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Abstract

The correspondence problem in computer vision is basically a matching task between two or more sets
of features. Computing feature correspondence is of great importance in computer vision, especially in
the sub�elds of object recognition, stereo, and motion. In this paper, we introduce a vectorized image
representation, which is a feature-based representation where correspondence has been established with
respect to a reference image. The representation consists of two image measurements made at the fea-
ture points: shape and texture. Feature geometry, or shape, is represented using the (x; y) locations of
features relative to the some standard reference shape. Image grey levels, or texture, are represented by
mapping image grey levels onto the standard reference shape. Computing this representation is essentially
a correspondence task, and in this paper we explore an automatic technique for \vectorizing" face images.
Our face vectorizer alternates back and forth between computation steps for shape and texture, and a
key idea is to structure the two computations so that each one uses the output of the other. Namely, the
texture computation uses shape for geometrical normalization, and the shape computation uses the tex-
ture analysis to synthesize a \reference" image for �nding correspondences. A hierarchical coarse-to-�ne
implementation is discussed, and applications are presented to the problems of facial feature detection
and registration of two arbitrary faces.
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1 Introduction

The computation of correspondence is of great impor-
tance in computer vision, especially in the sub�elds of
object recognition, stereo, and motion. The correspon-
dence problem is basically a matching task between two
or more sets of features. In the case of object recogni-
tion, one set of features comes from a prior object model
and the other from an image of the object. In stereo and
motion, the correspondence problem involves matching
features across di�erent images of the object, where the
images may be taken from di�erent viewpoints or over
time as the object moves. Common feature points are
often taken to be salient points along object contours
such as corners or vertices.

A common representation for objects in recognition,
stereo, and motion systems is feature-based; object at-
tributes are recorded at a set of feature points. The
set of feature points can be situated in either 3D as an
object-centered model or in 2D as a view-centered de-
scription. To capture object geometry, one of the object
attributes recorded at each feature is its position in 2D
or 3D. Additionally, if the object has an detailed tex-
ture, one may be interested in recording the local surface
albedo at each feature point or more simply the image
brightness. Throughout this paper we refer to these two
attributes respectively as shape and texture.

Given two or more sets of features, correspondence
algorithms match features across the feature sets. We
de�ne a vectorized representation to be a feature-
based representation where correspondence has been es-
tablished relative to a �xed reference object or reference
image. Computing the vectorized representation can be
thought of as arranging the feature sets into ordered vec-
tors so that the ith element of each vector refers to the
same feature point for all objects. Given the correspon-
dences in the vectorized representation, subsequent pro-
cessing can do things like register images to models for
recognition, and estimate object depth or motion.

In this paper, we introduce an algorithm for comput-
ing the vectorized representation for a class of objects
like the human face. Faces present an interesting class
of objects because of the variation seen across individu-
als in both shape and texture. The intricate structure of
faces leads us to use a dense set of features to describe it.
Once a dense set of feature correspondences have been
computed between an arbitrary face and a \reference"
face, applications such as face recognition and pose and
expression estimation are possible. However, the focus of
this paper is on an algorithm for computing a vectorized
representation for faces.

The two primary components of the vectorized rep-
resentation are shape and texture. Previous approaches
in analyzing faces have stressed either one component or
the other, such as feature localization or decomposing
texture as a linear combination of eigenfaces (see Turk
and Pentland [37]). The key aspect of our vectorization
algorithm, or \vectorizer", is that the two processes for
the analysis of shape and texture are coupled. That is,
the shape and texture processes are coupled by mak-
ing each process use the output of the other. The tex-
ture analysis uses shape for geometrical normalization,

and shape analysis uses texture to synthesize a refer-
ence image for feature correspondence. Empirically, we
have found that this links the two processes in a positive
feedback loop. Iterating between the shape and texture
steps causes the vectorized representation to converge
after several iterations.

Our vectorizer is similar to the active shape model
of Cootes, et al. [17][16][23] in that both iteratively �t
a shape/texture model to the input. But there are in-
teresting di�erences in the modeling of both shape and
texture. In our vectorizer there is no model for shape; it
is measured in a data-driven manner using optical 
ow.
In active shape models, shape is modeled using a para-
metric, example-based method. First, an ensemble of
shapes are processed using principal component analy-
sis, which produces a set of \eigenshapes". New shapes
are then written as linear combinations of these eigen-
shapes. Texture modeling in their approach, however,
is weaker than in ours. Texture is only modeled locally
along 1D contours at each of the feature points de�ning
shape. Our approach models texture over larger regions
{ such as eyes, nose, and mouth templates { which should
provide more constraint for textural analysis. In the fu-
ture we intend to add a model for shape similar to active
shape models, as discussed ahead in section 6.2.

In this paper, we start in section 2 by �rst providing a
more concrete de�nition of our vectorized shape and tex-
ture representation. This is followed by a more detailed
description of the coupling of shape and texture. Next,
in section 3, we present the basic vectorization method
in more detail. Section 4 discusses a hierarchical coarse-
to-�ne implementation of the technique. In section 5,
we demonstrate two applications of the vectorizer, facial
feature detection and the registration of two arbitrary
faces. The latter application is used to map prototypical
face transformations onto a face so that new \virtual"
views can be synthesized (see Beymer and Poggio [11]).
The paper closes with suggestions for future work, in-
cluding an idea to generalize the vectorizer to multiple
poses.

2 Preliminaries

2.1 Vectorized representation

As mentioned in the introduction, the vectorized repre-
sentation is a feature-based representation where corre-
spondence has been established relative to a �xed ref-
erence object or reference image. Computationally, this
requires locating a set of features on an object and bring-
ing them into correspondence with some prior reference
feature set. While it is possible to de�ne a 3D, object-
centered vectorization, the vectorized representation in
this paper will be based on 2D views of frontal views of
the face. Thus, the representations for shape and tex-
ture of faces will be de�ned in 2D and measured relative
to a 2D reference image.

Since the representation is relative to a 2D reference,
�rst we de�ne a standard feature geometry for the ref-
erence image. The features on new faces will then be
measured relative to the standard geometry. In this pa-
per, the standard geometry for frontal views of faces is
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Figure 1: To de�ne the shape of the prototypes o�-line,
manual line segment features are used. After Beier and
Neely [5].
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Figure 2: Manually de�ned shapes are averaged to com-
pute the standard face shape.

de�ned by averaging a set of line segment features over
an ensemble of \prototype" faces. Fig. 1 shows the line
segment features for a particular individual, and Fig. 2
shows the average over a set of 14 prototype people. Fea-
tures are assigned a text label (e.g. \c1") so that corre-
sponding line segments can be paired across images. As
we will explain later in section 3.1, the line segment fea-
tures are speci�ed manually in an initial o�-line step that
de�nes the standard feature geometry.

The two components of the vectorized representation,
shape and texture, can now be de�ned relative to this
standard shape.

2.1.1 Shape

Given the locations of n feature points f1; f2; : : : ; fn
in an image ia, an \absolute" measure of 2D shape is
represented by a vector ya of length 2n consisting of the
concatenation of the x and y coordinate values

ya =

0
BBBB@

x1
y1
...
xn
yn

1
CCCCA :

This absolute representation for 2D shape has been
widely used, including network-based object recogni-
tion (Poggio and Edelman [28]), the linear combinations
approach to recognition (Ullman and Basri [38], Pog-
gio [27]), active shape models (Cootes and Taylor [15],

i istd a

stdya-std t a

Figure 3: Our vectorized representation for image ia
with respect to the reference image istd at standard
shape. First, pixelwise correspondence is computed be-
tween istd and ia, as indicated by the grey arrow. Shape
y
std

a�std
is a vector �eld that speci�es a corresponding

pixel in ia for each pixel in istd. Texture ta consists of
the grey levels of ia mapped onto the standard shape.

Cootes, et al. [17]) and face recognition (Craw and
Cameron [18][19]).

A relative shape measured with respect to a standard
reference shape ystd is simply the di�erence

ya � ystd;

which we denote using the shorthand notation ya�std.
The relative shape ya�std is the di�erence in shape be-
tween the individual in ia and the mean face shape.

To facilitate shape and texture operators in the run-
time vectorization procedure, shape is spatially oversam-
pled. That is, we use a pixelwise representation for
shape, de�ning a feature point at each pixel in a subim-
age containing the face. The shape vector ya�std can
then be visualized as a vector �eld of correspondences
between a face at standard shape and the given image ia
being represented. If there are n pixels in the face subim-
age being vectorized, then the shape vector consists of
2n values, a (�x; �y) pair for each pixel. In this dense,
pixelwise representation for shape, we need to keep track
of the reference image, so the notation is extended to in-
clude the reference as a superscript ystd

a�std
. Fig. 3 shows

the shape representation ystd
a�std

for the image ia. As in-
dicated by the grey arrow, correspondences are measured
relative to the reference face istd at standard shape. (Im-
age istd in this case is mean grey level image; modeling
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grey level texture is discussed more in section 3.1.) Over-
all, the advantage of using a dense representation is that
it allows a simple optical 
ow calculation to be used for
computing shape and a simple 2D warping operator for
geometrical normalization.

2.1.2 Texture

Our texture vector is a geometrically normalized ver-
sion of the image ia. That is, the geometrical di�erences
among face images are factored out by warping the im-
ages to the standard reference shape. This strategy for
representing texture has been used, for example, in the
face recognition works of Craw and Cameron [18], and
Shackleton and Welsh [33]. If we let shape ystd be the
reference shape, then the geometrically normalized im-
age ta is given by the 2D warp

ta(x; y) = ia(x+�x
std

a�std
(x; y); y +�y

std

a�std
(x; y));

where�x
std

a�std
and�y

std

a�std
are the x and y components

of ystd
a�std

, the pixelwise mapping between ya and the
standard shape ystd. Fig. 3 in the lower right shows an
example texture vector ta for the input image ia in the
upper right.

If shape is sparsely de�ned, then texture mapping
or sparse data interpolation techniques can be em-
ployed to create the necessary pixelwise level representa-
tion. Example sparse data interpolation techniques in-
clude using splines (Litwinowicz and Williams [24], Wol-
berg [40]), radial basis functions (Reisfeld, Arad, and
Yeshurun [31]), and inverse weighted distance metrics
(Beier and Neely [5]). If a pixelwise representation is
being used for shape in the �rst place, such as one de-
rived from optical 
ow, then texture mapping or data
interpolation techniques can be avoided.

2.1.3 Separation of shape and texture

How cleanly have we separated the notions of shape
and texture in the 2D representations just described?
Ideally, the ultimate shape description would be a 3D
one where the (x; y; z) coordinates are represented. Tex-
ture would be a description of local surface albedo at
each feature point on the object. Such descriptions are
common for the modeling of 3D objects for computer
graphics, and it would be nice for vision algorithms to
invert the imaging or \rendering" process from 3D mod-
els to 2D images.

What our 2D vectorized description has done, how-
ever, is to factor out and explicitly represent the salient
aspects of 2D shape. The true spatial density of this
2D representation depends, of course, on the density of
features de�ning standard shape, shown in our case in
Fig. 2. Some aspects of 2D shape, such as lip or eyebrow
thickness, will end up being encoded in our model for
texture. However, one could extend the standard fea-
ture set to include more features around the mouth and
eyebrows if desired. For texture, there are non-albedo
factors confounded in the texture component, such as
lighting conditions and the z-component of shape. Over-
all, though, remember that only one view of the object
being vectorized is available, thus limiting our access to
3D information. We hope that the current de�nitions of

ia ta bta
Figure 4: Vectorizing face images: if we know who the
person is and have prior example views ia of their face,
then we can manually warp ia to standard shape, pro-
ducing a reference ta. New images of the person can be
vectorized by computing optical 
ow between ta and the
new input. However, if we do not have prior knowledge
of the person being vectorized, we can still synthesize an

approximation to ta, bta, by taking a linear combination
of prototype textures.

shape and texture are a reasonable approximation to the
desired decomposition.

2.2 Shape/texture coupling

One of the main results of this paper is that the com-
putations for the shape and texture components can be
algorithmically coupled. That is, shape can be used to
geometrically normalize the input image prior to texture
analysis. Likewise, the result of texture analysis can be
used to synthesize a reference image for �nding corre-
spondences in the shape computation. The result is an
iterative algorithm for vectorizing images of faces. Let
us now explore the coupling of shape and texture in more
detail.

2.2.1 Shape perspective

Since the vectorized representation is determined by
an ordered set of feature points, computing the represen-
tation is essentially a feature �nding or correspondence
task. Consider this correspondence task under a special
set of circumstances: we know who the person is, and we
have prior example views of that person. In this case, a
simple correspondence �nding algorithm such as optical

ow should su�ce. As shown in the left two images of
Fig. 4, �rst a prior example ia of the person's face is
manually warped in an o�-line step to standard shape,
producing a reference image ta. A new image of the same
person can now be vectorized simply by running an op-
tical 
ow algorithm between the image and reference ta.

If we have no prior knowledge of the person being
vectorized, the correspondence problem becomes more
di�cult. In order to handle the variability seen in facial
appearance across di�erent people, one could imagine us-
ing many di�erent example reference images that have
been pre-warped to the standard reference shape. These
reference images could be chosen, for example, by run-
ning a clustering algorithm on a large ensemble of exam-
ple face images. This solution, however, introduces the
problem of having to choose among the reference images
for the �nal vectorization, perhaps based on a con�dence
measure in the correspondence algorithm.
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Going one step further, in this paper we use a statis-
tical model for facial texture in order to assist the corre-
spondence process. Our texture model relies on the as-
sumption, commonly made in the eigenface approach to
face recognition and detection (Turk and Pentland [37],
Pentland, et al. [26]), that the space of grey level images
of faces is linearly spanned by a set of example views.
That is, the geometrically normalized texture vector ta
from the input image ia can be approximated as a linear
combination of n prototype textures tpj ; 1 � j � n

bta = nX
j=1

�jtpj ; (1)

where the tpj are themselves geometrically normalized
by warping them to the standard reference shape. The
rightmost image of Fig. 4, for example, shows an ap-

proximation bta that is generated by taking a linear com-
bination of textures as in equation (1). If the vector-
ization procedure can estimate a proper set of �j coe�-
cients, then computing correspondences should be sim-

ple. Since the computed \reference" image bta approxi-
mates the texture ta of the input and is geometrically
normalized, we are back to the situation where a simple
correspondence algorithm like optical 
ow should work.
In addition, the linear �j coe�cients act as a low dimen-
sional code for representing the texture vector ta.

This raises the question of computing the �j coe�-
cients for the texture model. Let us now consider the
vectorization procedure from the perspective of model-
ing texture.

2.2.2 Texture perspective

To develop the vectorization technique from the tex-
ture perspective, consider the simple eigenimage, or
\eigenface", model for the space of grey level face images.
The eigenface approach for modeling face images has
been used recently for a variety of facial analysis tasks,
including face recognition (Turk and Pentland [37], Aka-
matsu, et al. [2], Pentland, et al. [26]), reconstruction
(Kirby and Sirovich [22]), face detection (Sung and Pog-
gio [35], Moghaddam and Pentland [25]), and facial fea-
ture detection (Pentland, et al. [26]). The main assump-
tion behind this modeling approach is that the space of
grey level images of faces is linearly spanned by a set of
example face images. To optimally represent this \face
space", principal component analysis is applied to the
example set, extracting an orthogonal set of eigenimages
that de�ne the dimensions of face space. Arbitrary faces
are then represented by the set of coe�cients computed
by projecting the face onto the set of eigenimages.

One requirement on face images, both for the exam-
ple set fed to principal components and for new images
projected onto face space, is that they be geometrically
normalized so that facial features line up across all im-
ages. Most normalization methods use a global trans-
form, usually a similarity or a�ne transform, to align
two or three major facial features. For example, in Pent-
land, et al. [26], the imaging apparatus e�ectively regis-
ters eyes, and Akamatsu, et al. [2] register the eyes and
mouth.

However, because of the inherent variability of facial
geometries across di�erent people, aligning just a couple
of features { such as the eyes { leaves other features mis-
aligned. To the extent that some features are misaligned,
even this normalized representation will confound di�er-
ences in grey level information with di�erences in local
facial geometry. This may limit the representation's gen-
eralization ability to new faces outside the original ex-
ample set used for principal components. For example, a
new face may match the texture of one particular linear
combination of eigenimages but the shape may require
another linear combination.

To decouple
texture and shape, Craw and Cameron [18] and Shack-
elton and Welsh [33] represent shape separately and use
it to geometrically normalize face texture by deforming
it to a standard shape. Shape is de�ned by the (x; y)
locations of a set of feature points, as in our de�nition
for shape. In Craw and Cameron [18], 76 points outlin-
ing the eyes, nose, mouth, eyebrows, and head are used.
To geometrically normalize texture using shape, image
texture is deformed to a standard face shape, making
it \shape free". This is done by �rst triangulating the
image using the features and then texture mapping.

However, they did not demonstrate an e�ec-
tive automatic method for computing the vectorized
shape/texture representation. This is mainly due to di�-
culties in �nding correspondences for shape, where prob-
ably on the order of tens of features need to be located.
Craw and Cameron [18] manually locate their features.
Shackelton and Welsh [33], who focus on eye images, use
the deformable template approach of Yuille, Cohen, and
Hallinan [41] to locate eye features. However, for 19/60
of their example eye images, feature localization is either
rated as \poor" or \no �t".

Note that in both of these approaches, computation of
the shape and texture components have been separated,
with shape being computed �rst. This di�ers from our
approach, where shape and texture computations are in-
terleaved in an iterative fashion. In their approach the
link from shape to texture is present { using shape to
geometrically normalize the input. But using a texture
model to assist �nding correspondences is not exploited.

2.2.3 Combining shape and texture

Our face vectorizer consists of two primary steps, a
shape step that computes vectorized shape ystd

a�std
and

a texture step that uses the texture model to approx-
imate the texture vector ta. Key to our vectorization
procedure is linking the two steps in a mutually bene-
�cial manner and iterating back and forth between the
two until the representation converges. First, consider
how the result of the texture step can be used to as-
sist the shape step. Assuming for the moment that the

texture step can provide an estimate bta using equation
(1), then the shape step estimates ystd

a�std
by computing

optical 
ow between the input and bta.
Next, to complete the loop between shape and tex-

ture, consider how the shape ystd
a�std

can be used to com-

pute the texture approximation bta. The shape ystda�std
is

used to geometrically normalize the input image using
4



the backward warp

ta(x) = ia(x + y
std

a�std
(x));

where x = (x; y) is a 2D pixel location in standard shape.
This normalization step aligns the facial features in the
input image with those in the textures tpj . Thus, when
ta is approximated in the texture step by projecting it
onto the linear space spanned by the tpj , facial features
are properly registered.

Given initial conditions for shape and texture, our
proposed system switches back and forth between tex-
ture and shape computations until a stable solution is
found. Because of the manner in which the shape and
texture computations feed back on each other, improv-
ing one component improves the other: better corre-
spondences mean better feature alignment for textural
analysis, and computing a better textural approximation
improves the reference image used for �nding correspon-
dences. Empirically, we have found that the representa-
tion converges after several iterations.

Now that we have seen a general outline of our vec-
torizer, let us explore the details.

3 Basic Vectorization Method

The basic method for our vectorizer breaks down into
two main parts, the o�-line preparation of the example
textures tpj , and the on-line vectorization procedure ap-
plied to a new input image.

3.1 O�-line preparation of examples

The basic assumption made in modeling vectorized tex-
ture is that the space of face textures is linearly spanned
by a set of geometrically normalized example face tex-
tures. Thus, in constructing a vectorizer we must �rst
collect a group of representative faces that will de�ne
face space, the space of the textural component in our
representation. Before using the example faces in the
vectorizer, they are geometrically normalized to align
facial features, and the grey levels are processed using
principal components or the pseudoinverse to optimize
run-time textural processing.

3.1.1 Geometric normalization

To geometrically normalize an example face, we ap-
ply a local deformation to the image to warp the face
shape into a standard geometry. This local deformation
requires both the shape of the example face as well as
some de�nition of the standard shape. Thus, our o�-line
normalizationprocedure needs the face shape component
for our example faces, something we provide manually.
These manual correspondences are averaged to de�ne the
standard shape. Finally, a 2D warping operation is ap-
plied to do the normalization. We now go over these
steps in more detail.

First, to de�ne the shape of the example faces, a set of
line segment features are positioned manually for each.
The features, shown in Fig. 1, follow Beier and Neely's [5]
manual correspondence technique for morphing face im-
ages. Pairing up image feature points into line segments
gives one a natural control over local scale and rotation

Figure 5: Examples of o�-line geometrical normalization
of example images. Texture for the normalized images is
sampled from the original images { that is why the chin
is generated for the second example.

in the eventual deformation to standard shape, as we will
explain later when discussing the deformation technique.

Next, we average the line segments over the example
images to de�ne the standard face shape (see Fig. 2).
We don't have to use averaging { since we are creating
a de�nition, we could have just chosen a particular ex-
ample face. However, averaging shape should minimize
the total amount of distortion required in the next step
of geometrical normalization.

Finally, images are geometrically normalized using the
local deformation technique of Beier and Neely [5]. This
deformation technique is driven by the pairing of line
segments in the example image with line segments in
the standard shape. Consider a single pairing of line
segments, one segment from the example image lex and
one from the standard shape lstd. This line segment
pair essentially sets up a local transform from the region
surrounding lex to the region surrounding lstd. The local
transform resembles a similarity transform except that
there is no scaling perpendicular to the segment, just
scaling along it. The local transforms are computed for
each segment pair, and the overall warping is taken as
weighted average. Some examples of images before and
after normalization are shown in Fig. 5.

3.1.2 Texture processing

Now that the example faces have been normalized for
shape, they can be used for texture modeling. Given a
new input ia, the texture analysis step tries to approx-
imate the input texture ta as a linear combination of
the example textures. Of course, given a linear subspace
such as our face space, one can choose among di�erent
sets of basis vectors that will span the same subspace.
One popular method for choosing the basis set, the eigen-
image approach, applies principal components analysis
to the example set. Another potential basis set is simply
the original set of images themselves. We now discuss
the o�-line texture processing required for the two basis
sets of principal components and the original images.

Principal components analysis is a classical technique
for reducing the dimensionality of a cluster of data
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points, where the data are assumed to be distributed
in an ellipsoid pattern about a cluster center. If there is
correlation in the data among the coordinate axes, then
one can project the data points to a lower dimensional
subspace without losing information. This corresponds
to an ellipsoid with interesting variation along a num-
ber of directions that is less than the dimensionality of
the data points. Principal components analysis �nds the
lower dimensional subspace inherent in the data points.
It works by �nding a set of directions ei such that the
variance in the data points is highest when projected
onto those directions. These ei directions are computed
by �nding the eigenvectors of the of the covariance ma-
trix of the data points.

In our ellipsoid of n geometrically normalized textures
tpj , let t

0

pj
be the set of textures with the mean tmean

subtracted o�

tmean =
1

n

nX
j=1

tpj

t
0

pj
= tpj � tmean; 1 � j � n:

If we let T be a matrix where the jth column is t0
pj

T =
�
t
0

p1
t
0

p2
� � � t

0

pn

�
;

then the covariance matrix is de�ned as

� = TT t:

Notice that T is am�nmatrix, where m is the number of
pixels in vectorized texture vectors. Due to our pixelwise
representation for shape, m � n and thus �, which is
a m � m matrix, is quite large and may be intractable
for eigenanalysis. Fortunately, one can solve the smaller
eigenvector problem for the n � n matrix T tT . This is
possible because an eigenvector ei of T

tT

T tT ei = �iei

corresponds to an eigenvector Tei of �. This can be
seen by multiplying both sides of the above equation by
matrix T

(TT t) Tei = �iTei:

Since the eigenvectors (or eigenimages) ei with the larger
eigenvalues �i explain the most variance in the example
set, only a fraction of the eigenimages need to be retained
for the basis set. In our implementation, we chose to use
roughly half the eigenimages. Fig. 6 shows the mean face
and the �rst 6 eigenimages from a principal components
analysis applied to a group of 55 people.

Since the eigenimages are orthogonal (and can easily
be normalized to be made orthonormal), analysis and re-
construction of new image textures during vectorization
can be easily performed. Say that we retain N eigenim-
ages, and let ta be a geometrically normalized texture
to analyze. Then the run-time vectorization procedure
projects ta onto the ei

�i = ei � (ta � tmean) (2)

and can reconstruct ta, yielding bta
bta = tmean +

P
N

i=1
�iei: (3)

tmean

e0 e1 e2

e3 e4 e5

Figure 6: Mean image and eigenimages from applying
principal components analysis to the geometrically nor-
malized examples.

Another potential basis set is the original example
textures themselves. That is, we approximate ta by a
linear combination of the n original image textures tpibta =Pn

i=1
�itpi : (4)

While we do not need to solve this equation until on-
line vectorization, previewing the solution will elucidate
what needs to be done for o�-line processing. Write
equation (4) in matrix form

bta = T �; (5)

where bta is written as a column vector, T is a matrix
where the ith column is tpi , and � is a column vector of
the �i's. Solving this with linear least squares yields

� = T y

ta (6)

= (T tT )�1T t
ta (7)

where T y = (T tT )�1T t is the pseudoinverse of T . The
pseudoinverse can be computed o�-line since it depends
only on the example textures tpi . Thus, run-time vec-
torization performs texture analysis with the columns of
T y (equation (6)) and reconstruction with the columns
of T (equation (5)). Fig. 7 shows some example images
processed by the pseudoinverse where n was 40.

Note that for both basis sets, the linear coe�cients are
computed using a simple projection operation. Coding-
wise at run-time, the only di�erence is whether one sub-
tracts o� the mean image tmean. In practice though,
the eigenimage approach will require fewer projections
since not all eigenimages are retained. Also, the orthog-
onality of the eigenimages may produce a more stable
set of linear coe�cients { consider what happens for the
pseudoinverse approach when two example images are
similar in texture. Yet another potential basis set, one
that has the advantage of orthogonality, would be the
result of applying Gram-Schmidt orthonormalization to
the example set.

Most of our vectorization experiments have been with
the eigenimage basis, so the notation in the next section
uses this basis set.

3.2 Run-time vectorization

In this section we go over the details of the vectorization
procedure. The inputs to the vectorizer are an image ia
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Figure 7: Example textures processed by the pseudoin-
verse T y = (T tT )�1T t. When using the original set of
image textures as a basis, texture analysis is performed
by projection onto these images.

to vectorize and a texture model consisting of N eigen-
images ei and mean image tmean. In addition, the vec-
torizer takes as input a planar transform P that selects
the face region from the image ia and normalizes it for
the e�ects of scale and image-plane rotation. The pla-
nar transform P can be a rough estimate from a coarse
scale analysis. Since the faces in our test images were
taken against a solid background, face detection is rel-
atively easy and can be handled simply by correlating
with a couple face templates. The vectorization proce-
dure re�nes the estimate P , so the �nal outputs of the
procedure are the vectorized shape ystd

a�std
, a set of �i

coe�cients for computing bta, and a re�ned estimate of
P .

As mentioned previously, the interconnectedness of
the shape and texture steps makes the iteration con-
verge. Fig. 8 depicts the convergence of the vectoriza-
tion procedure from the perspective of texture. There
are three sets of face images in the �gure, sets of (1) all
face images, (2) geometrically normalized face textures,
and (3) the space of our texture model. The di�erence
between the texture model space and the set of geomet-
rically normalized faces depends on the prototype set of
n example faces. The larger and more varied this set be-
comes, the smaller the di�erence becomes between sets
(2) and (3). Here we assume that the texture model is
not perfect, so the true ta is slightly outside the texture
model space.

The goal of the iteration is to make estimates of ta
and bta converge to the true ta. The path for ta, the
geometrically normalized version of ia, is shown by the

curve from ia to the �nal ta. The path for bta is shown

by the curve from initial bta to �nal bta. The texture and
shape steps are depicted by the arrows jumping between
the curves. The texture step, using the latest estimate of
shape to produce ta, projects ta into the texture model

space. The shape step uses the latest bta to �nd a new
set of correspondences, thus updating shape and hence
ta. As one moves along the ta curve, one is getting

better estimates of shape. As one moves along the bta

curve, the �i coe�cients in the texture model improve.
Since the true ta lies outside the texture model space,

the iteration stops at �nal bta. This error can be made
smaller by increasing the number of prototypes for the
texture model.

We now look at one iteration step in detail.

3.2.1 One iteration

In examining one iteration of the texture and shape
steps, we assume that the previous iteration has pro-
vided an estimate for ystd

a�std
and the �i coe�cients. For

the �rst iteration, an initial condition of ystd
a�std

= ~0 is
used. No initial condition is needed for texture since the
iteration starts with the texture step.

In the texture step, �rst the input image ia is geo-
metrically normalized using the shape estimate ystd

a�std
,

producing ta

ta(x) = ia(x+ y
std

a�std
(x)); (8)

where x = (x; y) is a pixel location in the standard shape.
This is implemented as a backwards warp using the 
ow
vectors pointing from the standard shape to the input.
Bilinear interpolation is used to sample ia at non-integral
(x; y) locations. Next, ta is projected onto the eigenim-
ages ei using equation (2) to update the linear coe�-
cients �i. These updated coe�cients should enable the

shape computation to synthesize an approximation bta
that is closer to the true ta.

In the shape step, �rst a reference image bta is syn-
thesized from the texture coe�cients using equation (3).
Since the reference image reconstructs the texture of the
input, it should be well suited for �nding shape corre-

spondences. Next, optical 
ow is computed between bta,
which is geometrically normalized, and ia, which updates
the pixelwise correspondences ystd

a�std
. For optical 
ow,

we used the gradient-based hierarchical scheme of Bergen
and Adelson [7], Bergen and Hingorani [9], and Bergen,
et al. [8]. The new correspondences should provide bet-
ter geometrical normalization in the next texture step.

Overall, iterating these steps until the representa-
tion stabilizes is equivalent to iteratively solving for the
y
std

a�std
and �i which best satisfy

ta = bta;
or

ia(x + y
std

a�std
(x)) = tmean +

P
n

i=1
�iei:

3.2.2 Adding a global transform

We introduce a planar transform P to select the image
region containing the face and to normalize the face for
the e�ects of scale and image-plane rotation. Let i0

a
be

the input image ia resampled under the planar transform
P

i0
a
(x) = ia(P (x)): (9)

It is this resampled image i0
a
that will be geometrically

normalized in the texture step and used for optical 
ow
in the shape step.

Besides selecting the face, the transform P will also be
used for selecting subimages around individual features
such as the eyes, nose, and mouth. As will be explained
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Figure 8: Convergence of the vectorization procedure with regards to texture. The texture and shape steps try to

make bta and ta converge to the true ta.

in the next section on our hierarchical implementation,
the vectorization procedure is applied in a coarse-to-�ne
strategy on a pyramid structure. Full face templates are
vectorized at the coarser scales and individual feature
templates are vectorized at the �ner scales.

Transform P will be a similarity transform

P (x) = s

�
cos � sin �
� sin � cos �

�
x+

�
tx
ty

�
;

where the scale s, image-plane rotation �, and 2D trans-
lation (tx; ty) are determined in one of two ways, depend-
ing on the region being vectorized.

1. Two point correspondences. De�ne anchor points
qstd;1 and qstd;2 in standard shape, which can be
done manually in o�-line processing. Let qa;1 and
qa;2 be estimates of the anchor point locations in
the image ia, estimates which need to be performed
on-line. The similarity transform parameters are
then determined such that

P (qstd;1) = qa;1; P (qstd;2) = qa;2: (10)

This uses the full 
exibility of the similarity trans-
form and is used when the image region being vec-
torized contains two reliable feature points such as
the eyes.

2. Fixed s, �, and one point correspondence. In this
case there is only one anchor point qstd;1, and one
solves for tx and ty such that

P (qstd;1) = qa;1: (11)

This is useful for vectorizing templates with less
reliable features such as the nose and mouth. For
these templates the eyes are vectorized �rst and
used to �x the scale and rotation for the nose and
mouth.

While the vectorizer assumes that a face �nder has
provided an initial estimate for P , we would like the
vectorizer to be insensitive to a coarse or noisy estimate
and to improve the estimate of P during vectorization.
The similarity transform P can be updated during the
iteration when our estimates change for the positions of
the anchor points qa;i. This can be determined after
the shape step computes a new estimate of the shape
y
std

a�std
. We can tell that an anchor point estimate is o�

when there is nonzero 
ow at the anchor point

ky
std

a�std
(qstd;i)k > threshold:

The correspondences can be used to update the anchor
point estimate

qa;i = P (qstd;i + y
std

a�std
(qstd;i)):

Next, P can be updated using the new anchor point loca-
tions using equation (10) or (11) and ia can be resampled
again using equation (9) to produce a new i0

a
.

3.2.3 Entire procedure

The basic vectorization procedure is now summarized.
Lines 2(a) and (b) are the texture step, lines 2(c) and (d)
are the shape step, and line 2(e) updates the similarity
transform P .

procedure vectorize

1. initialization

(a) Estimate P using a face detector. For exam-
ple, a correlational face �nder using averaged
face templates can be used to estimate the
translational component of P .

(b) Resample ia using the similarity transform P ,
producing i0

a
(equation (9)).
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(c) ystd
a�std

= ~0.

2. iteration: solve for ystd
a�std

, �i, and P by iterating
the following steps until the �i stop changing.

(a) Geometrically normalize i0
a
using ystd

a�std
, pro-

ducing ta

ta(x) = i0
a
(x+ y

std

a�std
(x)):

(b) Project ta onto example set ei, computing the
linear coe�cients �i

�i = ei � (ta � tmean); 1 � i � n:

(c) Compute reference image bta for correspon-
dence by reconstructing the geometrically
normalized input

bta = tmean +
P

n

i=1
�iei:

(d) Compute the shape component using optical

ow

y
std

a�std
= optical-
ow(i0

a
;bta):

(e) If the anchor points are misaligned, as indi-
cated by optical 
ow, then:

i. Update P with new anchor points.

ii. Resample ia using the similarity trans-
form P , producing i0

a
(eqn (9)).

iii. ystd
a�std

= optical-
ow(i0
a
;bta):

Fig. 9 shows snapshot images of i0
a
, ta, and bta during

each iteration of an example vectorization. The iteration
number is shown in the left column, and the starting in-
put is shown in the upper left. We deliberately provided
a poor initial alignment for the iteration to demonstrate
the procedure's ability to estimate the similarity trans-
form P . As the iteration proceeds, notice how (1) im-
provements in P lead to a better global alignment in i0

a
,

(2) the geometrically normalized image ta improves, and

(3) the image bta becomes a more faithful reproduction
of the input. The additional row for i0

a
is given because

when step 2(e) is executed in the last iteration, i0
a
is

updated.

3.3 Pose dependence from the example set

The example images we have used in the vectorizer so
far have been from a frontal pose. What about other
poses, poses involving rotations out of the image plane?

Because we are being careful about geometry and cor-
respondence, the example views used to construct the
vectorizer must be taken from the same out-of-plane im-
age rotation. The resulting vectorizer will be tuned to
that pose, and performance is expected to drop as an
input view deviates from that pose. The only thing that
makes the vectorizer pose-dependent, however, is the set
of example views used to construct face space. The it-
eration step is general and should work for a variety of
poses. Thus, even though we have chosen a frontal view
as an example case, a vectorizer tuned for a di�erent
pose can be constructed simply by using example views
from that pose.

i0
a

ta bta
1

2

3

Figure 9: Snapshot images of i0
a
, ta, and bta during the

three iterations of an example vectorization. See text for
details.

In section 5.1 on applying the vectorizer to feature de-
tection, we demonstrate two vectorizers, one tuned for
a frontal pose, and one for an o�-frontal pose. Later,
in section 6.3, we suggest a multiple-pose vectorizer that
connects di�erent pose-speci�c vectorizers through inter-
polation.

4 Hierarchical implementation

For optimization purposes, the vectorization procedure
is implemented using a coarse-to-�ne strategy. Given
an input image to vectorize, �rst the Gaussian pyramid
(Burt and Adelson [14]) is computed to provide a mul-
tiresolution representation over 4 scales, the original im-
age plus 3 reductions by 2. A face �nder is then run
over the coarsest level to provide an initial estimate for
the similarity transform P . Next, the vectorizer is run
at each pyramid level, working from the coarser to �ner
levels. As processing moves from a coarser level to a
�ner one, the coarse shape correspondences are used to
initialize the similarity transform P for the vectorizer at
the �ner level.

4.1 Face �nding at coarse resolution

For our test images, face detection is not a major prob-
lem since the subjects are shot against a uniform back-
ground. For the more general case of cluttered back-
grounds, see the face detection work of Reisfeld and
Yeshurun [32], Ben-Arie and Rao [6], Sung and Pog-
gio [35], Sinha [34], and Moghaddam and Pentland [25].
For our test images, we found that normalized correla-
tion using two face templates works well. The normal-
ized correlation metric is

r =
< TI > � < T >< I >

�(T)�(I)
;

where T is the template, I is the subportion of image be-
ing matched against, < TI > is normal correlation, <>
is the mean operator, and �() measures standard devia-
tion. The templates are formed by averaging face grey
levels over two populations, an average of all examples
plus an average over people with beards. Before aver-
aging, example face images are �rst warped to standard
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Figure 10: Face �nding templates are grey level averages
using two populations, all examples (left) plus people
with beards (right).

shape. Our two face templates for a frontal pose are
shown in Fig. 10. To provide some invariance to scale,
regions with high correlation response to these templates
are examined with secondary correlations where the scale
parameter is both increased and decreased by 20%. The
location/scale of correlation matches above a certain
threshold are reported to the vectorizer.

4.2 Multiple templates at high resolution

When processing the di�erent pyramid levels, we use a
whole face template at the two coarser resolutions and
templates around the eyes, nose, and mouth for the two
�ner resolutions. This template decomposition across
scales is similar to Burt's pattern tree approach [13] for
template matching on a pyramid representation. At a
coarse scale, faces are small, so full face templates are
needed to provide enough spatial support for texture
analysis. At a �ner scale, however, individual features {
eyes, noses { cover enough area to provide spatial sup-
port for analysis, giving us the option to perform sep-
arate vectorizations. The advantage of decoupling the
analysis of the eyes, nose, and mouth is that it should
improve generalization to new faces not in the original
example set. For example, if the eyes of a new face use
one set of linear texture coe�cients and the nose uses
another, separate vectorization for the eyes and nose
provides the extra 
exibility we need. However, if new
inputs always come from people in the original example
set, then this extra 
exibility is not required and keeping
to whole-face templates should be a helpful constraint.

When vectorizing separate eyes, nose, and mouth tem-
plates at the �ner two resolutions, the template of the
eyes has a special status for determining the scale and
image-plane rotation of the face. The eyes template is
vectorized �rst, using 2 iris features as anchor points for
the similarity transform P . Thus, the eyes vectoriza-
tion estimates a normalizing similarity transform for the
face. The scale and rotation parameters are then �xed
for the nose and mouth vectorizations. Only one anchor
point is used for the nose and mouth, allowing only the
translation in P to change.

4.3 Example results

For the example case in Fig. 11, correspondences from
the shape component are plotted over the four levels
of the Gaussian pyramid. These segment features are
generated by mapping the averaged line segments from
Fig. 2 to the input image. To get a sense of the �-
nal shape/texture representation computed at the high-

est resolution, Fig. 12 displays the �nal output for the
Fig. 11 example. For the eyes, nose and mouth tem-
plates, we show i0

a
, the geometrically normalized tem-

plates ta, and the reconstruction of those templates bta
using the linear texture coe�cients. No images of this
person were used among the examples used to create the
eigenspaces.

We have implemented the hierarchical vectorizer in C
on an SGI Indy R4600 based machine. Once the example
images are loaded, multilevel processing takes just a few
seconds to execute.

Experimental results presented in the next section on
applications will provide a more thorough analysis of the
vectorizer.

5 Applications

Once the vectorized representation has been computed,
how can one use it? The linear texture coe�cients can be
used as a low-dimensional feature vector for face recog-
nition, which is the familiar eigenimage approach to face
recognition [37][2][26]. Our application of the vectorizer,
however, has focused on using the correspondences in the
shape component. In this section we describe experimen-
tal results from applying these correspondences to two
problems, locating facial features and the registration of
two arbitrary faces.

5.1 Feature �nding

After vectorizing an input image ia, pixelwise correspon-
dence in the shape component ystd

a�std
provides a dense

mapping from the standard shape to the image ia. Even
though this dense mapping does more than locate just
a sparse set of features, we can sample the mapping to
locate a discrete set of feature points in ia. To accom-
plish this, �rst, during o�-line example preparation, the
feature points of interest are located manually with re-
spect to the standard shape. Then after the run-time
vectorization of ia, the feature points can be located in
ia by following the pixelwise correspondences and then
mapping under the similarity transform P . For a feature
point qstd in standard shape, its corresponding location
in ia is

P (qstd + y
std

a�std
(qstd)):

For example, the line segment features of Fig. 2 can
be mapped to the input by mapping each endpoint, as
shown for the test images in Fig. 13.

In order to evaluate these segment features located
by the vectorizer, two vectorizers, one tuned for a frontal
pose and one for a slightly rotated pose, were each tested
on separate groups of 62 images. The test set consists
of 62 people, 2 views per person { a frontal and slightly
rotated pose { yielding a combined test set of 124 im-
ages. Example results from the rotated view vectorizer
are shown in Fig. 14. Because the same views were used
as example views to construct the vectorizers, a leave-
6-out cross validation procedure was used to generate
statistics. That is, the original group of 62 images from a
given pose were divided into 11 randomly chosen groups
(10 of 6 people, 1 of the remaining 2 people). Each group
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level 3

level 2

level 1

level 0

Figure 11: Evolution of the shape component during
coarse-to-�ne processing. The shape component is dis-
played through segment features which are generated by
mapping the averaged line segments from Fig. 2 to the
input image.

i0
a ta

bta
Figure 12: Final vectorization at the original image res-
olution.

Figure 13: Example features located by sampling the
dense set of shape correspondences ystd

a�std
found by the

vectorizer.

of images is tested using a di�erent vectorizer; the vec-
torizer for group G is constructed from an example set
consisting of the original images minus the set G. This
allows us to separate the people used as examples from
those in the test set.

Qualitatively, the results were very good, with only
one mouth feature being completely missed by the vec-
torizer (it was placed between the mouth and nose). To
quantitatively evaluate the features, we compared the
computed segment locations against manually located
\ground truth" segments, the same segments used for
o�-line geometrical normalization. To report statistics
by feature, the segments in Fig. 2 are grouped into 6
features: left eye (c3, c4, c5, c6), right eye (c9, c10, c11,
c12), left eyebrow (c1, c2), right eyebrow (c7, c8), nose
(n1, n2, n3), and mouth (m1, m2).

Two di�erent metrics were used to evaluate how close
a computed segment came to its corresponding ground
truth segment. Segments in the more richly textured ar-
eas (e.g. eye segments) have local grey level structure at
both endpoints, so we expect both endpoints to be ac-
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Figure 14: Example features located by the vectorizer.

curately placed. Thus, the \point" metric measures the
two distances between corresponding segment endpoints.
On the other hand, some segments are more edge-like,
such as eyebrows and mouths. For the \edge" metric
we measure the angle between segments and the perpen-
dicular distance from the midpoint of the ground truth
segment to the computed segment.

Next, the distances between the manual and com-
puted segments were thresholded to evaluate the close-
ness of �t. A feature will be considered properly detected
when all of its constituent segments are within thresh-
old. Using a distance threshold of 10% of the interocular
distance and an angle threshold of 20�, we compute de-
tection rates and average distances between manual and
computed segments (Table 1). The eyebrow and nose er-
rors are more of a misalignment of a couple points rather
than a complete miss (the mouth error was a complete
miss).

In the next section we consider another application of
the shape component computed by the vectorizer.

5.2 Registration of two arbitrary faces

Suppose that we have only one view of an individual's
face and that we would like to synthesize other views,
perhaps rotated views or views with di�erent expres-
sions. These new \virtual" views could be used, for ex-
ample, to create an animation of the individual's face
from just one view. For the task of face recognition, vir-
tual views could be used as multiple example views in
a view-based recognizer. In this section, we discuss how
the shape component from the vectorizer can be used to
synthesize virtual views. In addition, these virtual views
are then evaluated by plugging them into a view-based,
pose-invariant face recognizer.

To synthesize virtual views, we need to have prior

prototype novel person

virtual view

(a)
prototype
flow

(b)

(c)
2D warp

Figure 15: In parallel deformation, (a) a 2D deformation
representing a transformation is measured by �nding cor-
respondence among prototype images. In this example,
the transformation is rotation and optical 
ow was used
to �nd a dense set of correspondences. Next, in (b), the

ow is mapped onto the novel face, and (c) the novel
face is 2D warped to a \virtual" view. Figure from [11].

knowledge of a facial transformation such as head rota-
tion or expression change. A standard approach used in
the computer graphics and computer vision communities
for representing this prior knowledge is to use a 3Dmodel
of the face (Akimoto, Suennaga, and Wallace[3], Wa-
ters and Terzopoulos[36][39], Aizawa, Harashima, and
Saito[1], Essa and Pentland [20]). After the single avail-
able 2D image is texture mapped onto a 3D polygo-
nal or multilayer mesh model of the face, rotated views
can be synthesized by rotating the 3D model and ren-
dering. In addition, facial expressions have been mod-
eled [36][39][20] by embedding muscle forces that deform
the 3D model in a way that mimics human facial mus-
cles. Mapping image data onto the 3D model is typ-
ically solved by locating corresponding points on both
the 3D model and the image or by simultaneously ac-
quiring both the 3D depth and image data using the
Cyberware scanner.

We have investigated an alternative approach that
uses example 2D views of prototype faces as a substi-
tute for 3D models (Poggio and Vetter [30], Poggio and
Brunelli [29], Beymer and Poggio [11]). In parallel defor-
mation, one of the example-based techniques discussed
in Beymer and Poggio [11], prior knowledge of a facial
transformation such as a rotation or change in expression
is extracted from views of a prototype face undergoing
the transformation. Shown in Fig. 15, �rst a 2D de-
formation representing the transformation is measured
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average distances
feature detection rate point metric edge metric

endpt. dist. angle perpend. dist.
(pixels) (degrees) (pixels)

left eye 100% (124/124) 1.24 - -
right eye 100% (124/124) 1.23 - -

left eyebrow 97% (121/124) - 5:1� 1.06
right eyebrow 96% (119/124) - 4:8� 1.06

nose 99% (123/124) 1.45 3:2� 0.66
mouth 99% (123/124) - 2:2� 0.53

Table 1: Detection rates and average distances between computed and \ground truth" segments. Qualitatively, the
eyebrow and nose errors were misalignments, while the mouth error did involve a complete miss.

real views virtual views

Figure 16: Example pairs of real and virtual views.

by �nding correspondence between the prototype face
images. We use the same gradient-based optical 
ow al-
gorithm [9] used in the vectorizer to �nd a dense set of
pixelwise correspondences. Next, the prototype 
ow is
mapped onto the \novel" face, the individual for which
we wish to generate virtual views. This step requires \in-
terperson" correspondence between the prototype and
novel faces. Finally, the prototype 
ow, now mapped
onto the novel face, can be used to 2D warp the novel
face to produce the virtual view.

The di�cult part of parallel deformation is automat-
ically �nding a set of feature correspondences between
the prototype and novel faces. We have used the vec-
torizer to automatically locate the set of facial features
shown in Fig. 14 in both the prototype and novel faces.
From this sparse set of correspondences, the interpola-
tion technique from Beier and Neely [5] is used to gen-
erate a dense, pixelwise mapping between the two faces.
We then used the dense set of correspondences to map
rotation deformations from a single prototype to a group
of 61 other faces for generating virtual views. Fig. 16
shows some example pairs of real and virtual views.

To evaluate these virtual views, they were used as

example views in a view-based, pose-invariant face rec-
ognizer (see [11] for details). The problem is this: given
one real view of each person, can we recognize the per-
son under a variety of poses? Virtual views were used to
generate a set of rotated example views to augment the
single real view. Using a simple view-based approach
that represents faces with templates of the eyes, nose,
and mouth, we were able to get a recognition rate of
85% on a test set of 620 images (62 people, 10 views per
person). To put this number in context, consider the
recognition results from a \base" case of two views per
person (the single real view plus its mirror re
ection) and
a \best" case of 15 real views per person. When tested
on the same test set, we obtained recognition rates of
70% for the two views case and 98% for the 15 views
case. Thus, adding virtual views to the recognizer in-
creases the recognition by 15%, and the performance of
virtual views is about midway between the base and best
case scenarios.

6 Future work

In this section, �rst we discuss some shorter-term work
for the existing vectorizer. This is followed by longer-
term ideas for extending the vectorizer to use parame-
terized shape models and to handle multiple poses.

6.1 Existing vectorizer

So far the vectorizer has been tested on face images shot
against a solid background. It would be nice to demon-
strate the vectorizer working in cluttered environments.
To accomplish this, both the face detection and vector-
izer should be made more robust to the presense of false
positive matches. To improve face detection, we would
probably incorporate the learning approaches of Sung
and Poggio [35] or Moghaddam and Pentland [25]. Both
of these techniques model the space of grey level face
images using principal components analysis. To judge
the \faceness" of a image, they use a distance metric
that includes two terms, \distance from face space" (see
Turk and Pentland [37])

kta � btak
and the Mahalanobis distanceP

N

i=1

�
2

i

�i
;
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where the �i are the eigenspace projection coe�cients
and �i are the eigenvalues from principal component
analysis. This distance metric could be added to the
vectorizer as a threshold test after the iteration step has
converged.

Our current coarse-to-�ne implementation does not
exploit potential constraints that could be passed from
the coarser to �ner scales. The only information cur-
rently passed from a coarse level to the next �ner level
are feature locations used to initialize the similarity
transform P . This could be expanded to help initial-
ize the shape and texture components at the �ner level
as well.

6.2 Parameterized shape model

In the current vectorizer, shape is measured in a \data-
driven" manner using optical 
ow. However, we can ex-
plicitly model shape by taking a linear combination of
example shapes

y
std

a�std
=
P

n

i=1
�iy

std

pi�std
;

where the shape of the ith example image, ystd
pi�std

, is the

2D warping used to geometrically normalize the image
in the o�-line preparation step. This technique for mod-
eling shape is similar to the work of Cootes, et al. [17],
Blake and Isard [12], Baumberg and Hogg [4], and Jones
and Poggio [21]. The new shape step would, given i0

a

and reference bta, try to �nd a set of coe�cients �i that
minimizes the squared error of the approximation

i0
a
(x+

P
n

i=1
�iy

std

pi�std
(x)) = bta:

This involves replacing the optical 
ow calculation with a
model-based matching procedure; one can think of it as a
parameterized \optical 
ow" calculation that computes
a single set of linear coe�cients instead of a 
ow vector
at each point. One advantage of modeling shape is the
extra constraint it provides, as some \illegal" warpings
cannot even be represented. Additionally, compared to
the raw 
ow, the linear shape coe�cients should be more
amenable for shape analysis tasks like expression analysis
or face recognition using shape.

Given this new model for shape in the vectorizer, the
set of � shape coe�cients and � texture coe�cients could
be used as a low-dimensional representation for faces.
An obvious application of this would be face recogni-
tion. Even without the modi�ed vectorizer and the �
coe�cients, the � coe�cients alone could be evaluated
as a representation for a face recognizer.

6.3 Multiple poses

The straightforward way to handle di�erent out-of-plane
image rotations with the vectorizer is simply to use sev-
eral vectorizers, each tuned to a di�erent pose. However,
if we provide pixelwise correspondence between the stan-
dard shapes of the di�erent vectorizers, their operations
can be linked together through image interpolation. The

main idea is to interpolate among the bta images of the
di�erent vectorizers to produce a new image that recon-
structs both the grey levels and the pose of the input im-
age (see Beymer, Shashua and Poggio [10] for examples

of interpolation across di�erent poses). Correspondence
is then found between the input and this new interpo-
lated image using optical 
ow. This correspondence, in
turn, gives us correspondence between the input and the
individual vectorizers, so the input can be warped to
each one for a combined textural analysis. This proce-
dure requires adding pose to the existing state variables
of shape, texture, and similarity transform P . The out-
put of this multi-pose vectorizer would be useful for pose
estimation and pose-invariant face recognition.

7 Conclusion

In this paper, we �rst introduced a vectorized image rep-
resentation, a feature-based representation where corre-
spondence has been established with respect to a refer-
ence image. Two image measurements are made at the
feature points. First, feature geometry, or shape, is rep-
resented by the (x; y) feature locations relative to the
standard face shape. Second, grey levels, or texture, are
represented by mapping image grey levels onto the stan-
dard face shape. Given this de�nition, primary focus of
this paper is to explore an automatic technique for com-
puting this vectorized representation for face images.

To design an algorithm for vectorizing images, or a
\vectorizer", we observed that the two representations
can be linked. That is, for textural analysis, the shape
component can be used to geometrically normalize an
image so that features are properly aligned. Conversely,
for shape analysis, the textural analysis can be used to
create a reference image that reconstructs a geometri-
cally normalized version of the input. We can then com-
pute shape by �nding correspondence between the refer-
ence image, which is at standard shape, and the input.
The main idea of our vectorizer is to exploit the nat-
ural feedback between the texture and shape computa-
tions by iterating back and forth between the two until
the shape/texture representation converges. We have
demonstrated an e�cient implementation of the vector-
izer using a hierarchical coarse-to-�ne strategy.

Two applications of the shape component were ex-
plored, facial feature �nding and the registration of two
faces. In our feature �nding experiments, eyes, nose,
mouth, and eyebrow features were located in 124 test
images of 62 people at two di�erent poses, and only one
mouth feature was missed by the system. In the sec-
ond application, one wants to generate new views of a
\novel" face given just one view. Prior knowledge of a
facial transformation such as a rotation is represented
by 2D example images of a \prototype" face undergoing
the transformation. The problem here is to register the
\novel" face with a prototype face. We showed how to
perform this registration step using features located by
the vectorized shape component.
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