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Abstract

Template matching by means of cross-correlation is common practice in pattern recognition. However,
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approximation networks are introduced in an attempt to improve �lter design by the introduction of
nonlinearity.

Copyright c
 Massachusetts Institute of Technology, 1995

This report describes research done at the Center for Biological and Computational Learning, the Arti�cial Intelligence
Laboratory of the Massachusetts Institute of Technology and at the Istituto per la Ricerca Scienti�ca e Tecnologica (IRST,
Trento, Italy). This research is sponsored by grants from ONR under contract N00014-93-1-0385 and from ARPA-ONR
under contract N00014-92-J-1879; and by a grant from the National Science Foundation under contract ASC-9217041 (this
award includes funds from ARPA provided under the HPCC program). Support for the A.I. Laboratory's arti�cial intelligence
research is provided by ARPA-ONR contract N00014-91-J-4038. Tomaso Poggio is supported by the Uncas and Helen Whitaker
Chair at MIT's Whitaker College. Roberto Brunelli was also supported by IRST.



1 Introduction

The detection and recognition of objects from their im-
ages, irrespective of their orientation, scale, and view,
is a very important research subject in computer vision,
if not computer vision itself. Several techniques have
been proposed in the past to solve this challenging prob-
lem. In this paper we will focus on a subset of these
techniques, those employing the idea of projection to
match image patterns. The notion of Matched Spatial
Filter (hereafter MSF) is a venerable one with a long
history [21]. While by itself it cannot account for invari-
ant recognition, it can be coupled to invariant mappings
or signal expansions, and is therefore able to provide
invariance to rotation and scaling in the image plane.
In order to cope with more general variations of the ob-
jects views more sophisticated approaches have to be em-
ployed. Among them, the use of Synthetic Discriminant
Functions [17, 9, 6, 14, 15, 20, 28, 19, 8, 7, 26, 18, 16] is
one of the more promising so far developed. In these
paper we will follow a path from MSF, to expansion
matching through di�erent variant of SDFs. The �rst
section describes the basic properties of MSF, their op-
timality and their relation to the probability of misclas-
si�cation. The generalization of MSF to a linear com-
bination of example images is introduced next. Several
shortcomings of the basic approach are outlined and a
set of possible solutions is presented in the subsequent
section. We discuss a relation of the resulting class of �l-
ters to nonorthogonal image expansion. A generalization
to projections on multiple directions and the use of the
projection residual for pattern matching is then investi-
gated [24, 22, 27, 29, 30, 31]. Finally, a more powerful,
non linear framework is introduced in which template
matching can be looked at as a problem of function ap-
proximation. Network architectures and training strate-
gies are proposed within this new general framework.

2 Matched Spatial Filter

Template matching is extensively used in low-level vision
tasks to localize and identify patterns in images. Two
methods are commonly used:

1. image subtraction: images are considered as vec-
tors and the norm of their di�erence is considered
as a measure of dissimilarity;

2. correlation: the dot product of two images is con-
sidered as a measure of their similarity (it repre-
sents the angle between the images when they are
suitably normalized and considered as vectors).

When the images are normalized to have zero average
and unit norm, the two approaches give the same re-
sult. The usual implementation of the above methods
relies on the euclidean distance. Other distances can
be used and some of them have better properties such
as increased robustness to noise and minor deformations
[4]. The next sections are mainly concerned with the
correlation approach. The idea of image subtraction is
introduced again in the more general nonlinear frame-
work.

2.1 Optimality

One of the reasons for which template matching by corre-
lation is commonly used is that correlation can be shown
to be the optimal (according to a particular criterion)
linear operation by which a deterministic reference func-
tion can be extracted from additive white Gaussian noise
[21]. Let the detected signal be:

g(x) = �(x) + �(x) (1)

where �(x) is the original signal and �(x) is noise with
power spectrum S(!). The noise is assumed to be wide-
sense stationary with zero average so that:

Ef�(x)g = 0

Ef�(x + �)�(x)g = R(�)

We assume that �(x) is known and we want to establish
its presence and location. To do so we apply to the
process g(x) a linear �lter with impulse response h(x)
and system function H(!). The resulting output is:

z(x) = g(x) � h(x) =
Z

1

�1

g(x � �)h(�)d� (2)

= z�(x) + z�(x) (3)

Using the convolution theorem for the Fourier transform
we have that:

z�(x) =

Z
1

�1

�(x� �)h(�)d�

=
1

2�

Z
1

�1

�(!)H(!)ei!xd!

We want to �nd H(!) so as to maximize the following
signal to noise ratio (SNR):

r2 =
jz�(x0)j2

Efz2�(x0)g (4)

where x0 is the location of the signal. The SNR repre-
sents the ratio of the �lter responses at the uncorrupted
signal and at the noise. It is de�ned at the true location
of the signal (usually the correlation peak) therefore not
taking into account the o�-peak response of the �lter.
Two cases of particular interest are those of white and
colored noise:
White Noise This type of noise is de�ned by the

following condition

S(!) = S0

which corresponds to a 
at energy spectrum. The
Schwartz inequality states that

j
Z b

a

f(x)g(x)dxj2 �
Z b

a

jf(x)j2
Z b

a

jg(x)j2

and the equality hold i� f(x) = k~g(x) (we use ~� to rep-
resent complex conjugation). This implies the following
bound for the signal to noise ratio r:

r2 �
R j�(!)ei!x0 j2d! R jH(!)j2d!

2�S0
R jH(!)j2d!

1



and then

r2 � E�

S0

where

E� =
1

2�

Z
j�(!)j2d!

represents the energy of the signal. From the Schwartz
inequality the equality holds only if

H(!) = k~�(!)e�i!x0

The spatial domain version of the �lter is simply the
mirror image of the signal:

h(x) = k�(x0 � x)

which implies that the convolution of the signal with the
�lter can be expressed as the cross-correlation with the
signal (hence the name Matched Spatial Filter).
Colored Noise If the noise has a non 
at spectrum

S(!) it is said to be colored. In this case the following
holds:

2�z�(x0) =

Z
�(!)H(!)ei!xd!

j2�z�(x0)j2 = j
Z

�(!)p
S(!)

p
S(!)H(!)ei!xd!j2

�
Z j�(!)ei!xj2

S(!)
d!

Z
S(!)jH(!)j2d!

hence

r2 � 1

2�

Z j�(!)ei!xj2
S(!)

d!

with equality holding only when

p
S(!)H(!) = k

~�e�i!x0p
S(!)

The main consequence of the color of noise is that the
optimal �lter corresponds to a modi�ed version of the
signal

H(!) = k
~�e�i!x0

S(!)

which emphasizes the frequencies where the energy of the
noise is smaller. The optimal �lter can also be considered
as a cascade of a whitening �lter S�1=2(!) and the usual
�lter based on the transformed signal.

In the spatial domain, correlation amounts to project-
ing the signal g(x) onto the available template �(x). If
the norm of the projected signal is not equal to that of
the template, the value of the projection can be mean-
ingless as the projection value can be large without im-
plying that the two vectors are close in any reasonable
sense. The solution is to compute the projection using
normalized vectors. In particular, if versors are used,
computing the projection amounts to computing the co-
sine of the angle formed by the two vectors, which is
an e�ective measure of similarity. In vision tasks, vec-
tor normalization corresponds to adjusting the intensity
scale so that the corresponding distribution has a given

variance. Another useful normalization is to set the av-
erage value of the vector coordinates to zero. This oper-
ation corresponds to setting the average of the intensity
distribution for images. These normalization are par-
ticularly useful when modern cameras are used, as they
usually operate with automatic gain level (acting on the
scale of the intensity) and black level adjustment (acting
as on o�set on the intensity distribution).

2.2 Distorted Templates

The previous analysis was focused on the detection of a
deterministic signal corrupted by noise. An interesting
extension is the detection of a signal belonging to a given
distribution of signals [17]. As an example, consider the
problem of locating the eyes in a face image. We do
not know who's face it is so that we cannot select the
corresponding signal (the eyes of that person). A whole
set of di�erent eyes could be available, possibly including
the correct ones.

Let f�(x)g denote the class of signals to be detected.
We want to �nd the �lter h which maximizes the SNR
r2 over the class of signals f�(x)g. The input signal �(x)
can be modeled as a sample realization of the stochastic
process f�(x)g. The ensemble-average correlation func-
tion of the stochastic process is de�ned by

K��(x; y) = E�f�(x)�(y)g (5)

and represents the average over the ensemble of signals
(and not over the coordinates of a signal). What we
want to maximize is the ensemble average of the signal
to noise ratio:

E�fr2g = Efjz�(x0)j2g
Efz2�(x0)g (6)

Assume, without loss of generality, that x0 = 0. The
average SNR can then be rewritten as:

E�fr2g =
R R

h(�x)h(�y)K��(x; y)dxdyR R
h(�x)h(�y)K��(x; y)dxdy

(7)

where the ensemble autocorrelation function of the sig-
nal and noise have been used. The autocorrelation func-
tion of the white noise is proportional to a Dirac delta
function:

K��(x; y) = N�(x� y) (8)

so that the average signal to noise ratio can be rewritten
as:

E�fr2g =
R R

h(�x)h(�y)K��(x; y)dxdy

N
R
h(�x)2dx (9)

Pre-whitening operators can be applied as preprocessing
functions when the assumption of white noise does not
hold. The denominator of the RHS in eqn. (9) represents
the energy of the �lter and we can require it to be 1:Z

h(�x)2dx = 1 (10)

To optimize eqn. (9) we must maximize the numerator
subject to the energy constraint of the �lter. The ensem-
ble auto-correlation function can be expressed in terms
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Figure 1: The probability of error, represented by the
shaded area, when the distributions are Gaussian with
the same covariance.

of the orthonormal eigenfunctions of the integral kernel
K��(x; y)

K��(x; y) =
X
i

�i i(x) i(y) (11)

where the �i are the corresponding eigenvalues. The
�lter function h can also be expanded in the same basis

h(�x) =
X
i

!i i(x) (12)

Using the inner product notation and the orthonormality
of the  i(x) we can state the optimization problem as
�nding

arg maxP
i
!2i=1

X
i

�i(h � i)2 (13)

If we order the eigenvalues so that �1 � �2 � : : : � �k �
: : :, we have

N �E�fr2g =
X
i

�i(h � i)2 =
X
i

�i!
2
i � �1

X
i

!2i = �1

(14)
and the maximumvalue is achieved when the �lter func-
tion is taken to be the dominant eigenvector.

2.3 Signal-to-noise ratio and classi�cation error

Several performance metrics are available for correlation
�lters that describe attributes of the correlation plane.
The signal to noise ratio (SNR) is just one of them.
Other useful quantities are the peak-to-correlation en-
ergy, the location of the correlation peak and the in-
variance to distortion. As correlation is typically used
to locate and discriminate objects, another important
measure of a �lter's performance is how well it discrim-
inates between di�erent classes of objects. The simplest
case is given by the discrimination between the signal
and the noise. In this section we will show [16, 12] that
for the classical matched �lter maximizing the SNR is
equivalent to minimizing the probability of classi�cation
error Pe when the underlying probability distribution
functions (PDFs) are Gaussians.

The classi�er which minimizes the probability of er-
ror is the Bayes classi�er. For two normal distributions,

Figure 2: The cross-correlation of the template reported
on the right. Note the di�use shape of the peak that
makes its localization di�cult

the Bayes decision rule can be expressed as a quadratic
function of the observation vector x as

1

2
(x �mA)

T��1A (x �mA) �
1

2
(x �mB)

T��1B (x �mB) + (15)

1

2
ln
j�Aj
j�Bj

A

>

<

B

ln
PA
PB

where mA;mB are the distribution means, �A;�B the
covariance matrices and PA; PB the occurence probabil-
ities.

Let us consider two classes: a deterministic signal �
corrupted with white Gaussian noise as class A and the

noise itself as class B. In this case mA = �, mB = ~0
and �A = �B = I. This means that the components
of the signal � are uncorrelated and have unit variance.
If we further assume that the a priori probabilities of
occurence of these classes are equal, the probability of
error (see also Figure 1) is given by:

Pe =
1p
2�

Z
1

�

exp(�u2=2)du (16)

where � = 1
2
�1=2, with � being the Mahalanobis distance

between the PDFs of the two classes:

� = (mA �mB)
T I(mA �mB) = �

T
� (17)

and the Bayes decision rule simpli�es to:

x 2 A if �Tx > 1
2
� (18)

x 2 B if �Tx � 1
2
� (19)

The input vector x is then classi�ed as signal or noise
depending on the value of the correlation with the uncor-
rupted signal. We have already shown that correlation
with the signal maximizes the signal to noise ratio, so
when the noise distribution is Gaussian maximizing the
SNR is equivalent to minimizing the classi�cation error
probability. When the noise is not white, the signal can
be transformed by applying a whitening transformation
A:

AT�A = I (20)

and the previous reasoning can be applied.
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3 Synthetic Discriminant Functions

While correlators are optimal for the recognition of pat-
terns in the presence of white noise they have three major
limitations: the output of the correlation peak degrades
rapidly with geometric image distortions, the peak is of-
ten broad (see Figure 2), making its detection di�cult,
and they cannot be used for multiclass pattern recog-
nition. It has been noted that one can obtain better
performance from a multiple correlator (i.e. one com-
puting the correlation with several templates) by form-
ing a linear combination of the resulting outputs instead
of, for example, taking the maximum value [10, 11].
The �lter synthesis technique known as Synthetic Dis-
criminant Functions (hereafter SDF) starts from this
observation and builds a �lter as a linear combination
of MSFs for di�erent patterns [9, 6]. The coe�cients
of the linear combination are chosen to satisfy a set of
constraints on the �lter output, requiring a given value
for each of the patterns used in the �lter synthesis. By
forcing the �lter output to di�erent values for di�erent
patterns, multiclass pattern recognition can be achieved.
Let f�i(x)gi=1;:::;n be a set of (linearly independent) im-

ages and u = fu1; : : : ; ungT be a vector representing the
required output of the �lter for each of the images:

�i 
 h = ui (21)

where 
 represents correlation (not convolution). The
�lter h can be expressed as a linear combination of the
images �i:

h(x) =
X

i=1;:::;n

bi�i(x) (22)

as any additional contribution from the space orthogo-
nal to the images would yield a zero contribution when
correlating with the image set. If we denote by X the
matrix whose columns represent the images (represented
as vectors by concatenating their rows), by enforcing the
constraints we obtain the following set of equations:

b = (XT
X)�1u (23)

which can be solved as the images are linearly inde-
pendent. The resulting �lter is appropriate for pattern
recognition applications in which the input object can
be a member of several classes and di�erent distorted
versions of the same object (or di�erent objects) can be
expected within each class. IfM is the number of classes,
ni is the number of di�erent pattern within each class i,
N the overall number of patterns, M �lters can be built
by solving

bi = (XT
X)�1�i i = 1; : : : ;M (24)

where

�ik =

�
1
Pi�1

j=1 nj < k <
Pi

j=1 nj
0 otherwise

(25)

k = 1; : : : ; N and image �k belongs to class i if �ik = 1.
Discrimination of di�erent classes can be obtained also
using a single �lter and imposing di�erent output values.
However the performance of such a �lter is expected to
be inferior to that of a set of class speci�c �lters due

Figure 3: An increasing portion of a set of 30 eyes images
was used to build a SDF, an average MSF or a set of
prototype MSFs from which the highest response was
extracted. Our new least square SDF uses four building
templates. The plot report the average responses over
a disjoint 30 image test set. Note that the lower values
of MSFs are due to the fact that their response is not
scaled to obtained a prede�ned value as opposed to SDFs
whose output is constrained to be 1, and to approximate
1 for ls SDFs.

to the high number of constraints imposed on the �lter
outputs [9]. While this approach makes it easy to ob-
tain prede�ned values on a given set of patterns it does
not allow to control the o�-peak �lter response. This
can prevent reliable classi�cation when the number of
constraints becomes large.

The e�ect of �lter clutter can also appear in the con-
struction of a �lter giving a �xed response over a set of
images belonging to the same class (the Equal Correla-
tion Filter introduced in [9]).

In order to minimize this problem we propose a new
variant of SDFs: least quares SDFs. These �lters are
computed using only a subset of the training images1

and the coe�cient of the linear combination are chosen
to minimize the square error of the �lter output on all of

the available images. In this case the matrixR = X
T
X

is rectangular and the estimate of the b relies on the
computation of the pseudoinverse of R:

R
y = (RT

R)�1RT (26)

The dimension of the matrix to be inverted is n�n where
n represents the number of images used to build the �l-
ter and not the (greater) number of training images. By
using a reduced number of building templates the prob-
lem of �lter cluttering is reduced. A di�erent use of least
square estimation for �lter synthesis can be found in [6]
where it is coupled to Karhunen-Loeve expansion for the
construction of correlation SDFs.

1The subset of training images can be chosen in a variety
of ways. In the reported experiments they were chosen at
random. Another possibility is that of clustering the available
images, the number of clusters being equal to the number of
images used in �lter synthesis.
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Figure 4: The MSFs resulting from using 20 building
images in the SDF (left) and 2 in the least square SDF
(right) when using the same set of training images. The
di�erence in contrast of the two images re
ect the mag-
nitude of the MSFs. The performance of the two �lters
was similar.

The results for a sample application are reported in
Figure 3. Note that by using a least square estimate a
good performance can be achieved using a small number
of templates. This has a major in
uence on the appear-
ance of the resulting MSF as can be seen in Figure 4.

Another variant is to use symbolic encoded �lters [9].
In this case a set of k �lters is built whose outputs are
0 or 1 and can be used to encode the di�erent patterns
using a binary code. In order to use the �lter for clas-
si�cation, the outputs are thresholded and the resulting
binary number is used to index the pattern class.

Synthesis of the MSF from a projection SDF algo-
rithm can achieve distortion invariance and retain shift
invariance. However, the resulting �lter cannot prevent
large sidelobe levels from occurring in the correlation
plane for the case of false (or true) targets. The next
section will detail the construction of �lters which guar-
antee controlled sharp peaks and good noise immunity.

4 Advanced SDFs

The signal to noise ratio maximized by the MSF is lim-
ited to the correlation peak: it does not take into account
the o�-peak response and the resulting �lters often ex-
hibit a sustained response well apart from the location
of the central peak. This e�ect is usually ampli�ed in
the case of SDF when many constraints are imposed on
the �lter output. In order to locate the correlation peak
reliably, it should be very localized [14]. However, it can
be expected that the greater the localization of the �lter
response (approaching a � function) the more sensitive
the �lter to slight deviations from the patterns used in
its synthesis. This suggests that the best response of the
�lter should not really be a � function, but some shape,
like a Gaussian, whose dispersion can be tuned to the
characteristics of the pattern space. In this section we
will review the synthesis of such �lters in the frequency
domain [26].
Let us assume for the moment that there is no noise.
The correlation of the i-th pattern with the �lter h is
represented by

zi(n) = �i(n) 
 h(n) n = 0; : : : ; d� 1 (27)

where d is the dimension of the patterns. In the follow-
ing capital letters are used to denote the Fourier trans-
formed quantities. The �lter is also required to produce

an output ui for each training image:

zi(0) = ui (28)

which can be rewritten in the Fourier domain as:

H
+
X = du (29)

where + denotes complex conjugate transpose.Using
Parseval's theorem, the energy of the i-th circulant cor-
relation plane is given by:

Ei =

d�1X
n=0

jzi(n)j2 = 1

d

d�1X
k=0

jZi(k)j2 = 1

d

d�1X
k=0

jH(k)j2j�i(k)j2

(30)
When the signal is perturbed with noise the output

of the �lter will also be corrupted:

zi(0) = �i(0)
 h(0) + �(0) 
 h(0) (31)

Under the assumption of zero-mean noise, the variance
of the �lter output due to noise is:

EN =
1

d

d�1X
k=0

jH(k)j2S(k) (32)

where S(k) is the noise spectral energy. What we would
like is a �lter whose average correlation energy over the
di�erent training images and noise is as low as possible
while meeting the constraints on the �lter outputs. A
�rst choice is to minimize:

E =
X
i

(Ei +EN ) (33)

=
1

d

X
i

X
k

jH(k)j2(j�i(k)j2 + S(k)) (34)

subject to the constraints of eqn. (29). However, mini-
mizing the average energy (or �lter variance due to noise)
does not minimize each term, corresponding to a partic-
ular correlation energy (or noise variance). A more strin-
gent bound can be obtained by considering the spectral
envelope of the di�erent terms in eqn. (34):

E =
X
k

jH(k)j2max(�1(k)j2; : : : ; j�N(k)j2; S(k)) (35)

If we introduce the diagonal
matrix Tkk = N max(j�1(k)j2; : : : ; j�N (k)j2; S(k)) the
�lter synthesis can be summarized as minimizing

E =H
+
TH (36)

subject to
H

+
X = du (37)

This problem can be solved [20] using the technique of
Lagrange multipliers to minimize the function:

E =H
+
TH � 2

NX
i=1

�i(H
+
X i � dui) (38)

where �1; : : : ; �N are the parameters introduced to sat-
isfy the constrained minimization. By zeroing the gra-
dient of E with respect to H we can express H as a
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Figure 5: Using an increasing amount of added white
noise the emphasis given to the high frequency is reduced
and the resulting �lter response approaches that of the
standard MSF.

function of T and of � = f�1; : : : ; �Ng. By substitution
into eqn. (37) the following solution is found:

H = T
�1
X(X+

T
�1
X)�1u (39)

The use of the spectral envelope has the e�ect of reduc-
ing the emphasis given by the �lter to the high frequency
content of the signal, thereby improving intraclass per-
formance. It is important to note that the resulting �lter

can be seen as a cascade of a whitening �lter T�1=2 and a
conventional SDF based on the transformed data. Note
that in this case the whitened spectrum is the envelope
of the spectra of the real noise and of the training im-
ages. A least square approach may again be preferred
to cope with a large number of examples. In this case
all available images are used to estimate T but only a
subset of them is used to build the corresponding SDF.
Experiments have been reported using a white noise of
tunable energy � to model the intraclass variability [26]

E =
X
k

jH(k)j2max(j�1(k)j2; : : : ; j�N (k)j2; �) (40)

Adding white noise limits the emphasis given to high fre-
quencies, reducing the sharpness of the correlation peak
and increasing the tolerance to small variations of the
templates (see Figures 5 and 6). A comparison of dif-
ferent �lters is reported in Figure 7. The e�ects of non
linear processing emphasizing the high frequencies to ob-
tain a sharp correlation peak is reported in Figure 8.

Another way of controlling the intraclass performance
is that of modeling the correlation peak shape [8, 18]. As
already mentioned, the shape of the correlation peak is
expected to be important both for its detection and for
the requirements imposed on the �lter which can impair
its ability to correlate well with patterns even slightly dif-
ferent from the ones used in the training. Let us denote
with F (k) the required shape of the correlation peak.
The shape of the peak can be constrained by minimizing

the squared deviations of its output from the required
shape F :

ES =

NX
i=1

dX
k=1

jH(k)��i(k)� F (k)j2 (41)

where, for instance, f(x) = exp(�x2=2�2) is a Gaussian
amplitude function. By switching to matrix notation,
the resulting energy can be expressed as:

ES =H
+
DH + F+

F �H+
AF � F+

A
+
H (42)

where A is a diagonal matrix whose elements are the
sum of the components of �i and D is a diagonal ma-
trix whose elements are the sum of the squares the com-
ponents of �i. The �rst term in the RHS of eqn. (42)
corresponds to the average correlation energy of the dif-
ferent patterns (see eqn. (30)). We suggest the use of

the spectral envelope T instead of ~D, employed in the
original approach, thereby minimizing the following en-
ergy

E0

S =H
+
TH+F+

F�H+
AF�F+

A
+
H > ES (43)

The minimizationofES subject to the constraints of eqn.
(29) can be done again using the Lagrange multiplier and
is found to be:

H = T
�1
X(X+

T
�1
X)�1du (44)

+T �1
AF � T�1

X(X+
T
�1
X)�1X+

T
�1
AF

These �lters provide a controlled, sharp correlation peak
subject to the constraints on the �lter output, the re-
quired correlation peak shape and the reduce variance
to the noise. In our experiments the Fourier domain
was used to compute the whitening �lters. They were
then transformed to the spatial domain where a stan-
dard correlation was computed after their application.
An approach using only computations in the space do-
main can be found in [28].

5 Nonorthogonal Image Expansion and

SDF

In this section we review an alternative way of looking at
the problem of obtaining sharp correlation peaks, namely
the use of nonorthogonal image expansion [2, 3]. Match-
ing by expansion is based on expanding the signal with
respect to basis functions (BFs) that are all translated
versions of the template. Such an expansion is feasible
if the BFs are linearly independent and complete. It
can be proven that self-similar BFs of compact support
are independent and complete under very weak condi-
tions. Suppose one wants to estimate the discrete d-
dimensional signal g(x) by a linear combination of basis
functions �i(x):

g0(x) =

dX
i=1

ci�i(x) (45)

where �i(x) now represents the i-th circulated transla-
tion of �. The coe�cients are estimated by minimizing
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Figure 6: The output of the correlation with an SDF
computed using the spectral envelope of 10 training im-
ages and di�erent amounts of white noise (left: � = 1,
middle � = 5) compared to the output of normalized
cross-correlation using one of the images used to build
the SDF but without any spectral enhancement. The
darker the image the higher the corresponding value.
Note that an increased amount of white noise improves
the response of the �lter.

Figure 7: The output of the correlation with an SDF
computed using the spectral envelope of 20 training im-
ages as whitening preprocessing. Left: the normal SDF
(20 examples). Right: a least square SDF with 6 tem-
plates (20 examples). The darker the image the higher
the corresponding value. The least square SDF exhibits
a sharper response using the same whitening �lter.

Figure 8: Non linear processing can be employed. The
�gure represent the result of preprocessing the image
to extract the local image contrast (intensity value over
the average value in a small neighborhood). This kind
of preprocessing emphasizes high frequencies and results
in a sharp correlation peak.

the square error of the approximation jg� g0j2. The ap-
proximation error is orthogonal to the basis functions so
that the following system of equations must be solved:

dX
j=1

< �1;�j > cj = < g;�1 > (46)

� � �
dX

j=1

< �d;�j > cj = < g;�d >

If the set of basis functions is linearly independent the
equations give a unique solution for the expansion coef-
�cients. If we consider the advanced SDF for the case of
no-noise, single training image and working in the spa-
tial domain [28], we have that the corresponding �lter
can be expressed as:

h = ([�]T [�])�1� (47)

where the columns of matrix [�] are the circulated basis
functions �i. The output of the correlation is then given
by:

[�]h = c = [�T ]�1� (48)

The solution of the system (47) can be expressed as:

c = [�T ]�1� (49)

which is clearly the same. In the case of no noise the
resulting expansion is c = (0; : : : ; 0; 1; 0; : : :0) with a sin-
gle 1 at the location of the signal. The idea of expansion
matching is also closely related to correlation SDFs [6]
where multiple shifted templates were explicitly used to
shape the correlation peak. Let us consider a set of tem-
plates obtained by shifting the original pattern (possibly
with circulation) on the regular grid de�ned by the im-
age coordinates. We can require that the correlation
value of the original pattern with its shifted versions be
1 when there is no shift and 0 for every non null shift.
This corresponds to a �lter whose response is given by
c = (0; : : : ; 0; 1; 0; : : :0) as previously described.

6 Other projection approaches

The whole idea of projection Synthetic Discriminant
Functions is to �nd a direction onto which the pro-
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Figure 9: Computing the distance from linear subspace
(a) versus computing the distance from a single proto-
type (b). In drawing (a), vector < � > represents the
average pattern and the horizontal line on which �L lies
represents the linear subspace. �L is the projection of
pattern � on the linear space and �R is the projection

residual. Drawing (b) shows two vectors ~�1 and �2 with
the same distance from the average pattern A but dif-
ferent distances from the pattern space.

jections of the di�erent signals have prede�ned val-
ues. A typical image with 256 � 256 pixels is pro-
jected, for recognition purposes, onto a single direction
in this high dimensional space. Another approach is to
project the signal to be recognized onto a linear subspace
[32, 27, 22, 29, 30, 31]. Let us �rst assume that the pat-
terns of each of the classes to be discriminated belongs to
di�erent linear subspaces. For each class it is then pos-
sible to determine an orthogonal transformation which
diagonalizes the covariance matrix. The elements of the
transformed basis are the eigenvectors of the covariance
matrix and are called principal components. They can
be sorted by decreasing contribution to the covariance
matrix, as represented by the corresponding entry in the
diagonal covariance matrix [12]. The number of vectors
in the basis is equal to the minimumbetween the number
of available class pattern and the dimensionality of the
embedding space. Each pattern in the class can usually
be described by using only the most important compo-
nents. The resulting restricted basis spans a linear sub-
space in which the patterns of the represented class can
be found. Each possible pattern � can be projected onto
the set of principal components and can be described as
the sum of its projection �Li

plus an orthogonal residual
�Ri

:
� = �Li

+�Ri
+ < �i > (50)

where i identi�es the class and < �i > is the correspond-
ing centroid. A comparison with the usual technique of
computing the distance from a single pattern (e.g. the
centroid) is reported in Figure 9.

An important class of objects spanning a linear space
is given by the ortographic projections of rigid sets of
points when looked at from di�erent positions[1, 23].
Di�erent objects span di�erent 6-dimensional linear
spaces. This can be used to recognize them, irrespective
of their orientation in space, by computing the magni-

Figure 10: The square of coordinates ij represents the
average value of distances of views of the i-th and
j-th clip (darker values represent smaller distances).
LEFT: euclidean distances of views of the di�erent clips;
RIGHT: distances computed using the learned metric
WT

0 W0

Figure 11: Eigenvalues of the learned metric matrix
WTW. Note that there is compatibility with the �nd-
ings of Basri-Ullman that under ortographic projection
the rank of the metric is 6.

tude of the projection residual over the individual lin-
ear spaces (see Figure 9). Under perspective projection,
when viewing an object from a reasonable distance, we
expect that a 6-dimensional linear space can still provide
a good approximation to the real manifold. Further anal-
ysis of the recognition experiments reported in [5] has
shown that an HyperBF network [25] with a single unit
is in fact able to learn the approximating linear space
from a set of example views of di�erent objects. The
experiments used paper clips characterized by 6 feature
points in the image plane, resulting in 12-dimensional
vectors after perspective projection. The i-th clip was
characterized by a one-unit HyperBF network:

Ci(�) = exp(�(�� ti)TWT
i Wi(�� ti)) (51)

where � is the 12-dimensional input to the network, ti is
a sample view (a prototype) of the i-th clip and WT

i Wi

represents a metric. The network is trained by modifying
ti and W

T
i Wi to obtain Ci(�) � 1 when � is a view of

the i-th clip and Ci(�) � 0 when it is not. The e�ects
of the resulting metric WT

i Wi on the computation of
distances between di�erent views of the clips can be seen
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in Figure 10. The distance computed using the learned
metric is e�ectively the size of the projection residual.
The eigenvalues ofWT

i Wi (see Figure 11) are compatible
with a 6-dimensional embedding of the pattern space.

If the linear subspace is the one spanned by the �rst
k eigenvectors of the covariance matrix, the sum of the
eigenvalues corresponding to the ignored components
can be used as an estimate for j�Rj when the pattern
belongs to the given class. In particular it can be used
to accept or reject the pattern according to a threshold
on the size of the residual

j�Rj2 < � (52)

where
� = �

X
i>k

�i (53)

and � � 1 is an heuristic factor taking into account how
good an estimate

P
i>k �i is of the residual error. In Fig-

ure 12 we report the fraction of image pixels classi�ed
as right eye as a function of the threshold on the resid-
ual. The fact that the residual is small (compared to
�) does not imply that the pattern belongs to the given
class. Thresholding on the residual error should then
be supplemented by the use of classi�cation techniques
in each of the linear subspaces, taking into account the
distributions of the patterns. If, for instance, the distri-
bution of the points in the linear subspace is Gaussian,
the parameters of the distribution can be computed and
the probability of a pattern with given coordinates esti-
mated (see Figure 13 where an example is reported). If
we denote by xi the i-th component of � the following
relation holds if the distribution in the feature space is
Gaussian:

P / �ie
�x2

i
=(2�i) (54)

where n is the number of patterns used for computing
the principal components. The resulting map can be
used in conjunction with the distance map (see Figure
14) to establish if a pattern of the correct class is present
(for a similar approach, using the distance from the cen-
troid in the projection space [29, 30, 31]). Note that in
this particular case the probability map is much more
e�ective than the residual distance map.

It could be that a class cannot be packed tightly into
a linear subspace. A possible improvement is to attempt
local expansions [27, 22, 31]. Points can be clustered, and
for each of the resulting clusters a principal component
analysis can be attempted. The previous reasonings can
be applied and the class is represented by a set of linear
subspaces. A nice application of this approach can be
found in [22] where the space spanned by faces is �rst
clustered into views corresponding to di�erent poses and
the resulting clusters are then described by the most
important principal components.

7 An experimental comparison

In order to clarify the practical relevance and the relative
merits of the previous template-matching techniques, it
is useful to compare them on a single task. We choose to
assess the performance of the di�erent techniques on the
problem of locating eyes in frontal images of faces. This

Figure 12: The fraction of image pixels classi�ed as right
eye as a function of the threshold on the residual. The
�rst 10 eigenvectors from a population of 60 images were
used. The image used for the plot was of a person not
in the database. The vertical line represent the thresh-
old computed by summing the residual eigenvalues. The
correct eye is the only selected region for d < 11, the
other eye being selected next.
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Figure 13: The distribution of the values of the 5-th prin-
cipal component computed from 60 eyes images. Note
the clear unimodality of the distribution which suggests
the e�ectiveness of using a quadratic classi�er in the fea-
ture subspace. The other components present a similar
distribution.
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Figure 14: The map of the residual size (left) and of the
projection probability (right). Note how the probability
is low in regions where the reconstruction is good. The
darker the value the lower the distance and the higher
the probability.

Figure 15: Distribution of the distance values orthogonal
to the feature space when projecting onto the �rst 10
eigenvectors.

Figure 16: Distribution of the distance values within the
feature space when projecting onto the �rst 10 eigenvec-
tors.
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Figure 17: Performance of di�erent strategies based on
the computation of principal components. The hori-
zontal axis reports the number of components used in
the expansion, while the vertical axis reports the per-
centage of eyes correctly located (see text for a detailed
explanation).

Figure 18: Performance of least squares SDF with dif-
ferent amount of regularizing noise. Correlation perfor-
mance is also reported using the average template and
the whole set of available templates. The horizontal
axis reports the number of patterns used in building the
�lters, while the vertical axis reports the percentage of
eyes correctly located (see text for a detailed explana-
tion).
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is a preliminary step for identifying the represented per-
son by comparing his/her image to a reference database.
The available database consisted of 180 images (three
images, taken at di�erent time, from sixty di�erent peo-
ple). The eyes were manually located and images nor-
malized by �xing the position of the eyes to standard
values. The resulting normalized images (with an inte-
rocular distance of 28 pixels) were used for the experi-
ments. Three di�erent disjoint subsets, each consisting
of the images from 18 di�erent people were used in turn
for building the SDFs, lsSDF and KL expansions. Per-
formance was then assessed on the remaining images.

For each of the compared strategies and testing im-
ages, a map was computed reporting at each pixel the
absolute di�erence of the computed values (residual, cor-
relation, etc.) from the required values at the pattern
(i.e. eye) location (e.g. 0 for the residual, 1 for corre-
lation). The resulting maps could then be considered
as distance maps. For each image we masked in turn
the region of the left and right eye. The unmasked eye
was considered to be located correctly if the smallest dis-
tance value was within 8 pixels from the correct location
(manually detected).

As far as the SDFs and lsSDF are concerned, a single
image from the represented persons was used in building
the �lters, while the computation of the KL components
relied on all the available images in the training subset.
For all of the techniques the test was run on 120 images.
Both left and right eyes were used in building the �lters
and the expansions. In order to assess the performance
of the techniques, each image was used to locate both
eyes by masking in turn the left and right eye region
when looking for the maximum/minimum values ideally
associated to the template location.

Several variants of the KL approach have been in-
vestigated using distances from and within the feature
space. The external distance de is simply the error in the
reconstruction of the pattern using the restricted eigen-
vector basis (see eqn. 50). The internal distance di is
the distance computed within the linear subspace from
its origin (the centroid of the patterns). The spherical

internal distance dsi is the Mahalanobis distance in the
linear subspace.

Let us assume that the orthogonal vectors de�ning
the linear pattern subspace are known or computed reli-
ably from a subset of the available examples. We could
then estimate the Mahalanobis distance by computing
the variance for each of the (uncorrelated) coordinates
using all the available samples. Some of the examples
could be erroneous or atypical and would probably lead
to an overestimated variance. In order to overcome
this potential problem, a robust estimate of the scale
parameter of each coordinate was computed using the
tan-h M-estimators introduced by Hampel [13]. Finally
the combined distance (see also the related approach in
[29, 30, 31]) was computed by the following relation:

dc = max

�
di
ds0

;
de
de0

�
(55)

where the normalizing factors ds0 and de0 de�ne the
points at which the cumulative distribution of the in-

ternal and external distances reaches 99% (see Figures

15 and 16). The performance of the di�erent variants
are reported in Figure 17.

SDFs and lsSDF were built using di�erent amounts
of regularizing noise (using eqn. (40)) and of templates.
The resulting performance, together with the perfor-
mance of standard correlation is reported in Fig. 18. It
is interesting to note the major impact of the regulariz-
ing noise on the performance of this technique. However,
the bias and variance of the �lter responses on the test
images are not related to the �lter performance.

The combined distance dc is the best among the com-
pared strategies. Its decline in performance with in-
creasing dimensionality of the expansion basis is linked
to the trend of the external distance performance. By
using more and more eigenvectors we allow for good
reconstruction of patterns di�erent from eyes. At the
same time the scaling factor computed from the dis-
tance distribution on the training samples becomes very
small (should we use all of the computed eigenvectors
the samples could be reconstructed exactly). Therefore
the external distance is the (wrong) dominating factor
in eqn.(55). A more sophisticated integration is pre-
sented in [31]. The performance of the template match-
ing strategies based on KL expansions is consistently
higher than the one achieved by SDFs in the reported
variants. Also, expanding a pattern onto an appropri-
ate basis seems to provide reliable template matching to
patterns which span a manifold which can be approxi-
mated well (at least locally) by a linear (tangent) space
[1, 24, 23, 5].

The next section will introduce non linear machinery
(sigmoidal and Gaussian network) for the purposes of
pattern description and classi�cation.

8 Future Directions: Learning and SDF

The description of the advanced SDFs has shown that
that they can be considered as standard SDF working
on a preprocessed signal. The characteristics of the orig-
inal signal and noise are used in the synthesis of the
preprocessing �lter to achieve optimal sharpness in the
correlator response. If we look at the patterns in the
transformed space, the correlator output is a weighted
average of the correlation with a set of examples:

�0(x)
 h0(x) =
X

i=1;:::;n

b0i�
0(x) 
 �0i(x) (56)

where the prime refers to the transformed space. The
patterns �i

0 can be randomly chosen among the avail-
able examples or selected according to particular criteria.
A possible strategy is to synthesize the �lter incremen-
tally: the response of the �lter on all the training images
not yet used to build the �lter is computed and if the
worst �lter response is not acceptable the corresponding
image is added to the building set and a new �lter is
computed [7]. The construction of the �lter, apart from
the phase of selecting meaningful training images is lin-
ear. An improvement is expected with the introduction
of nonlinearity in the �lter design. We propose the use of
approximation networks [25] to build general non linear
�lters which are able to discriminate patterns of di�er-
ent classes while giving the same response on patterns
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of the same class. These �lters can be considered as a
generalization of the projections Synthetic Discriminant
Functions. They are built using a set of training images
and a set of soft (i.e. not exactly met) constraints on the
�lter output.

The general structure of the network is reported in
Figure 19. The units of the �rst level represent sigmoidal
(comparison by projection) or Gaussians (comparison by
distance) functions:

o1i(�) =

�
exp(�(�� ti)TWTW (�� ti)) Gaussian
�(� � ti + �) sigmoidal

(57)
In both cases, the system is able to mask regions of the
templates which are not useful for obtaining the required
output values2. The �rst level of the network can be seen
as computing some \optimal templates" against which
the input signal is to be compared. The output of the
second level is computed as:

X
j

bjo2j(o1) (58)

and the function implemented by unit o2j can be of
the Gaussian or sigmoidal type independently from the
choice of the �rst layer units. The second level computes
a non linear mapping of the projections (or distances) of
the signal by minimizing the square error of the net-
work on the mapping constraints (soft, as they are not
met exactly). In some sense, the network triangulates
the position of the input signal in pattern space using
the distances from automatically selected reference tem-
plates. The resulting networks have a very high number
of free parameters and their training presents di�culties.
Among them two are of particular concern: over�tting
and training time in a high dimensional space. A way
of coping with the �rst one is that of cross-validation
[12]: the network undergoes training as long as its per-
formance on a test set improves. We propose to reduce
the e�ects of high dimensionality by using a hierarchy
of networks of similar structure but working at increas-
ing resolution. The network with the lowest resolution
is trained �rst and extensively. The next network in the
hierarchy is then initialized by suitably mapping the pa-
rameters of the previous one. Note that only the �rst
level needs to be modi�ed structurally. A reduced train-
ing time is expected. The procedure is iterated at all the
levels of the hierarchy. A side e�ect of the hierarchical
training is to provide fully trained networks for di�erent
resolutions, enabling a hierarchical approach to template
matching. The preprocessing stage of the network is the
one computed for the synthesis of the ASDF. The op-

timal templates used by the �rst layer of the network
can also be initialized using the building patterns of the
linear �lter.

2This is achieved during the training phase by modi�ca-
tion of the entries of the matrixW , if Gaussians are used, or ti
if sigmoids are used. Relatively small values give low weight
to the di�erences of the corresponding coordinates, thereby
making the system output weakly dependent on them.
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Figure 19: An approximation network for template
matching. The preprocessing stage applies simple trans-
formation to the input pattern (e.g. to emphasize high
frequency components).

9 Conclusions

Several approaches to template matching have been re-
viewed and compared on a common task. A new vari-
ant of Synthetic Discriminant Functions, based on least
square estimation, was introduced. Several template
matching techniques based on the expansion of pat-
terns on principal components have been reviewed. A
simple way of integrating internal/external distances
within/from a linear feature space was also proposed.
Several of the techniques mentioned in the paper have
been compared on a common task: locating eyes in
frontal images of di�erent people. The techniques based
on pattern expansion provide superior performance, at
least in the particular task considered. Finally, a two
layer approximation network has been proposed to gen-
eralize the structure of SDF to a nonlinear �lter. Future
work will explore the advantages and di�culties of the
introduction of nonlinearity.
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