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Abstract

In this paper we describe a new e�cient algorithm for recognizing 3D objects by combining photometric
and geometric invariants. Some photometric properties are derived, that are invariant to the changes
of illumination and to relative object motion with respect to the camera and/or the lighting source in
3D space. We argue that conventional color constancy algorithms can not be used in the recognition of
3D objects. Further we show recognition does not require a full constancy of colors, rather, it only needs
something that remains unchanged under the varying light conditions and poses of the objects. Combining
the derived color invariants and the spatial constraints on the object surfaces, we identify corresponding
positions in the model and the data space coordinates, using centroid invariance of corresponding groups
of feature positions. Tests are given to show the stability and e�ciency of our approach to 3D object
recognition.
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1 Introduction

A typical
approach to model-based object recognition[14] matches
stored geometric models against features extracted from
an image, where the features are typically localized ge-
ometric events, such as vertices. Objects are considered
to have undergone a transformation in space to yield
a novel view for the image. To solve for this transfor-
mation explicitly, recognition methods use matches of
features to hypothesize a transformation, which is used
to align the model with the image and select the best-�t
pair of transformation and model. While this approach
to recognition has achieved considerable success, there
still remain practical problems to be solved.

One such problem is the computational complexity of
the method. For example, even with popular algorithms
(e.g.[20, 32]), to recognize an object withm features from
an image with n features, we must examine m3

n
3 com-

binations of hypotheses where m and n can be easily on
the order of several hundreds in natural pictures. A sec-
ond problem is the tolerance of the algorithm to scene
clutter. To verify the hypothesized transformation, ob-
ject recognition algorithms have to collect evidence of
actual correspondences characterized by that transfor-
mation. This is usually done by looking for nearest im-
age features around the transformed model features, or
equivalently by casting votes to a hash table of param-
eters, such as a�ne invariant parameters, leading to a
correspondence (e.g.[24]). In either case, when features
are extracted from the image with perturbations, and if
the image is cluttered so that the feature distribution is
too dense, it is di�cult to tell whether an image feature
thus detected is the one actually corresponding to the
model feature or if it just happened to fall close to the
transformed model feature. This issue has been exten-
sively analyzed, both theoretically and empirically, giv-
ing arguments about the limitations of geometric feature
based approaches to recognition (e.g.[15, 1, 14]).

Considering the limitations of conventional ap-
proaches to recognition which depend solely on geomet-
rical features, it is natural to start using other cues
than simple local geometric features. One such candi-
date is photometric information like color, because we
know that color often characterizes objects well and it
is almost invariant to the change of views and lighting
conditions. In parallel with geometry, color properties
of the object surface should be a strong key to the per-
ception of the surface. However, most authors who have
exploited color in recognition used it simply for segmen-
tation, e.g., [5, 29, 16], mostly because color is considered
to be more contributive in building up salient features
on the object surface than in giving precise information
on the location and the poses of the objects. Exceptions
include Swain[27, 28] and Nayar et. al. [26] who have
used photometric information more directly for recogni-
tion, respectively for indexing and matching processes.
At the same time, however, they abandoned the use of
local geometric features, which still is very useful in pre-
dicting the locations and the poses of the objects. Swain
used only a color histogram for representing objects and
matched it over the image to identify the object included

and localize its presence in the image. Nayar et al. pro-
posed a photometric invariant for matching regions with
consistent colors given the partitioned model and im-
age derived by some other color properties. Therefore,
it requires a preliminary segmentation of the image into
regions having consistent colors.

In this paper, we attempt to exploit both geometric
and photometric cues to recognize 3D objects, by com-
bining them more tightly. Our goal is to develop an
e�cient and reliable algorithm for recognition by tak-
ing advantage of the merits of both geometric and color
cues: the ability of color to generate larger and thus
more salient features reliably, as well as of adding more
selectivity to features, which enables more e�cient and
reliable object recognition, and the rich information car-
ried by the set of local geometric features that is useful in
accurately recovering the transformation that generated
the image from the model. To realize this, we have devel-
oped new photometric invariants which are suitable for
this approach. Then, we combine the proposed photo-
metric properties with the Centroid Alignment approach
of corresponding geometric feature groups in the model
and the image, that we have recently proposed [25]. This
strategy gives an e�cient and reliable algorithm for rec-
ognizing 3D objects. In our testing, it took only 0.2
seconds to derive corresponding positions in the model
and the image for natural pictures.

2 Some photometric invariants

In this section, we develop some photometric invariants
that can be used as strong cues in the recognition of
3D objects. The invariant is related to the notion of
color constancy, that is | whether in human or ma-
chine vision | the perceptual ability to determine the
surface re
ectance property of the target objects given
the re
ected light from the object surface in the recep-
tive �eld. If a color constancy algorithm could perform
su�ciently well, we could use it for object recognition be-
cause it would provide a unique property of the object
itself. Unfortunately, however, color constancy is gener-
ally di�cult to compute in practice, so we can not use it
by itself. The invariant property to be presented here is
e�ciently computed from the segmented/non-segmented
images at the same time as the geometrical features are
extracted.

2.1 Unavailability of color constancy

Color constancy is an underconstrained problem, as we
will see in the following. Let S(x; �) be the spectral
re
ectance function of the object surface at x, that is the
property we have to recover, let E(x; �) be the spectral
power distribution of the ambient light, and let Rk(�) be
the spectral sensitivity of the kth sensor, then �k(x), the
scalar response of the kth sensor channel to be observed,
is described as

�k(x) =

Z
S(x; �)E(x; �)Rk(�)d� (1)

where, generally, S is a function describing geometric
and spectral properties of the surface at x that can be
an arbitrary function and E could also be an arbitrary
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function of x and �. The integral is taken over the visible
spectrum(usually from 380 to 800 nm). The geometric
factor of the object surface, that is usually considered to
include the surface normal and the relative angle of the
incident and re
ecting light direction with respect to the
surface normal, is very crucial in the 3D world[18]. In
addition, there are also other confounding factors such as
specularities and mutual re
ections on the surface. With
these complexities, to perform color constancy, that is to
recover S(x; �), we need to limit the world to which it is
applied. To get a simple intuition of this, for example,
we might insert an arbitrary scalar function C(x) in (1)
so that we have[33],

�k(x) =

Z
fS(x; �)C(x)gfE(x; �)=C(x)gRk(�)d�: (2)

Clearly, when S with E is a solution for (1), S0 = SC

with E
0 = E=C is also a solution for any function C.

To turn this into a well-posed problem, almost all au-
thors have addressed problems in a strongly constrained
world like Mondarian space [19, 13, 33, 31, 12, 9]: a
2D space composed of several matte patches overlap-
ping each other. Then, based on the observation that
both the ambient light and the surface re
ectance for
planar surfaces can be approximated by linear combina-
tions of a small number of �xed basis functions[7, 21],
they can deal with the problem at a fairly feasible
level[13, 33, 31, 12, 10, 9]. A good mathematical analysis
is given in [10]. However, all of those results are for a 2D
world. This two-dimensionality assumption takes away
any chance of conventional color constancy being used in
recognizing a 3D world. Therefore, we can not employ
conventional color constancy algorithms as presented.

2.2 Some color invariants

Knowing that color constancy is not easily attainable for
any plausible 3D world, we propose a photometric invari-
ant property for use in the recognition of 3D objects.

Since it is known that a spectrum distribution of
the surface re
ectance of many materials depends very
little on the surface geometry[23], we may break up
the surface re
ectance function into the product of ge-
ometry G(x) and spectrum property L(x; �) such that
S(x; �) = G(x)L(x; �). Then, the equation (1) becomes:

�k(x) =

Z
G(x)L(x; �)E(x; �)Rk(�)d�

= G(x)

Z
L(x; �)E(x; �)Rk(�)d� (3)

[Constant ambient light assumption over the en-

tire surface]

If we assume that the ambient light spectrum distri-
bution is constant over the entire surface of the objects,
E becomes simply a function of wavelength �. This as-
sumption is justi�ed when the lighting source is su�-
ciently far away from the object relative to the size of
the object surface, and mutual illumination and shadow-
ing are not signi�cant. This yields

�k(x) = G(x)

Z
L(x; �)E(�)Rk(�)d� (4)

Taking the ratios between the two i; j channel re-
sponses eliminates the geometric factor G(x) which de-
pends on the relative orientation of the object surface
with respect to the camera and/or the lighting source,

�i(x)

�j(x)
=

R
L(x; �)E(�)Ri(�)d�R
L(x; �)E(�)Rj(�)d�

(5)

By the same reasoning, we have a similar form af-
ter the motion of the object with respect to the camera
and/or the lighting source,

�
0

i(x
0)

�0j(x
0)
=

R
L
0(x0; �)E0(�)Ri(�)d�R

L0(x0; �)E0(�)Rj(�)d�
(6)

where primes show the function after the motion, and
this prime notation applies to any symbol expressing
some quantity after the motion of the object in the
rest of this paper unless otherwise described. Note that
L(x; �) = L

0(x0; �), because the spectrum property of
the surface re
ectance would not be a�ected by the ob-
ject motion. When we approximate the spectral ab-
sorption functions R by narrow band �lters such that
Ri(�) � si�(�i � �), where si is the channel sensitivity
and the �i is the peak of the spectral sensitivity of the
ith channel, we obtain ratios from (5) and (6):


ij(x) �
�i(x)

�j(x)

�
siL(x; �i)E(�i)

sjL(x; �j)E(�j)
(7)



0

ij(x
0) �

�
0

i(x
0)

�
0

j(x
0)

�
siL(x; �i)E

0(�i)

sjL(x; �j)E0(�j)
(8)

Since the band width over which a real camera sensor re-
sponds varies from camera to camera, and the standard
ones may not be too narrow, this is only an approxima-
tion. However, experiments show that this assumption is
not unrealistic for the normal cameras. Taking the ratio
of 
's before and after the motion and/or the change of
lighting conditions yields,


ij(x)


0ij(x
0)
� �ij (9)

where

�ij =
�E(�i)
E(�j)

	
=
�E0(�i)

E0(�j)

	
(10)

Since �ij is apparently independent of the position
on the surface, 
ij(x) can be regarded as approximately
invariant to the changes of illuminant conditions and to
the motions of the object within a consistent scale factor
over the object surface. Note that �ij depends only on
the ratios of spectrum distribution of the ambient light
before and after the motion of the object.

In using 
 for object recognition, we might need to
normalize its distribution because generally it is invari-
ant only within a scale factor. When we are provided
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with the sets of 
 from corresponding positions over dif-
ferent views, this could be done by applying a normal-
ization process to the original sets:


̂ij = �
�

1

2

ij 
ij (11)

where �ij is the variance of the given 
ij distribution.
Note that when the ambient light has not been changed,
�ij = 1, so that 
ij(x) = 


0

ij(x
0), thus normalization

process is not needed.

[Only locally constant ambient light assumption]
Now, let us assume only a locally constant ambient

light spectrum distribution, instead of the globally con-
stant one over the object surface: E(xl; �) = E(xm; �)
for nearby positions xl;xm. Then, eqs. (7) and (8) must
be modi�ed respectively as:


ij(x) �
�i(x)

�j(x)

�
siL(x; �i)E(x; �i)

sjL(x; �j)E(x; �j)
(12)



0

ij(x) �
�
0

i(x
0)

�
0

j(x
0)

�
siL(x; �i)E

0(x0; �i)

sjL(x; �j)E0(x0; �j)
(13)

Incorporating the assumption, that is, E(xl; �) =
E(xm; �), and E

0(x0l; �) = E
0(x0m; �), we again have

an invariant  lmij :

 
lm
ij �


ij(xl)


ij(xm)

� f
L(xl; �i)

L(xl; �j)
g=f

L(xm; �i)

L(xm; �j)
g (14)

thus, apparently,  lmij �  
lm
ij

0

. However,  lmij is obviously
sensitive to perturbations contained in the image signals
especially when one makes the values of 
ij(xm) (the
denominator in (14)) close to zero. To stabilize this, we
adopt a normalized measure in place of  itself:

'
lm
ij �


ij(xl)


ij(xm) + 
ij(xl)
(15)

It is easy to see ' � '
0, that is, ' is approximately in-

variant to the change of illumination conditions and of
orientations of the object surfaces.
Note that for 
ij we can not derive this kind of nor-
malized invariant formula. A very important thing to
remember here is that in order to make ' useful, the
surface re
ectance properties associated with two nearby
positions xl;xm to be picked up must be su�ciently dif-
ferent from each other. Otherwise, even if an invariant
of ' in (15) holds true, as the 
's tend to have the same
value for xl;xm, the ''s always return values that are
close to 0.5, so that it does not provide any useful infor-
mation involved in their color properties. Fortunately,
as we describe later when color properties are picked up
from di�erent sides of the brightness boundaries, this
situation may often be avoided.

2.3 Related photometric invariants

A related invariant to our photometric invariants was
proposed earlier based on an opponent color model by
Faugeras for image processing applications[8]. The op-
ponent color model was �rst introduced by Hering[17] to
describe the mechanism of human color sensation. He
advocated that the three pairs Red-Green, Blue-Yellow,
White-Black form the basis of human color perception.
A simple mathematical formulation of this[3], which is
a linear transformation of R;G;B was used as a color
invariant in [27, 28] for indexing 3D objects: [R-G,Bl-
Y,W-Bk]T = L[R,G,B]T , where L is a linear transfor-
mation. A similar formalization of an opponent color
model was also used for the correspondence process in
color stereopsis [5]. However, there are no theoretical ex-
planations of the linear transformation model for the full
3D object surfaces, because, as we noted in the deriva-
tion of our invariants, the surface orientation in 3D space
with respect to the lighting source and the camera is an
unignorable factor (see also [18]) in deriving invariants
for a 3D world, and it is never removed by any linear
transformation.

Unlike this linear transformation case, Faugeras's
form is the logarithm of the ratios between di�erent
channel responses for a chromatic model, so is similar
to ours, and the logarithm of the products of three of
R;G;B responses but with a low-pass �ltering account-
ing for lateral inhibition for achromatic responses.

In [4] a unique illuminant-invariant was proposed
which, assuming the existence of at least four local dis-
tinct color surfaces, uses the volumetric ratio invariant
of the parallelepiped generated by the responses of the
three receptors. It seems to us, however, that the as-
sumption of four local distinct color surfaces is demand-
ing too much in practice.

Recently, a new photometric invariant was proposed
for object recognition[26]. Limiting its application to
only geometrically continuous smooth surfaces, it used
as an invariant the ratio between the brightnesses of two
adjacent regions each with consistent and di�erent sur-
face spectral re
ectance. Therefore, it requires a prelim-
inary complete segmentation of the image into regions
having the same colors. Other assumptions introduced
in its derivation are almost the same to ours (locally con-
stant ambient illuminant case) except for the additional
continuous smooth surface constraint over the boundary
of two surfaces with di�erent spectral re
ectance.

2.4 Experiments

Experiments were conducted to examine the accuracy
of the proposed photometric invariants. Figure 1 shows
pictures of a man-made convex polyhedron composed
of 6 planar surfaces each with a di�erent surface ori-
entation. The left picture is a front view of the poly-
hedron, hereafter pose PA, while in the right picture
the object is rotated around the vertical axis (y-axis)
by about 30 degrees, hereafter pose PB. On each side of
the boundary of adjacent surfaces, several matte patches
with di�erent colors were pasted. Then, we picked up
corresponding positions manually within each colored
patch in the pictures for the poses (PA; PB). The se-
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lected positions within patches are depicted by crosses
in the pictures. To test the accuracy of the proposed
invariants 
, ' under varying illuminant conditions and
surface orientations of the object with respect to the il-
luminant and the camera, we took three pictures: the
�rst at the pose PA under the usual lighting conditions
(PA&LU ), the second at the pose PB under a green-
ish light (PB&LG), and the third at the pose PB but
under a bluish light (PB&LB). To change the source
light spectrum, i.e., to get greenish or bluish light, we
covered a tungsten halogen lamp with cellophane of col-
ors green and blue. For ', the surface positions within
planar patches facing over the boundaries of planar sur-
faces were used as neighboring positions to satisfy the
requirement of (locally) constant ambient light. To
compute the invariants in practice, we used the ratios
G=R;B=R for 
 and '1 = (G1

=R
1)=(G1

=R
1 + G

2
=R

2),
'2 = (B1

=R
1)=(B1

=R
1 + B

2
=R

2) for ', where R;G;B
are the outputs from the sensor channels respectively of
Red, Green, Blue, and the indices attached to R;G;B
shows the sides of the surfaces used for computing ''s
with respect to their boundaries. As described previ-
ously, in theory, when we use the RGB channel outputs
to compute invariants, instead of outputs through the
exact narrow band �lters, they might be only pseudo-
invariants. But, the following results con�rm that the
values of 
 and ' computed using RGB are fairly in-
variant to the changes of the illumination conditions as
well as the surface orientations. In Table 1, the cor-
relation coe�cients between the sets of values for each
invariant measure computed at corresponding positions
in di�erent pictures are given, that are measured by the
following formula: s

C2

��0

C��C�0�0

(16)

where Cab's (a; b 2 f�; �0g) are the covariances between
the sets of the values of the measure � (e.g., 
) before (�)
and after (�0) the motion of the objects or the changes
of the lighting conditions, which is de�ned by:

Cab =
X

P (a; b)(a� �a)(b � �b) (17)

where �x is the average of the measure x, P (a; b) is the
probability density function, and the sum is taken over
all corresponding values of the measures a; b. A high
correlation, that gives a value close to 1, shows that
the proposed invariant measures remained unchanged
within a consistent scale over the set of positions be-
tween the two picture, while a low correlation, that gives
a value close to 0, means that the values of the mea-
sures changed in a irregular manner. For comparison,
other color properties including raw (R;G;B), (H;S; V )
(hue,saturation,value), and a linear-transformation im-
plementation of the opponent color model[3] are also
included. In these tests, R;G;B, R � G;B � Y , 
 =
G=R;B=R, are almost equally good, though 
 is the best
among them on average, that mean those properties have
been changed but only within a consistent scale between
the di�erent pictures (recall the property of 
 being in-
variant within a scale factor). The reason why R is very

good is probably just that we did not happen to change
the intensity of the red light spectrum. The values of
H;S; V is unexpectedly quite unstable. The measure '
is extremely stable. To see how far the color properties
remained unchanged in addition to the correlative rela-
tion, in Figure 2 the actual distribution of the color prop-
erties are shown, where the horizontal axes are the values
for the pose PA, while the vertical axes are those for the
pose PB. If the color measures remained unchanged be-
tween the two pictures before and after the motions of
the object and/or the changes of the light conditions,
the distributions should present linear shapes, and their
slopes should be close to 1. Indeed, the measure ' is
certainly found to remain almost unchanged under vary-
ing light conditions, while other color properties H;S,
and 
 = G=R;B=R included for comparison are found
not. The biases of the slopes of 
 either toward the hor-
izontal or vertical axes indicate that the light spectrum
has been changed between the two compared pictures.
Figure 3 shows the performance of 
 constancy against
the change of the object pose, under the same lighting
conditions. In other words, unlike in the last experi-
ments, this time the ambient light has not been changed
for both of the two pictures, and only the object pose
has been changed. For comparison, the performance of
B � Y (linear-trans implementation for blue vs. yellow,
the second �gure from the left) as well as raw B (blue,
the �rst one) are also shown. Note that what should
be observed here is how the slopes of the distributions
are close to 1. Except for the two samples in the upper
area in the �gure (the fourth picture), 
 = B=R is found
to be almost unchanged between the two pictures. The
two exceptional samples were from patches with almost
saturated blue channel in the picture at pose PB. The
performance of 
 = G=R (the third �gure) is almost per-
fect. On the other hand, B � Y and B are perturbed
around the slope of 1, which is probably caused by the
perturbed orientations of the patches. This suggests that

 may be used for object recognition without applying
any normalization process, so that extracting object re-
gions might not be a prerequisite, as long as the lighting
conditions are not changed.

Similarly, in Table 2 the results of the same tests as
above but on a natural object, a doll which is shown
in Figure 4, are given, for which both the ambient light
and the object pose were changed. We refer to the pose
of the doll similarly to the above tests on the Test-
Object: left pose PA, right pose PB . The �rst pic-
ture was taken under a usual lighting conditions from
the oblique angle(PA&LU ), the second and third were
taken respectively under a greenish and a bluish light
from the front angle(PB&LG, PB&LB). Correspond-
ing positions were picked up manually as done in the
previous tests. As the surface colors varied smoothly,
we can not expect that we could pick up correspond-
ing points accurately. Thus, unwanted errors could be
introduced in this operation. This time for ', two posi-
tions which are closest to each other among the selected
points are used. In this tests, R;G;B and S; V per-
formed poorly, though somehow H was very good. The
linear modelR�G;B�Y and 
 = G=R;B=R performed
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well again, though 
 was better. The measure ' is quite
stable again. Unlike the results on the Test-Object, how-
ever, since the surface of the doll, especially in the body
parts, had similar surface colors in near positions, the
distribution of ' | '1 = (G1

=R
1)=(G1

=R
1 + G

2
=R

2),
'2 = (B1

=R
1)=(B1

=R
1+B2

=R
2) | did not spread very

well, thus having a weak selectivity photometrically, as
seen in Figure 5. Therefore, when picking up two nearby
positions for ' for object recognition, it is important that
they have di�erent spectral re
ectance. For comparison,
the values of H;S, and 
 are also plotted in Figure 5.

2.5 Sensing limitations

As we note in the examination above, the invariant prop-
erties are sometimes perturbed around the ideal values
which support our theories. This is caused mainly by
the limited dynamic range of the sensors of the cam-
era. These e�ects include Color Clipping and Blooming

as argued carefully in [23]. When the incident light is
too strong and exceeds the dynamic range of the sen-
sor, the sensor can not respond to that much input and
thus clips the upper level beyond the range. This means
the sensor does not correctly re
ect the intensity of the
light any more. Note that this is very serious for our in-
variants, because both 
 and ' are ratio invariant, and
a basis of their theory is, whether locally or globally,
the consistency of the amount of light falling onto the
concerning positions on the object surfaces. Here, our
natural and important assumption is that this consis-
tency is correctly re
ected in the responses of the sen-
sors. Therefore, if the sensor response does not meet
this assumption, our theory no longer holds. The same
arguments also hold for the blooming e�ect. When the
incoming light is too strong to be received by the sensor
element of the CCD camera, the overloaded charge will
travel to the nearby pixels, thus crippling the responses
of such pixels.

3 Combining photometric and

geometric constraints for 3D object

recognition

In this section, we describe how we can exploit the pho-
tometric invariant developed in the preceding section for
recognizing 3D objects. The basic idea is to combine it
with the Centroid Alignment approach we have recently
proposed in [25].

3.1 Centroid invariant of geometric feature

groups

We argued in [25] that when an object undergoes a lin-
ear transformation caused by its motion, the centroid of
a group of 3D surface points is transformed by the same
linear transformation. Thus, it was shown that under an
orthographic projection model, centroids of 2D image ge-
ometric features always correspond over di�erent views
regardless of the pose of the object in space. This is true
for any object surfaces (without self-occlusion). Note
that this property is very useful, because if we have some
way to obtain corresponding feature groups over di�erent
views, we can replace simple local features used for de�n-

ing alignment in conventional methods by those groups,
thereby reducing computational cost. We demonstrated
the e�ectiveness of this approach to object recognition
on natural as well as simulation data [25].

3.2 Grouping by photometric and geometric

constraints

To obtain corresponding groups of 2D geometric fea-
tures, we can use the proposed photometric invariant
measures associated with each feature.

In [25], to obtain corresponding geometric feature
groups, a clustering operation, in which the criterion
was rotationally invariant, was applied in the coordinates
which had been normalized up to a rotation prior to a
clustering. This time, we again use a clustering tech-
nique to obtain corresponding geometric feature groups
in di�erent views. Our intention is to yield correspond-
ing cluster con�gurations using a criterion incorporat-
ing spatial proximity constraints of geometric features
and the invariance of their associated photometric in-
variants we have proposed. Therefore, we assume that
surface colors (surface spectral re
ectance) vary mostly
from place to place. In other words, within some local
areas surface colors are almost consistent. Note that this
assumption should be justi�ed for most object surfaces,
because otherwise we must always be seeing di�used col-
ors over the surface and thus always having di�culty in
trying to distinguish surfaces. We also normalize the ge-
ometric feature distributions by the linear transforma-
tion we presented in [25]. This transformation has been
con�rmed, both mathematically and empirically, to gen-
erate a unique distribution up to a rotation, for feature
sets from a planar surface on the object, regardless of
the surface orientations in 3D space. We note that even
3D object surfaces often tend to become planar in their
visible surfaces, thus justifying the use of our transfor-
mation for 3D object surface. This will be seen later in
the experiments.

3.3 Implementation

We employ the Kmean clustering algorithm, in which the
criterion is rotationally invariant, to obtain correspond-
ing feature groups in the feature set from di�erent views.
The feature vector f used in clustering is the extended
feature (from local geometrical feature) which is de�ned
by the following vector:

f = [fTg ; sf
T
p ]

T (18)

where fg is the 2D geometric feature composed of spa-

tial coordinates fg = (x; y)T of a feature point in the
xy image plane, and fp is the vector of photometric in-
variant properties we proposed in the preceding sections,
and s is a balancing parameter. Note that what we ul-
timately need here is simply the con�guration of geo-
metric features, that is fg, in the clustering results, and
photometric invariant is used only as a cue in performing
clustering.

After the clustering, an alignment process starts by
using centroids of clusters so derived to recover the trans-
formation which generated a novel view, the image data,
from the model. It is known that only 3 point corre-
spondences su�ce to recover the transformation either
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by using Linear Combination of the models[32] or a full
3D object model[20]. Therefore, we examine every pos-
sible combination of triples of cluster centroids of model
and data that are generated by clustering, and select the
best-�t transformation to generate the data from the
model in terms of their match. In our testing, which
we will see later, this number of clusters could be sup-
pressed to less than 10. Further, we should note that
we only need to consider the combination of model and
data cluster centroids which have compatible values of

 or '. This means that adding photometric properties
contribute not only to the clustering but also to the selec-
tivity of the features (cluster centroids). Therefore, con-
sidering the computational complexity of conventional
alignment approach to recognition, this should bring a
noticeable computational improvement.

4 Empirical results

In this section, we show experimental results of our algo-
rithm for identifying corresponding positions in di�erent
views. Tests were conducted on natural pictures includ-
ing 3D objects to be recognized.

4.1 Preliminaries

Geometric features used for our algorithm can be ex-
tracted as follows:
(Step 1) Use an edge detector[6] after preliminary
smoothing to obtain edge points from the original gray
level images.
(Step 2) Link individual edge points to form edge curve
contours.
(Step 3) Using local curvatures along the contours, iden-
tify features as corners and in
ection points respectively
by detecting high curvature points and zero crossings
based on the method described in [20]. Before actually
detecting such features, we smooth the curvatures along
the curves [2].
In obtaining color attributes from corresponding posi-
tions we should note that the positions of the geometric
features thus extracted in di�erent views do not always
correspond exactly in discrete image coordinate space.
This is not only due to quantization error, but also be-
cause edges detected to derive feature points can shift to
the other side of the surface beyond the boundary under
a object rotation within a image plane. Note that this
is serious because the occurrences of gray level edges of-
ten tend to coincide with color edges[5]. So, we can not
simply use the color attributes of the geometrical feature
points derived from gray level edges. To solve this prob-
lem, we picked up color values from two positions over
the gray level boundary, which are away from the geo-
metric feature positions in the opposite directions along
the local normals of the contours. Then, we used two
color values from both of two positions. As we do not
know which sides of an edge in one picture correspond to
which in another, the distance metric between the pho-
tometric invariant vectors associated to two di�erent fea-
ture positions should be independent of the correspon-
dences of those sides of the surfaces. Thus, the actual
measure used for photometric invariant vector fp and the
distance metric for two of those (that are used for com-

puting the values for clustering criterion) are designed
such that they support the symmetry on the sides of the

surfaces over the boundaries: fp = [f1p
T
; f

2

p

T
]T , where

f
i
p = (Gi

=R
i
; B

i
=R

i) for 
 and f ip = ((Gi
=R

i)=(Gi
=R

i +

G
j
=R

j); (Gj
=R

j)=(Gi
=R

i + G
j
=R

j); (Bi
=R

i)=(Bi
=R

i +
B
j
=R

j); (Bj
=R

j)=(Bi
=R

i + B
j
=R

j)) for ', and indices
(i; j) 2 f(1; 2); (2; 1)g show the sides of the surfaces with
respect to their boundaries, and the distance metric be-
tween fp1 and fp2 for geometric feature positions 1, 2
is:

jfp1 � fp2j
2 = minfjjf1p1 � f

1

p2jj
2 + jjf2p1 � f

2

p2jj
2
;

jjf1p1 � f
2

p2jj
2 + jjf2p1 � f

1

p2jj
2g (19)

where jj � jj denotes Euclidean distance. This appar-
ently supports the symmetry on the sides of the surfaces
over the boundaries of the gray level, and is invariant to
the rotation of the objects within a image plane. The
following experiments test our algorithm with both of
the proposed invariants 
, '. For each feature position,
the associated invariant ' was computed using color at-
tributes of those two points mentioned above, that is,
two points a little away from the geometrical feature
points along the contour normals in the opposite direc-
tions. As described earlier, since gray level edges tend to
coincide with color edges, the color values collected from
those two positions facing across the gray level edges
are usually quite di�erent, thereby producing ' distri-
butions that spread over the feature space. To satisfy
the requirement for 
, that is to be provided with the
corresponding sets of points between the model and the
data views, the object regions were extracted prior to
the application of our algorithm. This was done manu-
ally though we expect that this could be done automat-
ically using several cues such as motion, color, texture,
(see e.g.,[30, 29, 27, 28].) Note that, however, in using
' this process, i.e., region extraction, is not necessarily
required, as long as the background in the picture hap-
pened to have di�erent colors from object ones. This is
because ' is a complete invariant, unlike 
 which needs
further normalization to remove scale factors as we have
argued. This is also true for 
 when the ambient light
has not been changed before and after the motion of the
objects. Hereafter, we refer to 
̂, the normalized mea-
sure, as simply 
.

4.2 Experiments

We tested our algorithm to see how accurately it can
identify corresponding positions over di�erent pictures
taken under varying light conditions and poses of the
objects to be recognized. It would not be hard to
see that identifying corresponding positions perfectly is
not an easy task, because in doing that we must �ght
against two di�erent kind of instabilities: one in ex-
tracting geometric features, most serious one of which
is the missing of features, and the other substantially
contained in photometric properties of the image, such
as the ones described in the arguments for sensing limi-
tations. Remember that, however, for our ultimate ob-
jective, that is recognizing objects using the identi�ed
positions, only three correspondences are su�cient un-
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der orthographic projection model[32] or weak perspec-
tive projection model[20]. Therefore, what have to be
observed in the following results are whether our algo-
rithm could identify at least this minimum number of
correspondences or not. First, the results of using 
 as
photometric invariant are shown.

[With 
 for photometric invariant]
Figure 6 shows the results of obtaining feature group cen-
troids on Band-Aid-Box pictures, which includes char-
acters of some di�erent colors on a white base on the
surface. All the pictures were taken to involve the same
three surfaces of the box, which are to be used for the
recognition. The �gures in the �rst row from the top
show the edge maps with extracted geometric features
superimposed on them with small closed circles. The
�rst from the left (hereafter �rst) picture was taken
under a usual light conditions. The second from the
left (hereafter second) and third from the left (hereafter
third) pictures were taken respectively under a greenish
and a bluish light at a di�erent pose from the �rst one.
Throughout the rest of the paper, we refer to the �gures
by the order they are presented from the left as above.
The lighting conditions were changed by the same way
used in the experiments presented in section 2.4. The �g-
ures in the second and the third rows show the respective
original and normalized distributions of 
. The horizon-
tal axes of the �gures are for G=R while the vertical axes
are for B=R. These �gures show how the invariant prop-
erty 
 remained unchanged between the di�erent pic-
tures. When it performs well, the original distributions
of 
 should show the similar shape over di�erent views
except for some scale change along the axes. Then, those
scale distortion (e.g., dilation) should be corrected by
the normalization of the distribution, thus ideally show-
ing linear distributions of slop 1. Note that even if the
shape of the distributions are distorted in addition to the
dilation, we can not conclude that the proposed invari-
ants performed poorly. This is because unstable results
of the geometrical feature extraction will also distort the
shape of the distribution of the photometric properties.
The intermediate results of clustering are shown in the
fourth row in their normalized coordinate of the geo-
metric features. In the �gures of the �rst row, identi�ed
corresponding positions using our algorithm are super-
imposed by large closed circles. Therein, the accuracy
of our algorithm are found to be fairly good. Appar-
ently perturbations of identi�ed positions were caused
partly by the unstable results of feature extraction, e.g.,
missing features, rather than by clustering errors or in-
completeness of the proposed photometric invariant.

In Figures 7 results on Spaghetti-Box pictures taken
in the same way as the Band-Aid-Box pictures are given.
The surfaces of this box include some textures including
large/small characters. This is a little cluttered texture
compared with the Band-Aid-Box surface. The �rst row
shows the edges with extracted geometric features su-
perimposed on them. The �rst picture was taken un-
der a usual light condition. The second and the third
pictures were taken respectively under a greenish and a
bluish light at di�erent poses. The second and the third

row �gures show the respective original and normalized
distribution of 
. The algorithm could perform identi-
�cation of the corresponding positions fairly accurately
as we see in the top �gures.

Similarly, in Figure 8 the results on Doll (the same one
as the one used in the section 2.4) pictures are presented.
Unlike the last two example, the surface of this doll does
not have man-made texture such as characters, but only
has color/brightness changes partly due to the changes
of materials and partly due to depth variations. The
surface is mostly smooth except for some parts includ-
ing hair, face, and �nger parts. The pictures in the �rst
row show the edges with extracted geometric features
superimposed on them. The �rst and second pictures
were taken under a usual light conditions, but at di�er-
ent poses of the doll. The third picture was taken under
a moderate greenish light plus usual room light. For
the fourth picture, we used an extremely strong tung-
sten halogen lamp with a bluish cellophane covering it.
The second and the third row �gures show the respective
original and normalized distributions of 
. Comparing
the shapes of original and normalized distributions of 

for the �rst and the second pictures, we can con�rm that
when the light conditions have not been changed the dis-
tributions of 
 are not a�ected by the change of pose of
the object. The algorithm could perform identi�cation
of the corresponding positions fairly accurately as we see
in the pictures.

[With ' for photometric invariant]
The results of using ' as a photometric invariant on the
same pictures used for 
 are shown. Figure 9 presents the
results on Band-Aid-Box pictures. The �rst row shows
the edge maps with extracted geometric features super-
imposed on them with closed circles. In the second row,
respective distributions of ' are shown. The horizon-
tal axes are for (Gi

=R
i)=(Gi

=R
i + G

j
=R

j), while the
vertical axes are for (Bi

=R
i)=(Bi

=R
i + B

j
=R

j) where
(i; j) 2 f(1; 2); (2; 1)g. As described already, since we do
not know the correspondences of the sides of the sur-
face over the edges (contours), we included properties
from both sides of the edges. Consequently, we had 2-
fold symmetric distributions of ' around its centroid as
noted in the second row �gures (see eq. (15)). When
' performs well as an invariant, this distribution should
remain unchanged over di�erent pictures. Thus, the sec-
ond row �gures demonstrate a fairly good performance
of it for this picture. The intermediate results of clus-
tering are given in the third row �gures in their normal-
ized coordinate of the geometric features. In the �gures
of the �rst row, identi�ed corresponding positions using
our algorithm are also superimposed by large closed cir-
cles. Thus, the accuracy of our algorithm are found to
be fairly good.

In Figures 10 the results with ' on Spaghetti-Box are
given. The �rst row shows the extracted geometric fea-
tures. The second row shows the distributions of '. The
performance of ' is almost perfect. As we see in the pic-
tures, the algorithm with ' could perform identi�cation
of the corresponding positions very well.

Figure 11 presents the results on Doll pictures. In
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the �rst row, the edge maps with extracted geometric
features superimposed on them are shown. The second
row shows the the respective distributions of '. Since
for the fourth picture we used extremely intensive blue
light, the blue channel of many pixels were saturated. As
a consequence, the distribution of ' was shrunk in the
vertical direction as noted in the fourth picture of the
second row. For these doll pictures, generally, the results
of identifying corresponding positions with ' were not
as good as those with 
, though not very bad. This is
probably because as the surface colors of the doll varies
quite smoothly in most parts, the distribution of ' did
not spread well, so that it did not work so well as to
separate clusters in terms of colors.

5 Discussions and conclusion

We argued that by combining the proposed photometric
invariants with geometric constraints tightly, we can re-
alize very e�cient and reliable recognition of 3D objects.
Speci�cally, we conducted the experiments of identify-
ing the corresponding feature positions over the di�er-
ent views taken under di�erent conditions. Although we
did not include the demonstrations of the actual recog-
nition process, as described, by connecting the presented
method for identifying features using photometric invari-
ants with the popular recognition algorithms, such as
the full 3D model method[20] or the Linear Combina-
tion of the model[32], we can perform object recognition
quite e�ciently. This may be demonstrated somewhere.
In the experiments, we showed that our methods could
tolerate perturbations both in color and geometric prop-
erties, and could provide at least minimum number of
correspondences of positions necessary for object recog-
nitions. Although we extracted the object regions man-
ually in the experiments this is sometimes easily done
from sequences of images, from the simple background,
or may be performed by using color segmentations. In
addition, we stress again that as long as the background
has di�erent colors from the object ones, we can use
' without any preliminary processing for region extrac-
tion. This also holds true for 
 when the ambient light
has remained unchanged. The weakness of ' comes out
when the discontinuities of gray level do not coincide
with the ones of colors. In this case, the distribution of
' does not spread very well. This emerged in the body
parts of the doll. Compared with the conventional ap-
proaches of matching local features of which the number
is of the order of several hundreds, the computational
cost of our approach for recognizing 3D objects should
be very small. The time for identifying (about 10) cor-
responding feature positions, i.e., cluster centroids, was
around 0.2 sec for pictures with several hundreds fea-
tures. In addition, we can use the invariant photometric
values in searching for the correspondences between the
derived feature points in the model and the image, so
that needless searches could be further suppressed.

The advantages of our approach compared with Na-
yar's are as follows. Their method uses invariant photo-
metric properties derived for regions each with a consis-
tent and di�erent color, so that the color segmentation
is a prerequisite. In our view, this color segmentation

is an essential process to reduce the size of the search
space for correspondences, and the photometric invari-
ant was used only for further limiting possible matches
between the model and the data regions. Unfortunately,
however, achieving complete color segmentation is often
quite hard and time consuming[29]. Of course, it can
still contribute to reduce the computational cost, since
in general the number of color regions included in the en-
tire image could still be on the order of some tens. But,
it appears to be less of a contribution than color segmen-
tation to the reduction of computational cost. Contrary
to their approach, since our photometric invariant can be
computed only locally, we do not necessarily need color
segmentation as mentioned above, so is less demanding.
In addition, since the color properties are passed to the
following clustering plus feature centroid alignment pro-
cess, our method can tolerate many confounding fac-
tors, such as inaccuracies of region and/or feature ex-
traction, happening in the application to the real world.
The clustering plus feature centroid alignment process is
very suitable for compensating those uncertainties. We
should also point out that, to be theoretical, region cen-
troids which they used for matching can not be used for
3D surfaces, while our feature centroids can.

An alternative way of using the proposed photomet-
ric invariant in recognition is just to incorporate it into
the conventional framework of recognition. For exam-
ple, in selecting features to form hypothesized corre-
sponding triples of features between the mode and the
data, photometric properties can be used to limit the
possible matches between the model and the data fea-
tures, trimming a bunch of needless combinations in the
search space, thereby e�ectively reducing the computa-
tional cost. This kind of idea has been used in [26] for
matching corresponding regions.
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Figure 1: Tests of Invariant on Convex Polyhedron
The pictures show the convex polyhedron in di�erent poses: left pose PA, right pose PB. This object is composed of 6 planar

surface patches each with di�erent surface orientation. On each side of the boundary of adjacent surfaces, several matte
patches with di�erent colors were pasted. Then, we picked up corresponding positions manually within each colored patch in

both pictures. The selected positions within patches are depicted by crosses.

PA&LU{PB&LG PA&LU{PB&LB

R 0.988368 0.989877
G 0.967951 0.974081
B 0.946251 0.882816

H 0.724681 0.701377
S 0.914236 0.749529
V 0.945473 0.668672

R�G 0.985398 0.985687
B � Y 0.935039 0.908867

G=R 0.978163 0.988289
B=R 0.962186 0.907126

'1 = (G1=R1)=(G1=R1 +G2=R2) 0.997766 0.997532

'2 = (B1=R1)=(B1=R1 +B2=R2) 0.991843 0.988893

Table 1: Correlation coe�cients between the sets of the values of the color properties from di�erent pictures of
Test-Object.
The correlation coe�cients between the sets of values of the proposed invariants from pictures taken under di�erent light
conditions and at the di�erent poses of the object are given to show how much they remain unchanged within a consistent
scale. For comparison, other color properties including (R;G;B), (H;S; V ), and a linear-trans implementation of opponent
color model[3] are also presented. In these tests, (R;G;B), (R�G;B�Y ), 
 = (G=R;B=R), are almost equally good, though

 is best among them. The reason why R is also �ne is probably just that we did not happen to change the intensity of the red
light spectrum. The values of (H;S; V ) (hue,saturation,value) is unexpectedly unstable. The measure ' is extremely stable.
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Figure 2: Distributions of invariants on Convex Polyhedron
The left two columns are from pictures taken under PA&LU (horizontal axis) and PB&LG (vertical axis), and the right two

columns are from pictures under PA&LU (horizontal axis) and PB&LB (vertical axis). The rows in each two columns are

respectively: top left and right: H and S, middle left and right: G=R and B=R, bottom left and right:

'1 = (G1=R1)=(G1=R1 +G2=R2) and '2 = (B1=R1)=(B1=R1 +B2=R2).
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Figure 3: Tests of 
 at di�erent poses of object but under the same illuminant conditions
The �rst from the left: distribution of Blue, the second : B � Y (Blue vs. Yellow), the third: G=R, the fourth: B=R. The

horizontal axis is for the pose PA and the vertical axis is for the pose PB. Except for the two samples in the upper right area

of the distribution, 
 = B=R is found to be almost unchanged in both of the pictures because the slope is almost 1, while
B � Y and B are perturbed around the slope of 1. Those two exceptional samples were from patches with almost saturated

blue channel in the picture at pose PB. The distribution of 
 = G=R is almost perfect. This gives the evidence that 
 may

be used for object recognition without applying any normalization process, so that extracting object regions might not be a
prerequisite, as long as the lighting conditions are not changed.

Figure 4: Tests of Invariant on natural pictures
The pictures show a doll at di�erent poses: left pose A, right pose B. We picked up corresponding positions in both views.
The selected positions are depicted by crosses.
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PA&LU{PB&LG PA&LU{PB&LB

R 0.764343 0.819267
G 0.588161 0.881416
B 0.936572 0.843604

H 0.951843 0.923887
S 0.934587 0.490994
V 0.398850 0.459425

R�G 0.764240 0.939152
B � Y 0.948642 0.877519

G=R 0.779377 0.944164
B=R 0.962186 0.895180

'1 = (G1=R1)=(G1=R1 +G2=R2) 0.996245 0.998781

'2 = (B1=R1)=(B1=R1 +B2=R2) 0.988840 0.983675

Table 2: Correlation coe�cients between the sets of the values of the color properties from di�erent pictures of the
Doll.
The results on natural object, a doll, are given. The �rst picture was taken under a usual lighting conditions from the oblique
angle(PA&LU ), the second and third were taken respectively under a greenish and a bluish light from the front angle(PB&LG,
PB&LB). This time for ' | '1 = (G1=R1)=(G1=R1 + G2=R2), '2 = (B1=R1)=(B1=R1 + B2=R2) | two positions which
are closest to each other are used. In this tests, R;G;B and H;S; V were very unstable. The linear model R �G;B � Y ,

 = G=R;B=R did perform well again, though 
 was better. The measure ' is quite stable again.
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Figure 5: The distributions of invariant measures on Doll pictures.
The left two columns are from pictures taken under PA&LU (horizontal axis) and PB&LG (vertical axis), and the right two

columns are from pictures under PA&LU (horizontal axis) and PB&LB (vertical axis). The rows in each two columns are

respectively: top left and right: H and S, middle left and right: G=R and B=R, bottom left and right:

'1 = (G1=R1)=(G1=R1 +G2=R2) and '2 = (B1=R1)=(B1=R1 +B2=R2).
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Figure 6: Tests with 
 on Band-Aid-Box picture.
Edge maps are shown with extracted geometric features superimposed on them in the �rst row. The �rst picture (from the

left) was taken under a usual light conditions. The second and third pictures were taken respectively under a greenish and a
bluish light at a di�erent pose. Identi�ed corresponding positions using our algorithm are also superimposed by large closed

circles. The �gures in the second and third rows show the respective original and normalized distributions of 
. The

intermediate results of clustering are shown in the fourth row �gures in their normalized coordinate of the geometric
features.
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Figure 7: Tests with 
 on Spaghetti-Box pictures
The surface of this boxes include some colored textures including large/small characters. The pictures in the �rst row show

the edges with extracted geometric features superimposed on it. The �rst picture (from the left) was taken under a usual

light conditions. The second and third pictures were taken respectively under a greenish and a bluish light at a di�erent pose

from the �rst one. The second and third rows show the respective original and normalized distributions of 
. The identi�ed
positions are depicted by large closed circles in the �gures of the �rst row. The algorithm could perform identi�cation of the

corresponding positions fairly accurately as we see in the upper �gures.
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Figure 8: Tests with 
 on Doll pictures
The surface of this doll does not have man-made texture like characters, but only has color/brightness variation partly due

to the changes of materials and partly due to depth variations. The surface is mostly smooth except for some parts including
hairs, face, and �nger parts. The �rst row shows the edge maps with the extracted geometrical features superimposed on it

with small closed circles. The �rst and second pictures (from the left) were taken under a usual light conditions, but at

di�erent poses of the doll. The third picture was taken under a moderate greenish light plus usual room light. For the fourth
picture, we used a extremely strong tungsten halogen lamp with a bluish cellophane covering it. The second and the third

rows show the respective original and normalized distributions of 
. The identi�ed positions are depicted by large closed

circles in the �gures of the �rst row. The algorithm could perform identi�cation of the corresponding positions fairly
accurately as we see in the �gures.
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Figure 9: Tests with ' on Band-Aid-Box pictures
The pictures in the upper row show the edge maps with extracted geometric features superimposed on them. The �rst

picture (from the left) was taken under a usual light conditions. The second and third pictures were taken respectively under

a greenish and a bluish light at a di�erent pose from the �rst one. The second row �gures show the respective distributions
of '. The third row �gures show the intermediate results of the clustering. The identi�ed positions are depicted by large

closed circles in the �gures in the �rst row.
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Figure 10: Tests with ' on Spaghetti-Box pictures
The surface of this box include some colored textures including large/small characters. Upper pictures show the edges with

extracted geometric features superimposed on it. The �rst picture was taken under a usual light conditions. The second and
third pictures were taken respectively under a greenish and a bluish light and at a di�erent pose. The lower �gures show the

respective distributions of '. The identi�ed positions are depicted by large closed circles in the �gures of the upper row. The

algorithm could perform identi�cation of the corresponding positions fairly accurately as we see in the upper �gures.
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Figure 11: Tests with ' on Doll pictures
The surface of this doll does not have man-made texture like characters, but only has color/brightness variation due to the

change of material. The surface is mostly smooth except for some parts including hairs, face, and �nger parts. The pictures

in the upper row show the edges with extracted geometric features superimposed on it. The �rst and second pictures were

taken under a usual light conditions, but at di�erent poses of the doll. The third picture was taken under a moderate

greenish light and fourth pictures was taken under an extremely bright bluish light. The lower �gures show the respective
distributions of '. The identi�ed positions are depicted by large closed circles in the �gures of the upper row. The algorithm

could perform identi�cation of the corresponding positions fairly well as we see in the pictures.
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