MASSACHUSETTS INSTITUTE OF TECHROLOGY
PROJECT MAG

Artificial Intelligence MAC=H- Iy
Hemao, Bo. 155 February 19648

A Left to Bight then Right to Left
Parsing Algorithm

by William A. Martin

ABSTRACT

Determination of the minimum rescurces required Lo parse a lanpuage
generated by a given context free grammar 13 an intrigulng anmd wveb wnsolwved
problem. It seems plausible that any unamblguous context Free gramear
could be parsed in time proportional to the length, n, of each input string.
Early (2} has presented an algorithm which parses "many” grammars in cime
properticnal te n, but regquires n? on seme. His work fs an extension of
Konuth's (4) algorithm, which leads to a very efficient parse proportional
to n of deterministic languages. This Memo. presents a diifervent extension
of Enuth's metheod. Enuth's method fails when more than one alternative
must bhe examined by a push down automaton making a lefe o ricght scon of
the input strimg. Early's extension takes all posalble altarnatives
slmultanecusly without duplication of effort at any glven step. The
method presented here continues through the strimg in order Co gain
information which will resolwve the confliet in the ensulng ripght to left
pass, which 18 made on the symbols accumulated on the stack of the awtomaton.
The algorithm is probsbly more efficient than Early's on certain pramsars:
it will fail completely on othera. The esasential idea may be (nteresting
to those attacking the general problem.

T. Introduction

I will assume that the reader iz familiar with context Tree languagos
and the notation given in Enuth's paper (4).

- The need to design computer languages mokes it important to under-
gtand which languages can be easily parsed. Mo general unambipucus context
free langunge parsing algorithm has been proposed which dees not regquire
time at least proportional to nz, where the string to be parsed is n symbols
long. On the other hand, we have not yot been able Eo find an unombiguous
grammar which could not be parsed in time proportional to o by some
algorichm. The algorithm below hondleg a wide class ol prammavs.

The handle of a sentential form is defined as the Left mest string
of characters in the senténtial form which egquals the right side of some
rule. Knuth has treated gruﬁmata where every handle can be found by com=
gidering the characteras to its left, the characters in the handle, and
some fixed number for all handles, k, of characters to the vight of the
handle. Such a grommar can be parsed in time proportional Co n by a
deterministic PDA, scanning the string from left to right. For cxomple,

the grapmer GL:

3
=

aBbh
abb

H oW > > U

+ & & &+
=
o

has che sententfial forms

1. A
7. u“gﬂhhn
3. a abh"
4. cB

5. ca aBbbb"

0, cangggbzn
where the handle has feen underlined in each case.

The hgndle in 6. 15 distinguished frem the handle in 3. by the "c"
at the left end of the string. It is not necessary to leook at characters
to the right of the handle;, so k=0, and the grammar is aaid to be LRE(0).
Ot the other hand, grammar Gl cannot be parsed in this manner from the
right, for one muat look arbitrarily far shead to find the "¢" in ovder
digtinguish 6. from 3. By similar arguments we coclude that a grammar
which generates the language with strings of the form

ca b ba

by

:ﬂnhznhnand
Enhinhinan
can be parsed from neither the left nor the right. In this memo, we extend
Enuth'as method En handle languages of this type.

Knuth thinks of the parser as a finite state machine with a push

down atack. At each step the parser must either add an input symbol to its

stack or must reduce the stack by recognizing that the symbols at the top

of the stack correspond to a handle and peplace these svmbols on the stack
by the left side of the corresponding rule. Tn general, thisz will require
information shout charactera to the left, such as the ”cf in cxample Gl.
Emuth showed that all the uwaeful information about charpcters, or reductions
already made, to the left can be represented by one of a Ei&itc number of
states.

The state 1s astored on the stack after each svmbol which i3 added Lo
the staelk. The new state is computed from the old state on the tep of the
stack and the symbol added. When tﬁe stack is reduced atate aymbola fov
th; symbols inm the handle are throwm away,

The method gets Into trouble when it 18 not possible to determine a
unique handle with the allowable informatiom. Tor example, parsing Gl from
the right, we would reach the point abbb™, the handle could be cither ab
or abb, Early (2) allows his parscr to explore both possibilicics hy.mﬂiu-
taining a two-dimensional array instead of a]Ina#r stack., The method
used here will be bto let the finite state language sdiich supmarizes what
has been found thus far become conceptually nom-deterministic. We will take
a path for each of the possibilicies which could arise if the scack was
reduced. The stack will not be reduced so that no informatiom will be lost.
Without reducing the stack we cannot gee what state symbol would hawve
endod up on top of the stack after the reduction, so more information will

hawve o be Brought along by the non-deterministic {inite stabe . summaei 1o

language. Even thoupgh we conceptually take several paths, we ofcen constrain
the possible parsings for the rest of the string te the right. Somebimes as
the parser moves farther to the right, input symbols will be [found which
show that some of the paths cannot apply to the string. The stack can be
roeduced whenever all current paths indicate the same rveduction. Onee the
right end of the string has been reached the stoack is parsed [vom Che

right using KEnuth's algorithm; except that the state symbols [rom the left
to right pass are used to restrict the pessibilities which the algorithm

congiders.

II. [Deacription of the Algorithm

We follow Knuth in the description,; except that productions of the
form Aae will not be treated since they add even more complexity. We
define the algevithm to be LR(kL) and RL({k2) for the K1 and kK2 used below.

First, let Hkl(“} be the et ?F all kl-letter strimgs P over T 4]
guch that ge por, for some O HﬁHE,HEHPPDSE the pﬁh production of Che
grammar to be parsed hag the form hﬂKl...R « A state [p.j;ﬂ.m,tj
represents the first j letters of the FEE production, D;jnnp and a string
it which could follow the left side of the th production in some sen-
tential form. We also intruduﬁe a yvirtual gtate, (p,};>m,c). Vircual
statos are interpreted the same as states, but the alporithm wnses them

differently. m is any integer identifying this state or virtual state from

all ethers ereated during the parse and £ iz a list of integeres identifying

other atatea or vitwal states. During the translation process we maintain

A .-,'I::|4.,'.'|-:JI donofed b:,l'

#kEEKE-J{S vaaX 8 |"£
non

kl
o*151%25; =Yy 8 (1)

1

The portien to the left of the vertical line consists altewnately of state
soks and characters; this is the [u::rtft'm of the string which hag been con-
sidered by the left to rvight pags, The gtate sets contain both regular
and wirtual states. The steps for the left to right pass ave glven below,
We atart the stock with k2 g's and then enter the following 1~:-;-'|1:-J with
n=0 and EI} = ELD,D; g ,l,{}J]. At each atep, assume the stack contents are

as showm in (1) and EHE“.

i

Step 1, Compute the "closure™ 5 of §, which is defined recursively as the
emallest set satisfying the following equation:

r - - 1
£ 'm ElJ[[q,l}:E,m,{ml}Jl there cxists Lp,j',w,ml,t_] in & j.:_111:.. o
there exists (p,j;a,ml,t) formed by the previous applieation of Step 3,
~TE ame X
J= -~ -

ﬂq, and B in L {HP L)]

(]+1) (i+2) PR

(We £hus have added to § all productions that might apply in addicion to

thoge we aye already working on.)
Step 2. Eu:ﬁmputu the following sets of kl letter strings:

z = {p| there exists |p.jsx]in s', jen s

B in Hy {}LPU_H_}...HPHPE:Z}]

P
EF - [u|[p,np;ﬁ] in 8] Ousp<a, the number of productions

By Bosamuy Es must all be disjoint or the grammer iz not TE{kLl) and virtual

0

states must be formed. &) If Yl"'Ykl lies in Z and not in any Ep, ehift

the atack left:

k2 k1l
4 SﬂHlSl...SﬁEIIEE...Tkth

and tename its combents by lekting In+1 = ?l, Tl = ?2,..., mul go to

Stop 3. B) If Y, .. lies in exactly one EP and mot inm 2, then the

L kl

characters forming the right side of production p are on the teop of the

stack. Check to see if state sets 5 .- contain any states
n-{ﬂp-l} n=1

rq,j;ﬂ] for which j-nq. If this is not so, the stack can be reducced. Let
rnn the stack now contains xf+1+++xn,3n. replace this string by ﬂp to. abbain
k2 .
L N I:l] - = = L] : *
sﬂxlsl...xrsrnr|11 Tk and let n=r, Iﬁ+1 Ap HJH ge to Step 3

Otherwise, shift the stack left as im a) aboye and go to Step 3.

Btep 3. The stack now has the form

.5 ...X 53X e W
EU Iql nn u+1|Yl Yk
1 = i
Tt En+1 = [{p,j+1;ﬂ,r,t1! [p,j;n,r,tJ in En' j{ﬂp,

l:'l-l'ld ﬂ“+-l - H.p I:j_l_z}]

i
I__,I[I:P:-j"'l;fr:-mrt:'l {Plj;ﬂlrlt:l in 5“: j-::'l'l_p;

U (p,d+l;0.m,E) | (p.Jsa,T,t) or [pojsore,t] an 5;1, 1

and {q,nq;ﬁ-,u,[---'l—‘u-}:l or 1':l_|l'lqt|3:'~l:':vrrfrr-:|_i in El'l.'l'!.]

AP i':-l-;ﬂpt:li (psjicym,t) in SII.I J-C.'"F'l

1

and (g.iifsusesamas.)) or Lq,i;ﬂ.u,{...m...ﬁ] in Sn+|’i{"q

i

i n]
Now form 8_., from En+l by (a) merging all scates | p,j;,m,t |,

-

Lp,j;a,n,aj by forming a state [plj;ﬂ,mlﬂum] and changing the references to n
to statz m, and (k) doing the same for all such pairs of wvivtual atatea.
I indicate the merge as a separate step because It is thus easier to

n

explain. If the firat character to the right of the bar is "4", begin the
right to left pass through the stack, otherwize, go to Step 1.
The right to left pass is dﬁnﬂ in the same maoner as the left to
right pass with three exceptions. First, no wirtual states ave formed; if
the algorithm reaches a point where a virtual atate would be formed; it
reports Iailure; Second, since we are going right to left, it ls neceasary
to sequence through the charecters of the right-hand side of & production
in the opposite direction. When a new state is fommed by Step 1, the form
,m,(ml}J. Then, in Step 3,] is decremented instead of incrementoed.

is ;_ﬂ.nq_‘_l;ﬂ

I -
Third, after forming the state En by Step 1, called Sn in the oxample,
En is replaced by En formed as follows. Let Em be the lefi-to-right state

set at the top of the input.

Eﬂ - {[p,j;ﬂ]] ip,j;ﬂﬂ ia in En

and Lp.j-l,ﬁ] is im Em]

III. Example

The grammar

0. § ., 8¢
1. 8 4 cBad
2. 5 4 chAA
3. 5 4 BaB
&, 54#3
5. A 4 adb
6. A 4 ab
7. T 4 abbhb
. B 4 abb

produces the strings

1. :anbznan+1bn
2. caﬂ'b“a“b“
EInbtnan-ﬁlbin

4. a"p"apen

We take kl=1 and k2=0.

10

£
The major steps in parsing a string of the first type are shown on

the following pages. The zero production 18 not shown in the state sets.
Since the stack can expand and contract, the state sets have been gliven
two gubseripts. The second is the subscript used in Sectiom IX. The firvat
counts the number of times that the stack has reached that length.

In the motation for states or wituwal states, the set t has beoen

omitted when it is empty. If ¢ is5 a set of one element, that element is

showm.

Steps
#ﬂunl i1 En ﬂ+]hn#
*Su,ucsulll iﬂbﬂndn+lbn#
fsu’utguplaﬂg-gl “'lbzna"+1hn§
#0,0%%0,1%%0,2" " * %0, n41 | b2y
#0,0%%0,1%%0,2"* 950, 011250 ,ps| O A B'E
#0,0%%0,1%%0,2* *"S0,041%80,n2 P80, 304 | "o
#50,0%%0,1%%0, 27350, 0s1"50,mi2" - P50, 3041950, 3naz| T 0 F
#50,0%0,1%%0,2° " *#50, 04150, m42" " *%50, 30+1°%0, 3042 * 50, | O F
#5,0%%0,1%%0,2"*50,041"%0,002* " *%0, 30+1%%0, 3042 50 01 "0 ene2 | "y
#4,0%%0,1%%0,2° **%0,n41"%0, 042 * P50, 141250, 3042 50,401 401 | "y
#0,0%%0,1%%0,2° ***50,041"50,n+2" " ®80, 3041750, 3042 850,401 4011 01 4ne [P by
#4,0°%0,1%%, 1"'“Su,n+1bﬁu,n+z‘*’bsu,3n+1“3n,3n+3“51,3n+3 EN
#5.0%%0,1%%0,2° %0, 0410, 02 P50, 304150, 3042751, 3043 |§n ?
#B5,0%%0,1%%0,27 " %50, 0010, 002" = P50, 3041750, 3002 |§r:1 1“‘“50,13*'
¥0,0%%0,1%0,27 - *%0,041™%0,042" " "%0, 3011 180,275,145 0t
#0,0%%0,1*%0,2°"**%0,n41"%0,n42" "0, |$ "5, 2"50 1*3ﬂ 0*
#0,0°%0,1%%0,2° 250,041 |50, 20425+ 8,35%0,2%%0,145 o#
#30,090,1°%0,2°***50,n |_|L:_ﬂ__ﬁ_,,2,u+2____;!q,ﬂ“ %0,3"%0,2"%.1 SD,ﬂf
#80,0°%0,1%%0,2°***50,n 131, 2001%%0, 20" 50, 3%%0,2%% "‘Su,u*lr |
48, 0%%0,1%%0,2° "8 n.1 ISL:2n+EHEL.En+l E,lnh%Q 2n-1" En 3 Eﬂ 2™ 289,159, 0f
#5p,0%%0,1 s1 3%0,2% n:: 1"‘§u o
#50,0 8) 458 t.a Sp,2" u,,;_ 0,0
#5,0 ﬂ,nf

11

to Parse String 1.

0 nekl

D 3 T|.+E

0,3

S0,k

5[I,,n+5

12

Representative State Sets to Parse String 1.

([1,0;4,1] [2,0;8,2] [3.0;4,3] [4,0:4,4] [5,0:a,5,4] [0,0;a,6,4]
{7,0;a,7,3] [8,0;a,8,3])

([lll;ﬁll] [211;*12] [5.‘];3:11:2] [ﬁ,ﬂ;.ﬂ,]:,i“l [T.Dj."l,]-t.l]'
[E:D;h}lﬁ, 1]}

((1,1:4,1) (2,1;4,2)[5,1;a,11,2] [6,1;a,12,2] [7,1;a,13,1]
[8,1;a,14,19] [5,0;b,19,11] [6,0;b,20,11] [7,0;b,21,13]
[8,0;b,22,13])

({1,1:4,1) (2,1;4,2) (5,1;a,15,2) (7,13a,17,1) (5,1:b,23,(L3,23))
(7,1:b,26,(17,26)) [5,1:b,25,23] [6,1:b,26,23] [7,1;b,27,24]
[8,1;b,28,24] [5,0;b,29,25] [6,0:b,30,25] [7,0;b,31,27] [8,0;b,32,27])

((1,138,1) (2.1;4.2) (5.1;a,15,2) (7,15a,17,1) (5,1;b,23,(15,21))
(7,1;b,24,(17,24)) [6,2;b,26,23] [8,2;b,28,24] (5,2;b,35,(15,23))

{tlll;#?l} {I:IE#tE} (5,1;a,15,2) (7,l;a,17,1) {5-[ih-23l{15!i3}}
{?,l;h,:ﬁ,{l?.!ﬁ}} laljihlzsazﬁ] {513;h136¢{15!23}} :jrgih:3?:{l5533j}
(7,2;b,38,(17,24))

((i,1:4,1) (2,1;4,2) (5,1;a,15,2) (7,1;a,17,1) (5,1;b,23,(15,23})
(7,1:b,24,(17,24)) (5,2;a,42,9) (5,2;b,41,(15,23))
(5,3:b,60,(15,23)) (7,3:b,39,(17,24))

((1,134.1) (2,134,2) (5,138,15,2) (7,1;a,17,1) (5,13b,23,(15,23)) .
(7,1:b,24,(17,24)) (5,3;a,47,9) (5,3;b,46,(15,13)) (7,2;a,45,1)
(7,2:b,44,(17,24)) (7.4;b,43,(17,24))

0,3n+l

0, In+2
50,3n+§
| 50,4041
50,4042
1,60+l

51 ,bnt2

1,3n+3

0,0

0,0

¢

0,1

13

C((1,1:4,1) (2,1:4,2) (5,13a,15,2) (5,2;a,50,2) (5,1;b,23,(15,23))

(5.2;b,52,(15,23)) (5,3;b,53,(15,23)) [5,0;4,62,63] [6,0;4,63,61]
(1.2;4,60) (2,2;4,61) (7,15a,17,1) (7.,2;a,54,1) (7,3;2,55,1)
(7:%;a,56,1) (7,1;b,24,(17,24) (7,2;b,57,(17,24)) (7,3;b,58,(17,24))

.{?,ﬁ;b,ﬁ?,{l?,zﬁ}{ﬁ,;;5,51,9}}

{{1:3;*555} EE:I;*:ﬁEJﬁl] Eﬁll;*IESIﬁl] [5,0;b,64,62] [6,0;b,65,02]
[5,0;4,67,66] [0,0;4,68,66] (2,2;4,61)))

((1,3;:4,66) (2,2:4.,61) (5,1;4,62,61) [5,1;4,67,66] [6,1;4,08,66]
[5,1;b,64,62] [6,1:b,65,62] [5,0:b,69,(67,64)] [6,0;b,70,(07,64)])

(CL,3;8,66) (2,2;4,61) (5,1;%,62,(61,60)) (5,1;b,064,{b2,04))
[5,1;b,69,64] [6,1;b,70,64] [5,0:b,71,69] [6,0;b,72,69])

((1,3;8,66) (2,2;,61) (5,1;4.62,(61,66)) (5,1;b,04,(62,64))
(5,2;b,73,(62,64)) [8,2;b,70,64])

((1,3;4,66) (2,2;:4.61) ;5-15*152|‘51|ﬁh}} (5,1;b,64,{62,b4))
(5,2;b,75,(62,64)) [5,2;b,69,64])

((1,3;4,66) (2,2;4,0601) (5,L;%,62,(50,60)) (5,1;b,64,(62,64))
(5,3;b,76,(62,64)) [5,3;b,69,64] (5,2:b,75,(02,64)))

((1,6:4,66) (2,2;9,61) [5,234,62,611)
{[1,5;31 [E:ﬁ;;] [3:*;:} [i,j?g] iﬁ,itcl [5.3}51 [?,5;;] 15:4;;]}
(11,551

([1,63¢])

50,2

50,3

50,2042

50,2043

51,2041

51,2042

5.3

5,4

(11,3;¢] [7,5:eD)
([748::1)
{[312;311
([8,1;.1)
([7,25¢1)
([7.1;:10
([1,2:.1)

([1,1;:D)

1%

15

Iw Discugniun

First, note that the non-deterministic language is fndecd finite state.
Since there are a finite number of rules in the grammer and cach has a
" finite number of characters om its right side, there are only a finite
number of states of the form (p,j;®.m,t) er [p,};¥,m,t] which have distiner p,|
and . Therefore, the set t must b finmite and theve ave alse only 2
finite number of possible state sets.

Since the method of comstructing thn state sebs is quite complex, one
might think that the algorithm cannot be very fast. This is not so. The
state sets need to constructed only once, then each state set and sEring
of k input charcters determines a new state set., Thus, the important
thing is the number of state sets, amd whether this number can be rveduced
for the grammer in question.

In the example, a character at the left end of the string to be paracd
gives information needed to make a reduction at the right end. (mly after
this reduction is made can information needed to make Ffurther reductions
at the left end be obtained. The example could be expanded so that it could
be parsed only if the same type of algorithm made three passcs ihtnugh
the string, or so that the algutithm would have to make an arbitrarily
large number of passes.

~If the algnfithm succeeds after some number of passes, it meoans thath
the information needed to find the correct reductions could be obtained

without having to uawind the pushdown stack in more than ome way. Efficicncy .

16

is lost because the algorithm which mskes a complete pass in one direction
and then in the other may have to consider some characters scveral times.
This could perthaps be omitted 1f the trouble spots were somchow vemembeved
on the first pass.

The language with strings of the form anbin and a'b" cannot be parscd
by thia_ algorithm. The a's must be counted against the b's in both wavs.
On the other hand, the language can still be parsed im ti&m proportional
to n by Early's scheme. My :.;lgnrithm will fail om a Pﬂliﬂ'ﬂﬂ;'l!ﬂ lanzuage
and-Eatly's will zequire effort proportiomal to nz. A palindrom language
can be efficiently parsed both ends toward the middle.

1t should be possible to find more general methods of parsing in time

.proportional to the string lengch.

Bibliography

1. A.Colmerauver, "Relations de Precedence Totale," Institut de
‘Mathematiques Appliquees, Universite de Grenoble, April, 1967,

2+ J« Barly, "An Hz-hcngnizer for Context Free Grammars," Department
of Computer Science Report, Carnegie-Mellon Universitwv, Ficesburgh,
Pennsylvania, September, 1967,

3. 5. Ginsburg, The Mathematical Theory of Context Froc Languages,
MeGraw Hill, 1966,

4, D, E. Knuth, On the Translation of Languages from Left to Right "
Information and Control 8, 1965,

