x is explicit:

P (~yj~x) = N (ŷ(~x); �2yjx(~x))2



The estimate of
D
~�2ŷ

E
is also explicit. De�ning ~h as the

weight assigned to ~x by the kernel, the learner's expected
new variance is

kernel:


~�2ŷ
�
=



~�2y
�

n+ ~h

LOESS:


~�2ŷ
�
=

D
~�2yjx

E
n+ ~h

�
1 +

(x� ~�x)
2

~�2x

�

where the expectation can be computed exactly in closed
form:

~�x =
n�x + ~h~x

n + ~h
;

~�2x =
n�2x

n+ ~h
+

n~h(~x� �x)
2

(n+ ~h)2
;



~�2y
�

=
n�2y +

~h�2y(~x)

n + ~h
+

n~h(ŷ(~x) � �y)
2

(n+ ~h)2
;

h~�xyi =
n�xy

n+ ~h
+

n~h(~x� �x)(ŷ(~x) � �y)

(n + ~h)2
;



~�2xy
�

= h~�xyi
2
+

n2~h2�2y(~x)(~x� �x)
2

(n+ ~h)4
;

D
~�2yjx

E
=



~�2y
�
�



~�2xy
�

~�2x
:

5 EXPERIMENTAL RESULTS

Below we describe two sets of experiments demonstrat-
ing the predictive power of the query selection criteria in
this paper. In the �rst set, learners were trained on data
from a noisy sine wave. The criteria described in this pa-
per were applied to predict how a new training example
selected at point ~x would decrease the learner's variance.
These predictions, along with the actual changes in vari-
ance when the training points were queried and added,
are plotted in Figures 1, 2, 3, and 4.

In the second set of experiments, we applied the tech-
niques of this paper to learning the kinematics of a two-
joint planar arm (Figure 5; see Cohn [1994] for details).
Below, we illustrate the problem using the LOESS algo-
rithm.

An example of the correlation between predicted and
actual changes in variance on this problem is plotted in
Figure 6. Figures 7 and 8 demonstrate that this cor-
relation may be exploited to guide sequential query se-
lection. We compared a LOESS learner which selected
each new query so as to minimize expected variance with
LOESS learners which selected queries according to var-
ious heuristics. The variance-minimizing learner signi�-
cantly outperforms the heuristics in terms of both vari-
ance and MSE.

6 SUMMARY

Mixtures of Gaussians and locally weighted regression
are two statistical models that o�er elegant representa-
tions and e�cient learning algorithms. In this paper we

0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

predicted change
actual change

Neural Network

Figure 1: The upper portion of the plot indicates the
neural network's �t to noisy sinusoidal data. The
lower portion of the plot indicates predicted and ac-
tual changes in the network's average estimated vari-
ance when ~x is queried and added to the training set, for
~x 2 [0; 1]. Changes are not plotted to scale with �ts.
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Mixture of Gaussians

Figure 2: Fit to data and correlation for a mixture of
Gaussians.

have shown that they also o�er the opportunity to per-
form active learning in an e�cient and statistically cor-
rect manner. The criteria derived here can be computed
cheaply and, for problems tested, demonstrate good pre-
dictive power.
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Figure 7: Variance for a LOESS learner selecting queries
according to the variance-minimizing criterion discussed
in this paper and according to several heuristics. \Sen-
sitivity" queries where output is most sensitive to new
data, \Bias" queries according to a bias-minimizing cri-
terion, \Support" queries where the model has the least
data support. The variance of \Random" and \Sensitiv-
ity" are o� the scale. Curves are medians over 15 runs
with non-Gaussian noise.
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Figure 8: MSE for a LOESS learner selecting queries
according to the variance-minimizing criterion discussed
in this paper and according to the heuristics described
in the previous �gure.
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