MASSACHUSETTS INSTITUTE OF TECHNOLOGY

FROJECT MAC

Artificial Intelligence
Memo. No. 153. - January 1968,

REEX
A COMVERT PROGRAM TO
REALIZE THE McHAUCHTOMN-YAMADA AMNALYSTS ALGORITHM

*
Harold V. McIntosh

* ESCUELA SUPERIOR DE FISICA Y MATEMATICAS
INETITUTD POLITECHICO HACIOHAL
MEXICO 14 D.F., MEXICO.

ABSTRACT

REEX is a CONVERT program, Tealized in the CTSS LISP eof
Project MAC, for carrying out the McNaughton-Yamada analysis
algorithm, vwhereby a repular expression is found describing the
words accepted by a finite state machine whose transitien table is
given, Unmodified the algorithm will produce 4" temms representing
an n-state machine, This nurber could be reduced by eliminating
duplicate calculations and rejecting on a high level expressions
corresponding to no possible path in the state diagram. The
remaining expressions present a serious simplification problem, since
empty expressions and null words are pemerated liberally by the
algorithm, REEX treats only the third of these problems, and at
that makes simplifications mainly oriented toward removing null
words, empty expressions, and expressions of the form XuX*, AuB*A,
and others closely similar, REEX is primarily useful to understand
the algorithm, but hardly useable for machines with six or more states.

-1-

Since regular expressions form such a convenient characterization
of the words accepted by a finite state machine it is desirable to have
a means of deducing the descriptive regular expression from the
transition table of the machine, The first such algorithm was described
by MeNaughton and Yamada, and for scme time was apparently the only such
algorithm known, While it is conceptually quite simple, its application
in practice can lead to grossly cumbersome expressions, Nevertheless
its mechanization is instructive, and is the ocbject of the CONVERT program
REEX.

We will use the following example to illustrate our discussion.

A
jl “‘*“‘hmu,J{::) i i:)
g .r 0
#i
O
The states of the machine to be analyzed are supposed to be numbered,
1 through n, We then define regular expressions “:;i recursively as
follows.,
ag; = {oeX|M(i,0) = i} U
ugj = {ocZ|M(i,0) = §)
oy =l Y ek (o) ey
By examining these definitions it can be seen that “?j is a
regular expression representing all the words corresponding to transitions
from state i to state j without passing through states numbered greater
than k. Transitions from state i to state j without any such restriction
are then given by the expressions "Ej' and the regular expression
ropresenting the machine is the union of such expressions where i is the
initial state and j belongs to the accepting set,
The transcription of this recursive definition into CONVERT presents
ne complications. In fact, if we let the index k be the state set, and the

indices i and j be actual states, we may svoid the necessity of
numbering the states, The pattern we are to recognize is then the list
(I JEK), and it will be seen in the three forms

(I 10)

(I F Q)
(I F (X XXx))

The skeletens which will be substituted in the three cases will be
respactively a set of letters union the null letter, a set of letters,
and the CONVERT form of the recursive formula, We need a means of
extracting the letters causing a given transition, for which we introduce
the patterns (U*) or (T*).

(U*) PAT ((*OR* (mes (I L I} U*) (===)))

(T*) PAT ((*OR* (=== (I L F) T*) (===)))

where
L BUV s TO=

These definitions assume that the transition table TT is presented
in the form (wes (I L F) w===) where I is the state from which the letter
L causes a transition to F; ie M(I,L) = F. (U*) and (T*) are then
collection patterns using the bucket variable L te find all the letters
causing transitions respectively frem I to I, or I to F,

If we use the symbol §, available in the character set of CTS5 LISF,
for the null word, we can now write the McNaughton-Yamada algorithm in
CONVERT form, The rules are

(r I Q) (=WHEN= TT (U*) (UNO § (*UNON* L))))
(I F (3] (=WHEN= TT (T*) (UNO (*UNON* L}]))

((I F (X XXX)) (MO (=REPT= {I F (XX¥1)
(CON (=REPT= (I X (XXX)))
{ITR (=REPT= (X X {XXX))))
(=REPT= (X F (XXX}))1)1))

The symbols UNO, CON, and ITR stand respectively for union, concatinatien,
and iteration, the "polish" form of the connectors which form regular
axpre;sinns.. In actual practice, the state set is not given and must be
deduced from the transitiem table. This is done with & bucket variable
and colleecting skeleton,

s BUV = ATCOm

(5%} PAT ((*OR* (=== (5 == 5) 5*) (===)))
which is applied to the transition table. Hence our actual CONVERT program
contains the rule

((I F (5*)) (UNO (*ITER* J F (=REPT= (I J (=UNON= 5]) *1 (¥&#)))))
wherein ### is the rule set displayed above. In this way we take
account of all the states in the accepting set, and obtain the state
set implicitly from the bucket variable 5. It follows that (REEX I F T)
has as arguments the initial state, the set of accepting states, and the
transition table as a list of triplets of the form (I L F).

If we now set out to calculate some examples we begin to find
that the algorithm is not really very satisfactory, mathematically
correct that it may be., The basic problem is that the terminal conditien
vaery often leads to an empty set, Consequently if it oceurs as a term
in the concatination, the concatinated expression will likewise be an
empty set, However, this is not obvious from the expression which the
algorithm produces, and some simplification must be made. We run the
risk that we may calcula e all three terms of the concatination before
discovering that one of them renders the result trivial,

A second problem is that a very great deal of duplicate calculation
can occur, In other words, the same subexpression may arise from a '
variety of histories, and be calculated anew each time, This is the more
time consuming, the higher the level on which it occurs,

A third flaw lies in the fact that the method is prone to produce
redundant expressions; that is such things as the union of X and §
concatinated with X* in the simple case, or 110* union 0*110*%, to cite a
slightly more complicated example., If all such redundancies were of a
simple nature, they could be edited away, but unfortunately they become
more and more subtle as the number of states of the machine increases, .
They arise from otherwise identical paths which do or do not include
certain loops or branches, '

The order in which the states are listed not only may lead to
alternate regular expressions representing the machine, but sometimes
¢an lead to vastly different amounts of calculation even when simplifying
and precautionary techniques are included. McNaughton-Yamada reccémmend
giving hipgh numbers to heavily trafficked states, to increase the number
of null subexpressions which can be recognized on sight, In this regard
it is certainly profitable to find which palrs of points have no path
whatscever connecting them, for if there is no such path there will be
none passing through desipneted intermediate states either, and one can
write the empty ex-rTession at once without proceeding threugh the recursien,

To get an idea of how impressively expansive the algorithm is,
wa have to see that at each step in the recursion we generate four now
regular expressions, bound together by wvarious operators. Hence after
n steps, when the recursion terminates, we have 4" expressions; a truly
exponential growth. Moreover this number is to be multiplied by the nusber
of accepting states,

In the example we have cited, the regular expression corresponding
te initial state 1 and accepting state 2 is clearly 0*10*, If we list oaly
subscripts, the expression we need is (1 j k) = (1 2 3). Expanding, we
find

120

The indices which have been lined out are those which are repeated,
so that their caleulation an additional time is redundant, Moreover, the
eireled index 322 is P on the grounds that no arrow of any sort runs from
state 3 to state 2, Hence the concatination of the last three terms will
also be , and only the first expression need be pursued, an observation
which would immediately reduce the caleculation to 1/4.

-5-

Even if that simplification were not made, half the terms on the
third level and over half those on the fourth level are redundant,
reducing the calculation to 1/4, Both simplifications are reasonably
typical of more complex expressions, For the moment let us use the
simplification afferded by 322 = §, to write

123 = 122
121 uw 121.221%.221

now,
121 = 120 u 110.110%.120
= lu (0u $)-(0u i)l
and
221 =220 u 210+ (110)*+120

= (0u$)u@-(0u $)*l

Here we see on the lowest level quite simple expressions written
in a very cumbersome way. For example, 121 simplifies to 0*1, while
221 is (0 u §). Thus

123 = 122 = 0*1 u 0*1(0 u $)*(0 u 3)

= Q%10+
Thus the higher levels continue to contribute clumsiness, even though
we finally obtain the obvious result,

OQur present program makes no attempt to avoid duplicate calculations:
nor to exclude those which are destined to produce § for lack of any
possible paths, One would think it a small sacrifice to reserve an array
of n3 elements to retain this information, since otherwise the calculation
will be far too tima-cnnsuming to treat machines with even half a dozen
elements. Even so, such measures seem to be destined to lower the rate
of growth only to 2" rather than 44,

However, we have studied to a slight extent the third problem, of
simplifying the expressions produced by the algorithm, It was clear
from examining results that some very simple redundancies were accounting
for a substantial fraction of the complexity in the final result, The |
technique is to make the regular expression operators UNO, CON, and ITR
into functions responsible for simplifying their arguments,

Let us review them cne by ome.

CON REPT (

((=== () ===} (})
(LX) x
((XXX § YYY) (=REPT= (XXX YYY)))
(XXX (CN YYY) ZZZ) (=REPT= (XXX YYY 222)))
COXXX (IT X) (UN § X) YYY) (=REPT= (XXX (IT X} YYY)))
COXNX (UN £ X) (IT X) YYY) (=REPT= (XXX (IT X) Y¥¥)))
(== (CH *SAME*}}
)

The significance of these simplifications are, lime by line

A concatination involving the empty set is empty

Mo sign of operation is writtem to concatinate one element
The null word need not be written explicitly
Concatinaticn is associative

(5 u X)eX* = X" (fuX) = X*

ODtherwise prefix notation is used with the symbol CN,

There is already apparent in the simplification (§ w X)+%* the fact
that there are a great many equivalent forms which it is a nuisance to have
to list separately; here we have used two rules for (§ u X)+X* and
X*s($ u X), however there should be two more for (X u $)+X* and X*(X u §),
The unordered variables mode of CONVERT is helpful in such situations, and
is used in the simplifica*ion of the union, We have

UND (X =I=)
UNO (X (IT X))

UND ((CN WWW) AB*)

UND (B*A (CN WWW)})

AB* PAV [CN (IT ==) WWW)

BE*A PAV (CN WWW (IT w=})

=I= = PAV (wDRs (CN X (IT ==}} (CN (IT ==) X})

With these constituents, we have

KO REPT ((== (=REPT= (=LUNON= =SAME=) *2 {
(CXxX) YYY) {=REPT= (XXX YYY]))
((XXX (UN YYY) ZZZ) (=REPT= (XXX YYY ZIZ)))
((XXX J YYY J IZI) (=REPT= (XXX YYY (IT X) ZZI)))
((XXX I wy¥y I 2IZ) {(=REPT= (XXX YYY =I= ZZZ)))
((XXX K YYY K III) (=REPT= (XXX YYY AB* 22I}))
C(X¥X L oYYy L 22Z2) (=REPT= (XXX YYY B*A ZZZ)))
((X XXX § YvVY) (=REPT= (§ X XXX ¥YY)))
((x) X)
(== [UN *SAME*})

nn

Apain we may make a line-by-line analysis, On entry to the
function UNO, we eliminate ocbviously repeated arguments. Then

| ol SR

The null set is deleted from a union

Unien is associative

If X and X* appear in the union, we retain only X*
If both X and XY* appear then we retain only XY+*
Likewise if WWW X* and WWW appear

Or X* WWW and WwW

In a list of at least one element we place the null

word first, an assumption made in the simplificatiom
of the concatination,
We write no operator for the union of cne element
Otherwise the prefix UN is written in prefix notatien,

Finally, the simplifications of an iteration are the follewing,

ITR REPT ([[X] [=REPT= X *3 [
(UM XXX 5 YYY) [=REPT= [UNO XXX ¥Y¥Y)])
(% §)
Q) %)
EII [I’T -E,M.-E-j}
11))

There is very little simplification that we have seen fit to do
directly on an iteration, The initial transformation is used te
gvercome the fact that CONVERT functions list their 'arguments, even when

there is only one, We note that §* = (J* = §, otherwise the expression
is left intact,

To ses how effective these Tules are we could consider some
examples,

reaX (0 (L 41) ((o 1 41) (o 0 4) (1 1 11} (1 0 iv) .
(id 0 4) (i1 I iv) (iv 0 iv) (iv 1 iv)))

(UN O (CN 10) (CN (UN O (CN 10) (IT (CN 1 0))) 1 (CN (LN
0 (CN 1 0)) (IT (CN 1 0)) 1))

Ou 11:;1:?{01:10}{10}“]1; 1u [(ﬂu 10) (10)%* 1]

==

reex (o (1 41) ((e 0 iv) (o 14) (1 0 4i1) (1 1 iv)
* ((id 0 iv) (@i 1 4) (iv 0 iv) (iv 1 i¥)))

(UN 1 (CN 10 (IT (CN 10)) 1) (CN 1 0 (IT (N 1 0))))

1y (10&10]"‘1}1:.{:’1::- (10)%)

As may be seen from the examples, the rules given succeed in
eliminating almost all of the complexity due to redundant empty
expressions and null words, Nevertheless, they are reasonably ad hee,
and-do not eliminate more subtle types of redundancy, The subject might
be worth pursuing further to test ones understanding of the simplification
process, but a basic fault of the method is that it generates such
cumberscmerand so numerous expressions initially, Fnrtunixalr there are
more amenable techniques available to form the regular expression which
corresponds to & machine or transition system, principally the method of
writing a series of regular expression equatiens for the states and
selviag thes ki:ultananuslr.

FERENCES

EADEEDEEN

=
L4k

The McNaughton-Yamada Algorithm:

R. McNaughten and H. Yamada, "REGULAR EXPRESSIONS AND STATE GRAPHS
FOR AUTOMATA, " reprinted in Edward F, Moore (Editor),
SEQUENTIAL MACHINES: SELECTED PAPERS, Reading, Massachusetts:
Addison-Wes ley Publishing Company, 1964,

Seymour Ginsburg, AN INTRODUCTION TO MATHEMATICAL MACHINE THEQRY ,
Reading, Massachusetts: Addison-Wesley Publishing Company, 1962,

Michael Harrison, INTRODUCTION TO SWITCHING AND AUTOMATA THEORY,
New York: The McGraw-Hill Book Company, 1965,

Cancnical Equations:
&

Janusz A, Brzozowski, "DERIVATIVES OF REGULAR EXPRESSIONS," Journal of
The Association for Computing Machinery 1l 481-494 (1965),

CONVERT:

Adolfo Guzman and Hareld V. McIntesh, "CONVERT," Commumnications of the
Association for Computing Machinery 9 604-615 (1966),

Hareld V., McIntosh and Adelfe Guzman, "A MISCELLANEY OF CONVERT PROGRAMMING , ™
Project MAC Artifieial Intelligence Group Memo 130 (April 1967),

L CEFINE (f

(REEX (LAMBDA (I FF TT)
~ |CONS (QUDTE TT) (CONS (QUOTE EXPR)

L BuUY
! 5 BUV
== PAV
‘1 UNO
, J UND
i K UND
: L UND
; AB# PAY
' BwA PAY
| (=) PAT
i (T=#]) PAT
i [5=) PAT
| Com REPT
| |
! UND - REPT
. |
if.'
|
I
. _ITR REPT
|
|
B o
| IRR R
fQuoTe
- T F X (WHWY

n "
(LIST I FF TT)

' {QUOTE (=0 (FREER.

NO [=]TER= J F
{ =WHEN=
[=WHEN= TT (Te)

XXX)) [UND [(=REPT= (I F [XXX)))

THIL F (5#)) (U
: I I ())-
ILFIN
I F (X

11101}

[EXX]

(CONVERT
ICONS TT (QUOTE [

==
=ATO=
{=0R= (CN X (IT ==)) [CN [IT ==) X1l
(X =[=) _
(X (1T x1})
[ICN WaW) ABe=)
{BeA [CHN WWW})
[CH [IT ==) WHHW]
[CN WWH (IT ==)) T
{[=0rRe (=== (I L I} Ue) ‘[===}))
[(=0R® (=== (I L F} T#) {(===)}) LT ' .
:{-nnn (=== (5 == §5) Se) (===)))
(=== () ===} ()} _
LEe} X3 h e e ~
LIXXX £ ¥YYY) [=REPT= [XXX ¥¥Y¥)))
LOXXX (CN YYY) Z21Z) (=REPT= XXX ¥YYY ZIZ)1)
(ixXx (IT X} (UN $ X) ¥YY) (=REPT= (XXX (IT K1 ¥YYii)
(EXxX [UN $ X3 (IT X} ¥YYY) (=REPT= (XXX [IT X) ¥¥YY}1)
[== (CN #5AME=)])

) - r vy e
{{== (=REPT= [=UNON= =SAME=) 2 |

TIXXX 1) YYY) [=REPT= [XXX ¥Y¥YY)))

CPIXXX (un YYY) ZIZ) [=REPT= [XXX Y¥YY 22Z)))
CEXxXx - J ¥YY J ZZZ) (=REPT= (XXX ¥¥YY (IT XJ) ZZZ1))
(r&xx- I ¥yy I 111y (=REPT= [XXX YYY =I= ZZZ)))
[UXXX K YYY K I11Z) A=REPT= (XXX YYY ABe IZZ)))
[IXXX L ¥¥Y L ZI1Z) C[=REPT= [XXX YYY Bed 2ZZ1))
(0% ¥xXX & YYY) [=REPT= (5 X XXX ¥YY)1)
(rxy x)
T T S i
(== [UN #SAMEe«))

111} :)

[1(X) I=REPT= X =3 |[
{ [UN xx; $ YYY) [=REPT= (UND XXX ¥¥Y)))

(s %)

(0 s LR SR

(== [IT =anE=11

111] S S L

(YYY) (212)

[=REPT= (I J {=UNON= S'] =1 |
TT (U=} [UND & [=UNDMe LYJ))
(UND [=UNDON* LII}I

{CUN [=REPT= (I X [XXX})) .
i IITR [=REPT= (X X [XXX))}] -
: 1I=REPT= (X F (XXX1101090)

