
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1542 May, 1995

Three Cuts for Accelerated Interval
Propagation

D. McAllester

MIT AI Lab
Technology Square, 545

Cambridge, USA
dam@ai.mit.edu

P. Van Hentenryck

Brown University
Box 1910

Providence, RI 02912
pvh@cs.brown.edu

D. Kapur

SUNY at Albany
Dep. of Computer Science

Albany, NY-12222
kapur@cs.albany.edu

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

This paper addresses the problem of nonlinear multivariate root �nding. In an earlier paper we describe
a system called Newton which �nds roots of systems of nonlinear equations using re�nements of interval
methods. The re�nements are inspired by AI constraint propagation techniques. Newton is competitive
with continuation methods on most benchmarks and can handle a variety of cases that are infeasible for
continuation methods. This paper presents three \cuts" which we believe capture the essential theoretical
ideas behind the success of Newton. This paper describes the cuts in a concise and abstract manner which,
we believe, makes the theoretical content of our work more apparent. Any implementation will need to
adopt some heuristic control mechanism. Heuristic control of the cuts is only brie
y discussed here.

Copyright c
 Massachusetts Institute of Technology, 1995

This report describes research done at the Arti�cial Intelligence Laboratory of the Massachusetts Institute of Technology.
Support for the laboratory's arti�cial intelligence research was provided in part by the Advanced Research Projects Agency of
the Department of Defense under O�ce of Naval Research contract N00014-91-J-4038. This research was also partly supported
by the O�ce of Naval Research under grant N00014-91-J-4052 ARPA order 8225, the National Science Foundation under grant
numbers CCR-9357704, an NSF National Young Investigator Award.

1 Introduction

In this paper we address the problem of �nding solu-
tions to large systems of nonlinear equations. This is
an old problem with many applications and a large lit-
erature. The problem of of determining the existence
of a solution to algebraic constraints on real numbers is
known to be NP-hard and to be in PSPACE but it is
not known whether this problem is in NP. In engineer-
ing applications it is generally su�cient to consider a
simpler problem | the problem of determining the ex-
istence of
oating point numbers that satisfy the given
constraints up to the accuracy of
oating point compu-
tations. This problem is easily shown to be NP-hard.
However, since one can always guess the
oating point
numbers involved,
oating point constraint satisfaction
is in NP and hence NP-complete. Our work on
oating
point constraints emphasizes re�nements of constraint
propagation techniques for NP complete problems that
have been developed in the AI and logic programming
communities [1, 2, 3].

In an earlier paper we describe an implemented sys-
tem called Newton [4]. Newton uses a branch and prop-
agate algorithm whose propagation phase manipulates
upper and lower bounds on the variables appearing in
the given equations. Algorithms which manipulate up-
per and lower bounds are called interval methods |
Newton is based on interval methods [5]. A well-studied
alternative to interval methods is the so-called \continu-
ation method" or \homotopy technique" [6, 14]. Table 1
summarizes our previously published results comparing
Newton with earlier interval based systems and with
continuation methods.1 The benchmarks were taken
from papers on numerical analysis [12], interval analy-
sis [8, 9, 11], and continuation methods [14, 6, 13, 10].
The table shows that Newton outperforms an earlier in-
terval based system and is competitive with continuation
methods on the benchmarks tried. The novelty of New-
ton resides in the use of bound propagation techniques
which are stronger than those used in previous interval
systems. Newton can solve a variety of problems for
which continuation methods are infeasible (those bench-

1The Newton system was run on a Sun Sparc 10 work-
station to obtain all solutions to each benchmark system of
equations. The column labeled Newton gives the run time (in
seconds) of the Newton system on a given benchmark prob-
lem. The column labeled HRB gives timings for a traditional
interval method using Hansen-Segupta's operator, range test-
ing, and branching. This method uses the same implemen-
tation technology as ours, C code running on a SPARC 10.
Some interval methods such as [7] have better convergence
properties near solutions. Our main contribution aims at
speeding up the computation when far from a solution and
hence comparing it to HRB is meaningful. The column labeled
CONT gives timings for a state of the art continuation method
[14] running on a DEC 5000/200 which is perhaps slightly
slower than a SPARC 10. For each benchmark, we give the
number of variables (n), the total degree of the system (d),
the initial range for the variables, and the run time of each
system in seconds. A space in a column means that the re-
sult is not available for the method. A question mark means
that the method does not terminate in a reasonable time (>
1 hour). Further details on these timings can be found in [4].

Prob. v d range Newt HRB CONT

Broy 10 310 [-1,1] 1.6 18.2

Broy 20 320 [-1,1] 4.2 ?
Broy 320 3320 [-1,1] 113.7 ?
Broy 320 3320 [�108; 108] 143.4 ?
MC 20 320 [�4; 5] 24.5 968.2
MC 40 340 [�4; 5] 192.8 ?
MC 80 380 [�4; 5] 1752.6 ?
MC 80 380 [�108; 0] 1735.1 ?
i1 10 310 [-2,2] 0.1 14.3
i2 20 320 [-1,2] 0.3 1821.2
i3 20 320 [-2,2] 0.3 5640.8
i4 10 610 [-1,1] 73.9 445.3

i5 10 1110 [-1,1] 0.1 33.6
kin1 12 4608 [�108; 108] 14.2 1630.1
kin2 8 256 [�108; 108] 353.1 4730.3 35.6
eco 4 18 [�108; 108] 0.6 1.1
eco 5 54 [�108; 108] 3.4 5.9

eco 6 162 [�108; 108] 22.5 50.2
eco 7 486 [�108; 108] 127.6 991.4
eco 8 1458 [�108; 108] 915.2

eco 9 4374 [�108; 108] 8600.3
comb 10 96 [�108; 108] 9.9 57.4
chem 5 108 [0; 108] 6.3 56.6
neuro 6 1024 [�10; 10] 0.9 5.0
neuro 6 1024 [�103; 103] 172.7 5.0

Table 1: Summary of the Experimental Results

marks with total degree greater than, say, 240).
Our earlier paper on Newton describes the algorithm

used in su�cient detail to allow replication of the empiri-
cal results [4]. This includes a detailed description of the
heuristics used. The details tend to obscure what we feel
are the essential technical ideas behind the algorithms.
In this paper we give an abstract presentation of three
\cuts" where each cut speci�es a way of inferring a new
upper or lower bound on a variable. These abstract cuts,
while insu�cient in themselves to allow exact replication
of our results, seem to capture the essence of Newton's
ability to prune the search space and a description of
the cuts should allow others to replicate the qualitative
performance of the Newton system.

The heart of Newton's algorithm is a propagation pro-
cess which iteratively improves known bounds on vari-
ables using a set of inference rules we call interval cuts.
An interval cut is a method of inferring an inequality
of the form x � b or x � b where b is a
oating point
number. The next section speci�es three abstract cuts
used in the Newton system. Section 3 brie
y outlines
how these cuts can be used in a branch and propagate
procedure for �ndings all roots of a system of nonlinear
equations. Section 3 is a simpli�cation of the algorithm
actually used in Newton.

2 Three Cuts

In order to de�ne our cuts some preliminary terminol-
ogy is needed. Our algorithms work with
oating point
numbers which we assume to be a �nite set of ratio-
nal numbers extended with both a positive and nega-
tive in�nity, denoted +1 and �1 respectively. We will

1

generally use the term \interval" to refer to a closed
interval of the form [a; b] where a and b are
oating
point numbers. Our algorithms also work with symbolic
expressions constructed from
oating point constants,
symbolic variables, addition, subtraction, multiplication,
and \power expressions" of the form e

n where e is an
expression and n is a positive integer constant. Power
expressions improve the accuracy of interval evaluation.
We will generally use the term \expression" to refer to
symbolic expressions of this form. We will use the term
\box" to refer to an assignment of intervals to symbolic
variables. For box B and variable x we write B(x) to
denote the interval assigned to x in the box B. Clearly,
if we are working with n variables then a box is a recti-
linear subset of Rn. We also use B[x := [a; b]] to denote
the box which is identical to B except that it assigns the
variable x the interval [a; b]. A \point" is an assignment
of particular
oating point numbers to each variable. We
allow B(x) to be interval of the form [a; a]. A point can
be viewed as a box in which all intervals are of this form.

All interval methods are based on interval evalua-

tion | an evaluation process which computes an inter-
val value for an expression from given intervals for the
variables it contains. The most straightforward interval
evaluation method is obtained by associating each of the
operations of addition, subtraction, multiplication, and
powers with a corresponding operation from intervals to
intervals. More speci�cally we have the following opera-
tions on intervals.

[a; b] + [c; d] = [a+ c; b+ d]

[a; b] � [c; d] = [a� d; b� c]

[a; b] � [c; d] = [min(ac; ad; bc; bd); max(ac; ad; bc; bd)]

[a; b]n =

(
[an; bn] n odd
[0;max(an; bn)] n even; 0 2 [a; b]
[min(an; bn); max(an; bn)] n even; 0 62 [a; b]

We use the notation NE(e; B) to denote the inter-
val value of an expression e when variables are assigned
the interval values given in B and operations are inter-
preted as operations on intervals according to the above
rules (NE stands for \natural evaluation"). For exam-
ple if B(x) is [�1; 1] then NE(x + x; B) is the inter-
val [�2; 2]; NE(x � x; B) is the interval [�1; 1]; but
NE(x2; B) is [0; 1]. For most nontrivial expressions
the interval NE(e; B) is larger than the actual range of
values of e over points in B. If B(x) is [�1; 1] we have
that NE(x2 � x; B) is [�1; 2] while the actual range of
values in this box is [�1=4; 2]. In our implementation
outward rounding is used in the above rules | in arith-
metic for computing lower bounds we round down and
in arithmetic for computing upper bounds we round up.
This provides a guarantee that NE(e; B) contains the
actual range of values of e independent of numerical er-
rors. This guarantee is often expressed as the statement
that interval evaluation is \conservative".

We will assume a given set of constraints of the form
e � 0 where e is an expression as de�ned above. An
equation e1 = e2 can obviously be represented with two
constraints of the form e1 � e2 � 0 and e2 � e1 � 0. For
technical reasons it will be easier to work with inequali-
ties.

 a b c c’

NE(e, B[x:=[c’,c’]])

s
Line of Slope DlLine of slope Du

c’ − s/Du

Figure 1: A Newton cut deriving x � c
0 �

s

Du

An interval cut is a procedure which operates on a
set of constraints and a current box. An interval cut
reduces the given box by deriving a new bound on one
of the variables. Cuts are presented below as nondeter-
ministic procedures | performing a cut often involves
guessing one or more values. In practice these guesses
are generated by deterministic heuristic methods such
as those described in section 3. A nondeterministic cut
procedure can also be viewed as an inference rule for de-
riving new bounds independent of heuristic methods for
�nding useful inferences.

2.1 Newton Cuts

A Newton cut is represented schematically in �gure 1.
The notation used in the �gure is de�ned rigorously in
the following description. In the Newton cut, and in
later cuts, we abuse notation and use de=dx to denote
the expression that is the symbolic derivative of e with
respect to x.

Newton Cut: Let e � 0 be a constraint, B a
given box, x a variable appearing in e, and let
[a; b] be the interval B(x). Let c and c

0 be
two cut values such that c < b and c0 in [c; b].
Let s be the lower bound of NE(e; B[x :=
[c0; c0]]). We require s > 0. Let [Dl; Du] be
the interval NE(de=dx; B[x := [c; b]]). To
ensure there is no solution with x 2 [c0; b] we
require that either Dl � 0 or Dl < 0 and
c
0� s

Dl

> b. If Du � 0 we can infer x � c and

if Du > 0 we can infer x � max(c; c0 � s

Du

).

The lines of slope Du and Dl in the �gure 1 represent
the fastest possible rate of descent of the value of the
expression e as a function of x based on the interval eval-
uation of the derivative de=dx. It should be clear that
all values of x inside the triangle de�ned by these lines
must violate the constraint e � 0 and can be pruned.

An interesting special case is when c = a and c
0 = b.

Whenever the lower bound of NE(e; B[x := b; b]]) is
greater than zero the upper bound b can be ruled out as
a value of x. If we are working with a �nite box, i.e.,
one where all variable intervals are �nite, and ignoring
roundo� errors, Du must be �nite and the choice of c = a

and c
0 = b always achieves some reduction of the upper

2

bound. However, larger cuts are usually achieved by
other choices of c and c0. Increasing the value of c reduces
the size of the interval [c; b] and hence reduces the range
of possible derivative values NE(de=dx; B[x := [c; b]]).
This often gives a smaller value forDu and hence a larger
cut.

Decreasing the value of c0 away from b can also give
a larger cut. As in the statement of the cut, let s(c0) be
the lower bound of NE(e; B[x := [c0; c0]]), as a function
of c0. In practice a reduction in the upper bound can
only be achieved when s(b) > 0, i.e., the value b can be
ruled out. As c0 is reduced from b, the lower bound s(c0)
will also typically be reduced. However, it typically falls
more slowly than Du, which is the largest possible value
of de=dx in the interval [c; b]. If ds=dc0 is smaller than
Du then reducing c

0 away from b will result in a larger
cut. However if we reduce c0 too aggressively then the cut
may fail altogether either because we fail to get s(c0) > 0
or we fail to rule out feasible points with x 2 [c0; b].

The above cut allows for the reduction of upper
bounds. We call it an upper bound cut. Every upper
bound cut has a dual lower bound cut. We will only
present upper bound cuts.

2.2 Snake Cuts

Consider a given constraint e � 0, a given variable x

appearing in the constraint, a given box B, and let [a; b]
be the interval B(x). Now consider a value c

0 in the
interval [a; b] and consider the lower bound s of the
interval NE(e; B[x := [c0; c0]]) as a function of c0. We
will write s(c0) to express s as a function of c0 for �xed
values of e and B. The snake cut is identical to the
Newton cut except that de=dx is replaced by ds=dc

0.2

It turns out that the range of values of ds=dc0 over the
interval [c; b] is often signi�cantly less than the range of
possible values of values of de=dx. This fact allows cuts
to be larger.

In order to replace de=dx by ds=dc
0 we need to �rst

represent the function s(c0) as a symbolic expression s(x)
involving only the variable x. To do this we �rst sym-
bolically rewrite e as a polynomial P (x) of the form
s0 + s1x + s2x

2 + : : : + snx
n where each coe�cient si

is an expression not involving x. We then de�ne two
polynomials in x, P�(x) and P

+(x), each of which has
constant coe�cients (and hence no variables other than
x). P�(x) gives a lower bound on e for negative values of
x and P+(x) gives a lower bound on e for positive values
of x. For odd powers of x the coe�cients of P�(x) are
taken to be the upper bound of NE(si; B) where si is
the corresponding symbolic coe�cient of the polynomial
P (x). In all other cases the coe�cients of P�(x) and
P
+(x) are taken to be the lower bound of NE(si; B).

A function s(x) can now be represented symbolically by
the conditional expression if(x > 0; P

+(x); P
�(x))

which has the property that it equals P+(x) for posi-
tive values of x and P

�(x) for other values of x. The
interval evaluation function NE and the symbolic di�er-
entiation operators can be easily extended to handle con-

2In informal discussions we began calling the function
s(c0) a \snake" and the cut based on an analysis of this func-
tion became known as the snake cut.

ditional expressions. The symbolic expression s(x) does
not correspond exactly to the function s(c0) as de�ned
above because rewriting an expression as a polynomial
in x changes the interval returned by interval evaluation.
However, the symbolic expression s(x) does give a valid
lower bound on the values of e for points in the box B

as a function of the value for x.

Snake Cut: Let e � 0, x, B, [a; b] and the
symbolic expression s(x) be de�ned as above.
Let c and c

0 be two additional parameters as
in the Newton cut with c < b and c

0 in [c; b].
We require that s(c0) > 0. Let [Dl; Du] be
the interval NE(ds=dx; B[x := [c; b]]). To
ensure there is no solution with x 2 [c0; b] we
require that either Dl � 0 or Dl < 0 and

c
0�

s(c0)

Dl

> b. IfDu � 0 we can infer x � c and

if Du > 0 we can infer x � max(c; c0�
s(c0)

Du

).

To see the advantage of the snake cut over the Newton
cut consider the expression zx� 2 � 0 where the box B
assigns both x and z the interval [1; 4]. It is not di�cult
to see that since z is in [1; 4] and zx � 2 we have x � 2.
We compare a Newton cut with a snake cut where we
take c = 1 and c

0 = 4 in both cuts (i.e., c = a and
c
0 = b). In the Newton cut we have that NE(de=dx; B)
equals NE(z; B) which is [1; 4]. So the infered bound
is x � 4� 2

4
= 31

2
. However the lower bound polynomial

s(x) (for positive values of x) is x�2. So NE(ds=dx; B)
equals NE(1; B) equals [1; 1] and the infered bound is
x � 4� 2

1
= 2, an optimal cut.

Unfortunately snake cuts require rewriting the con-
straint in a way that makes interval evaluation less ac-
curate. In our experience snake cuts are most useful in
very large boxes and Newton cuts become more useful
as the boxes get smaller.

2.3 Combination Cuts

The combination cut is used to gain some of the power of
multivariateNewton's method once the search has begun
to converge on a solution. Interval versions of multivari-
ate Newton's method are widely used in interval systems,
e.g., [8, 7]. The Newton cuts we use involve two ideas.
First, we compute combined constraints by inverting the
\center Jacobian" matrix of the constraint system. Sec-
ond, in the combination cuts we use a di�erent method
of interval evaluation called Taylor evaluation which is
more accurate for small boxes.

Like the natural evaluation operator NE, Taylor in-
terval evaluation takes an expression e and a box B and
returns an interval containing the range of values of e
on points in B. Taylor interval evaluation tends to be
more accurate in the case where B is small. To de�ne
the Taylor interval evaluation we �rst de�ne Bc to be the
center of the box B, i.e., Bc(x) is the interval [c; c] where
c is the center of the interval B(x). We use the notation
xi 2 e to indicate that xi is a variable appearing in the
expression e.

TE(e; B) = NE(e; Bc) +

X
xi2e

NE(de=dxi; B) � (B(xi)� Bc(xi))

3

All arithmetic operations in the above expression are
operations on intervals. Taylor interval evaluation is
more accurate than natural interval evaluation in small
intervals. For example, consider the polynomial x2 � x

where B(x) is the interval [xc � �; xc + �] where xc >
1
2

and � is a small positive number. We have

NE(x
2
c �xc; B) = [(x

2
c �xc)� (2xc +1)�+ �

2
; (x

2
c �xc)+ (2xc +1)�+ �

2
]

TE(x
2
c �xc; B) = [(x

2
c�xc)�(2xc�1)�+2�

2
; (x

2
c�xc)+(2xc�1)�+2�

2
]

For small values of � the width of the �rst interval is
approximately 2(2xc+1)� while the width of the second
interval is approximately 2(2xc � 1)�. Since we have as-
sumed xc >

1
2
the �rst interval is wider than the second.

(If we assume xc <
1
2
then the interval product in the

Taylor interval calculation gives a di�erent symbolic an-
swer and the Taylor interval is still smaller.) The natu-
ral evaluation does not take into account the correlations
between the two terms in the polynomial x2 � x. More
generally, if P (x) is a polynomial in x and B(x) is an in-
terval of the form [xc��; xc+�] then to �rst order in � we
have that the width of TE(P (x); �) is 2P 0(xc)� where P

0

is the symbolic derivative of P . P 0(xc) is nonzero then as
� goes to 0 the ratio of the width of TE(P (x); B) to the
width of the true range of values of P (x) approaches 1
| Taylor interval evaluation becomes exactly accurate
in the limit of small intervals. As the above example
shows, this is not true of the natural evaluation.

Combination cuts build new constraints which are lin-
ear combinations of given constraints. If we are given
e1 � 0 and e2 � 0 then for any positive � and � we can
infer �e1 + �e2 � 0. A combination cut is identical to
a Newton cut except that it uses a constraint derived as
a linear combination of input constraints and uses TE
rather than NE in the computation of s.

Combination Cut: Let x be a variable, B a
box, and [a; b] the interval B(x). Let c and c

0

be two additional parameters with c < b and
c
0 in [c; b]. Let e1 � 0; e2 � 0; : : : ; en � 0 be
a set of constraints such that each ei contains
x. Let u be a linear combination�1e1+�2e2+
: : :+�nen where each �i is positive. Let s be
the lower bound of TE(u; B[x := [c0; c

0]]).
We require s > 0. Let [Dl; Du] be the in-
terval NE(du=dx; B). To ensure there is no
solution with x 2 [c0; b] we require that either
Dl � 0 or Dl < 0 and c

0 � s

Dl

> b. If Du � 0

we can infer x � c and if Du > 0 we can infer
x � max(c; c0 � s

Du

).

To see the power of the combination cut consider the
two constraints x + y � 2 � 0 and x � y � 0. If both
B(x) and B(y) are the interval [0; 2] then no Newton
or snake cut can be used to improve the bounds | each
constraint is \satis�ed at the end points". For example
NE(x+y�2; B[x := [2; 2]]) is [0; 2] so x = 2 can not be
ruled out on the basis of this constraint alone. To reduce
the box B we must examine both constraints simulta-
neously. Adding the two constraints together (with unit
coe�cients) gives 2x�2 � 0. This immediately gives the
tighter bound x � 1. If we are given the four inequality

constraints representing x + y = 2 and x � y = 0 then
four combination cuts can be used to solve for x and y

exactly. A method for �nding appropriate combination
cuts is described in the next section.

3 Branch and Propagate Root Finding

To �nd a feasible point for a set of inequality constraints,
or a root to a set of equations, one can use a simple
branch and propagate procedure. One starts with a box
large enough to contain all points of interest. One then
reduces the box by applying cuts to derive new bounds.
At some point one may decide to branch. To branch one
selects a variable x. Let [a; b] be the interval B(x) where
B is the box in use at the time of the branch. One then
\splits" the box into the two branches B[x := [a; a+b

2
]]

and B[x := [a+b
2
; b]]. One then recursively computes a

solution inside the �rst box, or if there is no such solu-
tion, a solution inside the second box. The procedure
terminates when the current box is su�ciently small,
e.g., every variable is assigned an interval of width less
than, say, 10�8. Newton uses a simple round-robin strat-
egy to select the variable to split | down any branch of
the search tree Newton splits a variable that has gone
the longest time without splitting.

The basic branch and propagate procedure can be
used with a wide variety of heuristics for �nding useful
cuts and for determining when to branch. Our experi-
ence with Newton indicates that one useful heuristic is
to only perform cuts that result in at least a 10% re-
duction of an interval. This ensures that the number of
cuts in a single propagation phase is at worst linear in
the number of variables in the constraints. However, this
same heuristic will force the procedure to branch before
all possible cuts have been exhausted. In our experience
such \early branching" is usually desirable.

Now consider selecting the values of c and c
0 in a cut

on variable x with interval [a; b]. A simple strategy is

to select c to be b� b�a

2n
for some non-negative integer n

and to select c0 to be the midpoint of [c; b]. In practice
we need only consider values of n up to 3 since we are
only interested in cuts which reduce the interval by at
least 10%. For a given variable we can start with n = 0
and if that cut fails increase n (up to 3) looking for a
viable cut.

Combination cuts require selecting not only c and c
0

but also a linear combination of the constraints. Be-
cause computing appropriate coe�cients for the linear
combination can be expensive we suggest performing all
possible Newton and snake cuts before attempting com-
bination cuts. In performing combination cuts we as-
sume that the input is given as a set of equations of the
form ei = 0. This allows one to compute combined con-
straints of the form ux = 0 where each ux is a linear
combination of the ei and where ux is intended to con-
strain x independent of the value of other variables. To
compute the combined constraints ux let B be the box
existing at the time we are computing the combined con-
straints. We de�ne the \center Jacobian" matrix [Bi;j]
by

Bi;j = the midpoint of the interval NE(dei=dxj; B):
4

Assuming that the matrix [Bi;j] is nonsingular one can

compute [Ai;j] as of [Bi;j]
�1. We then de�ne the expres-

sion uxi by

uxi =

nX
k=1

Ai;kek:

Inside the box B, and especially for reasonably small
boxes, we have that duxi=dxj is near 1 if i = j and near
0 otherwise. So ux = 0 is primarilly a constraint on
x. Once the combined constraints of the form ux = 0
have been computed we can perform combination cuts
on this �xed set of combined constraints selecting c and
c
0 as speci�ed above. In our experience it is best to
perform only a single matrix inversion in any one propa-
gation phase of the procedure | once the coe�cients of
the combinations constraints have been computed they
should remain �xed throughout the remainder of that
cutting phase. If the initial box is reasonably small,
propagation relative to a �xed set of combined con-
straints will converge on an exact solution and only a
single matrix inversion is needed. When the heuristics
for selecting cuts fail to �nd any viable cuts the proce-
dure branches.

The precise details of Newton's procedure for selecting
cuts can be found in [4]. Although these details may be
required to exactly replicate Newton's behavior, it seems
likely that the qualitative performance of the system can
be duplicated using only the heuristics outlined here.

4 Conclusion

This paper describes a branch and propagate algorithm
to �nd all isolated solutions for a system of polynomial
equations over the reals. Our techniques were originally
inspired by local constraint propagation techniques used
in AI and logic programming. The mathematics behind
our techniques is quite straightforward and far less so-
phisticated than that underlying continuation methods.
Yet our techniques seem to compare well with continua-
tion methods on a wide variety of benchmarks.

References

[1] W. Older and A. Vellino. Extending Prolog with Con-
straint Arithmetics on Real Intervals. In Canadian Con-
ference on Computer & Electrical Engineering, Ottawa,
1990.

[2] F. Benhamou and W. Older. Applying Interval Arith-
metic to Real, Integer and Boolean Constraints. Journal
of Logic Programming, 1995. To Appear.

[3] P. van Hentenryck. Constraint Satisfaction in Logic Pro-
gramming. Logic Programming Series, The MIT Press,
Cambridge, MA, 1989.

[4] P. van Hentenryck, D. McAllester, and D. Ka-
pur Solving Polynomial Systems using a Branch
and Prune Approach. to appear, SIAM Jour-

nal of Numerical Analysis, also available through
http://www.ai.mit.edu/people/dam/dam.html

[5] R.E. Moore. Interval Analysis. Prentice-Hall, Engle-
wood Cli�s, NJ, 1966.

[6] A.P. Morgan. Solving Polynomial Systems Using
Continuation for Scienti�c and Engineering Problems.
Prentice-Hall, Englewood Cli�s, NJ, 1987.

[7] E.R. Hansen and R.I. Greenberg. An Interval Newton
Method. Appl. Math. Comput., 12:89{98, 1983.

[8] E.R. Hansen and S. Sengupta. Bounding Solutions of
Systems of Equations Using Interval Analysis. BIT,
21:203{211, 1981.

[9] H. Hong and V. Stahl. Safe Starting Regions by Fixed
Points and Tightening. To Appear in Computing, 1995.

[10] K. Meintjes and A.P. Morgan. Chemical Equilibrium
Systems as Numerical test Problems. ACM Transac-
tions on Mathematical Software, 16:143{151, 1990.

[11] R.E. Moore and S.T. Jones. Safe Starting Regions for
Iterative Methods. SIAM Journal on Numerical Analy-

sis, 14:1051{1065, 1977.

[12] J.J. More and M.Y. Cosnard. Numerical Solution of
Nonlinear Equations. ACM Transactions on Mathemat-

ical Software, 5:64{85, 1979.

[13] A.P. Morgan. Computing All Solutions To Polynomial
Systems Using Homotopy Continuation. Appl. Math.

Comput., 24:115{138, 1987.

[14] J Verschelde, P. Verlinden, and R. Cools. Homotopies
Exploiting Newton Polytopes For Solving Sparse Poly-
nomial Systems. SIAM Journal on Numerical Analysis,
31(3):915{930, 1994.

5

