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Abstract

The MOS transistor physical model as described in [3] is presented here as a network model. The goal is
to obtain an accurate model, suitable for simulation, free from certain problems reported in the literature
[13], and conceptually as simple as possible. To achieve this goal the original model had to be extended
and modified. The paper presents the derivation of the network model from physical equations, including
the corrections which are required for simulation and which compensate for simplifications introduced in
the original physical model.

Our intrinsic MOS model consists of three nonlinear voltage-controlled capacitors and a dependent current
source. The charges of the capacitors and the current of the current source are functions of the voltages
Vgs, Vbs, and Vg,. The complete model consists of the intrinsic model plus the parasitics. The apparent
simplicity of the model is a result of hiding information in the characteristics of the nonlinear components.

The resulted network model has been checked by simulation and analysis. It is shown that the network
model is suitable for simulation: It is defined for any value of the voltages; the functions involved are
continuous and satisfy Lipschitz conditions with no jumps at region boundaries; Derivatives have been
computed symbolically and are available for use by the Newton-Raphson method. The model’s functions
can be measured from the terminals. It is also shown that small channel effects can be included in the
model. Higher frequency effects can be modeled by using a network consisting of several sections of the
basic lumped model.

Future plans include a detailed comparison of the network model with models such as SPICE level 3 and
a comparison of the multi-section higher frequency model with experiments.
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1 Introduction

Our interest in modeling MOS transistors started from our work on the
Supercomputer Toolkit [1, 2]. The Supercomputer Toolkit is a family of
hardware modules (processors, memory, interconnect, and input-output de-
vices) and a collection of software modules (compilers, simulators, scientific
libraries, and high-level front ends) from which high-performance, special-
purpose computing systems can be easily configured and programmed. The
main advantage of the Supercomputer Toolkit is that for numerically inten-
sive computations it provides supercomputer class performance at a fraction
of a supercomputer cost. One such application is the simulation and opti-
mization of high speed circuits with respect to physical parameters.

For optimization of Bi-CMOS circuits we needed a model of the MOS
transistor. Our colleagues (see acknowledgment) recommended a long list
of references, including [3, 4, 5, 6]. Tsividis [3] is the most comprehensive
book of its kind. The simplest approach would have been to use the SPICE
level 3 model [7]. However, several shortcomings of this model have been
reported [13, 12], all of them involving the simulation of analog circuits of
the type we intended to use. With the Toolkit in hand, computation time
did not seem the hindering factor for the problems we intend to attach, so
we decided to construct the most accurate model possible. Thus, the above
references, in particular [3], became the basis for this work.

The type of transistor model we wanted was a network model, i.e., one
that models the transistor as a network of more primitive devices. The re-
sulting network can be use as a component, i.e., interconnected with other
components to form larger networks. The appropriate transistor model de-
pends on the nature of the required solution. In particular, for transient
simulation the model, once embedded in a network satisfying certain con-
ditions, should lead to an appropriate set of ordinary differential equations
which can be integrated numerically to yield a solution (see, for example,
[10]).

The material we found in the above references was not quite in the form
we wanted. There was no large signal network model and only the small
signal model could be described as a network model. The number of details
was very large. The emphasis was on deriving the model from physical
considerations and we missed a structural, hierarchical description of the
results where the details, if needed, could be looked up later and filled in. The




physical equations were derived as if the transistor had infinite dimensions.
The lumped models derived from these equations are approximations to the
behavior of a finite size transistor. Yet, we could not find a mention of what
properties could or could not be measured from the terminals. Thus, our
goal was to start from physical considerations (using the above references)
and find a “simple” large signal network model whose components can be
measured from the terminals.

In the next section we derive the model for the usual operating region
of the MOS transistor. The result is presented in figure 2. Section 3 gives
our reasons for extending the model to other operating regions and then
presents such extension. Section 4 presents the results graphically. Section
5 addresses the issue of measuring the characteristics externally. Section 6
discusses some properties of the model, in particular those related to the
existence and uniqueness of the response of networks constructed with our
transistor models as components. The last section presents the summary and
the conclusions.

Appendix A presents the model equations in the “usual” operating region.
Appendix B discusses the derivation of the incremental capacitance from the
charge functions using symbolic computing techniques.

2 Region I — The usual operating region

This section presents the model in the usual operating region. The notations
follows [3]. The treatment is brief and justification can be found in the above
reference. Figure 1 presents the transistor including the definitions of the
voltages and currents at its terminals.

Modeling starts by considering the behavior of the transistor in several
regions defined by the terminal voltages V,, Vis, and Vj,. Region I is defined
by the following relations among the voltages:

Vis 2 0
Vos < 0.

This region is, in turn, divided into four subregions:

Accumulation: Vj, < Vj, + Vi, where V}, is the flat band voltage;

Cutoff: Vi, + Vi, < Vg, < Via, where Vjy, is the cut—off voltage;
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Figure 1: The MOS transistor, it’s terminal voltages and currents, and a
differential cross section.

Saturation: V,, >V, and Vg, > Vjsat, where Vy,q, is the saturation voltage;
Linear: V,; > Vi, and Vy, < V.

In the above, V};, is the threshold voltage, a function of Vj,,

Vin = Vio + 7% (/s — Vis — /),

and V,q¢, the saturation voltage, is

Vs"‘/th
Vsa: ?
BT T4
v

0= NIt ds - Vi

where V,, v and ¢, are physical constants (i.e., independent of the volt-
ages) which are defined in Appendix A.

To compute the current and the charges one considers a differential sub-
section of the transistor (see Figure 1). Assuming the fields in the transistor
are the same as if the transistor were infinite in the z and y direction, from
physical consideration, one calculates the current through the subsection and
the charges in it as functions of certain physical parameters and of the field
intensity in the subsection. This field intensity can be expressed in terms of
the voltages Vy,, Vis, and V.



The current, I, is the crrent flowing through the differential cross sec-
tion, in the (minus) « direction due to both drift and diffusion. It is assumed
that only a negligible amount of this current enters the bulk and, therefore,
the current entering the cross-section on the left exits on the right. From
that also follows that its value can be obtained by integration along the the
subsection face (integration along the z axis and the y axis; the distribution
along the y axis being uniform as a result of the infinite dimension assump-
tion). The integration results in the following expression for the linear and
saturation regions:

w
Ids = ﬁﬂcoa:‘/dsat(v;s - V;h)(]' - Oé2)(]. + )“/‘19) (1)

where W and L are the width and length of the transistor, C,, is the gate
oxide capacitance per unit area, o is zero in the saturation region and equal
to

Vs
‘/dsat

in the linear region. The last term, (1 + AVy,) is (alas!) a correction term
introduced experimentally (it does not follow from the physical considerations
in the infinite dimension z ).

As we move from saturation to cutoff the transistor passes through a
medium and then a weak-inversion zone; I, goes down sharply and eventu-
ally diminishes to zero:

1—

Vs —V;
I4s = Ipexp "ig-kT—th, (2)
2q
where W s kT
Iy = — ox S\ T 2 —1-
0 L'UC 2( q )e

To make Ij, a continuous function of V,, Iy has to be added to the value
of Ij, in the saturation and linear regions (see appendix A for the complete
equation).

The charges provide a more intriguing story. In the infinitesimal section
dz above, four charges (per unit length) are defined:

® g, — the charge on the metal gate;



e g; — the inversion layer charge;
e ¢, — the charge in the bulk;

e ¢o — the interface charge, a fixed quantity independent of the fields in
the section.

These charges satisfy
g+ qr+ g+ g = 0.

Each of these charges can be expressed as a function of the position z
and the voltages Vs, Vis and Vy,. The charges can also be integrated over
z to yield the total gate charge, @y, the total inversion (layer) charge, @,
the total bulk charge, @, and the total interface charge, Q. The sum of the
total charges is still zero, and so is the sum of the charges’ derivatives with
respect to time.

The above relations for the charges have been derived under DC con-
ditions. It is assumed (the pseudo-static assumption) that as the voltages
change, but “not too fast,” the charges change according to the statically de-
rived relations. (As usual, a quantitative value for “not too fast” is not given
in the literature and frequency bounds on the validity of the pseudo-static
model have to be obtained experimentally.)

The next step is conceptually delicate: We would like to partition Q;
into two charges Q4 and @Q,, such that @; = @, + Qq; and, to associate each
charge with the corresponding terminal — @, with the source, Q4 with the
drain, Q4 with the gate and @} with the bulk. Moreover, we claim that, given
that the proper partition is done, the time derivative of each of these charges
is (a component of) the current in the corresponding terminal, i.e. %‘7— = 14,
etc. Except for the case of @4 the support of this step is not trivial; it is
given in detail, together with a proper partition, in chapter 7 of [3] and its
references. One of the arguments given there is that the results agree with
experiment.

Notice that since

Qe+ Q1+ Qs+ Qo =0,
and (%Qo =0,

d d d d
&;Qg + aQs + EQd + %Qb = 0. (3)



In words, the above equation means that the terminal currents due to changes
in the charges satisfy Kirchoff’s current law.

Thus, we may model the effect of the charges and I, using three voltage-
controlled non-linear capacitors' and a dependent current source (see Figure
2). The characteristics of Cy,, for example, is given by the function specifying
Qg as a function of V,,, Vi,, and Vj,. This means that this capacitor is a
four-terminal component, needing a reference and three terminals to specify
its charge (see Figure 3. The time derivative of the charge on Cy,, the charge
Qg, is a current entering ¢ and leaving through s. Thus, changes in, say, Vj,,
may change (), and cause a gs current. Cp, and Cy, are similarly described
— each with its own characteristics. The functions are given in Appendix A.
The characteristics of the current source is described by equations 1 and 2.

The choice of the non-linear capacitor, rather than the commonly chosen
incremental capacitor, is a major one. It provides a simple link with the
charge equations and, at the same time, simplifies the model conceptually.
The incremental capacitors are the partial derivatives of the characteristics
at a given operating point.

Note that we can define a capacitor for each of the terminal charges.
Any three of the four can be chosen for the model. The network, or rather
Kirchoft’s law, guarantees that the sum of the terminal currents is zero. From
equation 3 follows that the omitted charge is equal to the minus of the sum
of the other three charges (plus a constant which we are at liberty to take as
Qo). Note also that in Figure 2 the source s was chosen as a reference node
and the charge, say, @, was associated with the capacitor Cy,. This choice
yields characteristics whose expressions corresponds directly to the charge
equations in the literature [3]. If, however, the base or gate is chosen as the
reference node, symmetry implies that the characteristics of Cyp is equal to
the one of Cy.

The model of Figure 2 is called the the intrinsic model. To this model
we have to add the so-called “parasitics”. These are two linear capacitors
representing the overlap between the gate metallic layer on both the source
and the drain, respectively, and two nonlinear capacitors representing the
effect of the pn junctions between the source to bulk and drain to bulk. A

LA capacitor is called voltage-controlled if its charge is given as a function of its voltage,
Le., ¢ = f(v); The function is called the characteristics of the capacitor. In our case, v
Is a vector whose components are voltages. The extension of the terminology is straight
forward.
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Figure 2: The intrinsic model
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Figure 3: A four-terminal capacitor; @ is a function of (V;,V;,V3); The
current ¢ = %Q.
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Figure 4: The complete model; The intrinsic model plus parasitics.

better model for the pn junction is that of a non-linear capacitor in parallel
with a non-linear resistor which represents a diode; In region I, however, the
diode is reversed biased, so the resistor can be neglected.

Figure 4 describes the complete model. The functions describing the
characteristics of the components appear in Appendix A.

Discussion: The above contains an outline of the modeling process.
Most of the details are tucked away in the functions that describe the com-
ponent characteristics. We would like to consider these functions from the
point of view of the model use, i.e., circuit simulation. We expected the func-
tions to satisfy Lipschitz conditions in terms of the independent variables 2
which, here, are the voltages. Extracting the functions from literature we
came across several surprises. The literature provided algebraic expressions
for each region (i.e., the saturation region, cutoff, etc.) but the functions were
not continuous at the boundaries. This we discovered by displaying cuts of
the functions at various values. As a result, the functions in Appendix A
contain corrections that we introduced heuristically.

In circuit simulation, the Newton-Raphson method is used to solve the
algebraic equations that result from implicit integration methods. Newton-
Raphson requires the partial derivatives of the functions with respect to the
voltages; E.g., @W. Deriving these twelve functions was not simple.
The expressions in each region are complicated enough so we just could not

’In order to have a solution defined by a set of first order differential equations the
network has to satisfy certain conditions. One of these conditions is that the functions
satisfy the Lipschitz conditions in term of the independent variables.

9



Vds

I

dregions-border Vbs

v v

Figure 5: The five regions. Lines (except the V;; coordinate) are boundaries
between regions.

get the evaluation right when we did the differentiation by hand. We found
that we had a wrong function on hand by testing. Every solution, i.e., pro-
posed derivative function, was compared with the numerically approximated
value; when the discrepancy was too large it indicated a mistake.

Thus, we turned to symbolic algebra to evaluate the derivatives. The
straightforward derivation, however, produced enormous expressions which
we could not simplify well. We circumvented this difficulty by writing a
symbolic program for evaluating each derivative. This technique is described
in Appendix B by example. Figure 18 depicts the partial derivative of @,
with respect to V.

It is worthwhile noting that these derivatives have circuit meaning. They
are the incremental capacitance and trans-capacitance that appear in the
small signal model. There are nine of those — the partial derivatives of Q,,
(v, and Q4 each with respect to each of the voltages V,,, Vis, and Vj,.

On inspection one sees that these derivatives are not continuous. The dis-
continuities occur along the subregions’ boundaries. In all cases, the deriva-
tive normal to the boundary has the same sign on both side of the boundary.
This fact is aesthetically displeasing. It does not, however, effect the exis-
tence and uniqueness of the transient solution. In our circuit examples it
did not affect the convergence of the Newton-Raphson iteration. It does,
however, indicate a need to make the small signal model more accurate at
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Figure 6: A picturial illustration of evaluating the functions Q4 and Q, in
each region. In region I, Q4 and @, are evaluated from Vasy Vos and V. In
region II the V’s are evaluated first. This amounts to translating V,,, Vi,
and Vg, of region II to a point in region I illustrated by the curved arrow
from region II to region I. Q4 and @, are evaluted at that region I point; The
value of Qg in region II is the value just obtained for @, in region I. In other
regions the functions are evaluated similarly.
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region boundaries.

3 The Five Regions Model

We have coded the Region I model and run some simple examples. Again,
to our surprise, the simulation trajectory crept out of Region I into regions
where the model was not valid. A check of a MOS circuit (An inverter
with active p-channel load, [11] page 391) showed that indeed the actual
circuit leaves region I. The phenomena is not a feature of the model or of the
simulation program but appears in actual circuits. Therefore, we constructed
a model that is valid for all values of V,, V4,, and V,,. We refer to this model
as the five regions model. Figure 5 gives the five regions that partition the
(Vbs, Vas) space. For each region we define expressions that are valid for any
value of V.

3.1 Regionl

We return to region I in order to extend this region somewhat. Considering
the functions in region I we find that they behave properly for Vj, > 0 except
that some of the derivatives become infinite (blow up) for V4, = ¢,. Thus,
region I can be extended to

Vas > 0

%s S ¢regions—border;

where @regions—border < Ps. In our simulations we t00k @regions—border = 0.5¢,.

The point Vg, = 0, Vs = Vin, i.e., Vysar = 0, is rather delicate. The various
functions are continuous but the numerical evaluation is apt to “blow up” as
a result of devision by zero if care is not taken. In our own representation of
the function the phenomina occurs in the calculation of alpha as

V
- do fO’f‘ V;ls S V:isat
‘/dsat

a=0 for V;is>‘/;isat

a=1

caused a division by zero for Vj, zero. A slight change in the conditions
eliminated the numerical trouble:

 Vas
V;lsat

a=1

fOT (V:is < V;Jlsat)and(‘/dsat > O)
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a=0 otherwise.

The fact that this change helped depends on the numerical properties
of our system, in particular, the way the system rounds a small number to
zero. In general, note that at the above point functions such as Qg have a
double zero at the numerator and a single zero at the denominator and the
numerical result might depend on the order of computation.

3.2 Region II

The region is defined by the symmetry of the MOS transistor. Clearly, the
source and drain are symmetric and for appropriate voltages the source acts
as drain and the drain acts as source. Region II is the region where we would
be in region I if we interchanged the source and the drain. Let us name
this replacement of source by drain “the exchange operation.” Denote the
voltages before the exchange by V, and the voltages after the exchange by
V. The relation between the the V’s and the V’s can be simply concluded
from Figure 1:

‘7;15 = ‘/;]s - ‘/:is’
f/bs - %s - V;,is’
‘7:13 - _V:is-

It is easy to verify that these equations map the following region into
region [:

{(Vgs, ‘/bs, ‘/ds)l(%s < ¢regions—border>and(0 > V:is Z V;Js - ¢region3—border)}

The charges and currents that we want to evaluate in region II can be
computed using the corresponding charge and current functions of region I:

Qo (Vs Vos, Vas) = Qg(Vys, Vs, Vas);
Qb(%sa %37‘/;13) = Qb(‘?qs»%sv ‘7(13);

Qd(%sa V;)s, V;is) = Qs(‘?qsa %sa ‘le);

13



Qs(‘/gsa ‘/bsa V:is) = len(f)gm ‘7;)37 ‘7:13);

while o
Ids(‘/gs,%sy ‘/ds) = —Ids(‘/g57‘/bs,‘/;is)-

Special care has to be taken when derivatives are calculated. To wit:

6@9 an Y7 an 0/ an 1/
ava )= "oy, Y )

The procedures evaluating the functions were written as the above im-
plies: Given the V’s, the V is computed and the value of the appropriate
function in region I is calculated; the signs, etc., are next adjusted according
to the evaluated function.

(V) =

3.3 Regions III, IV, and V

We know next to nothing of the behavior of the intrinsic transistor outside
regions I and II; nor could we find any literature on it. Since we needed the
functions to be define over thewhole domain, we extended the definitions of
the basic functions, Iy, @5, @b, @4, and @, outside regions I and II to satisfy
the following conditions: the functions should be continuous and satisfy the
Lipschitz conditions over the entire three dimensional space. In addition, the
extension should be simple.

Figure 6 describes the the partition of the space into regions and illus-
trates the evaluation of Q4 and @, in each region. Given a point (Vj,, Vis, Vis)
in region III, IV, or V, a point (‘7;,8, f/],s,f/:is) is calculated on the boundary
of regions I or region II. The value of a function, one of Iy, Q,, Qs, Qq, or
Qg, at (Vgs, Vis, Vis) is the value of the function at (1793, ‘7})3, f/;lg).

The definitions of the regions and the transformations are as follows

e Region III:
{(‘/gsa %87 %s)'(%s > ¢regions—border)and(‘/ds Z 0)}

V.:JS = Vgss

‘/;)s = d)regions—border )

V:is = ‘/ds-

14



e Region IV:

{(%s, ‘/bsa V;is)'(%s < ¢regions—border)and(v:is < %s - ¢regions—border)}

‘793 = ‘/gs’

‘7;)3 = %s’

%s = V;)s - ¢regions—border-

e Region V:

{(‘/931 %87 %3)'(%3 > (bregions—border)and(‘/:is < O)}

Vgs = Vgsa

V;)s = ¢regions—border,
V;is =0

Discussion: No claim is made that the above equations capture the be-
havior of the intrinsic transistor in regions III, IV and V. As will be shown in
the sequel, they give us a model that has a unique solution under some rea-
sonable conditions and, thus, when the simulation enters these region we can
emit a warning message and continue instead of ending with a programming

bug.

4 Graphical presentation of the results

There is a basic difficulty in displaying functions of three variables as are
the current and charges of the intrinsic transistor. To gain some insight into
the properties of these functions we did the following: Consider figure 6 as
a plane, V, = constant, in the space (Vg,, Vis, Vas). Chose a value for Vj,
which defines the dotted line (the path) in the figure. Figures 10 to 18 depict
the current Iy, the charges, and some small signal parameters commonly
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used by analog circuits designers, along this path. The region boundaries are
shown as vertical lines in the figures.
The values that we have chosen and which are common to all the figures

are as follows:
V;)s = _5V7
Vs varies continuously from -10V to 10V,
Vys 1s a parameter value; The values that were chosen for it are 0V, 2V, 4V,
6V and 8V.
The following parameters were chosen for the representation of the results:
=1
doy = T00A (Oxide thickness)
N, =3-10" em™® (Doping concentration)
Lo, = 0.1p (Channel length overlap)
®,,, = —0.93V (Metal semiconductor potential)

0o=0cm™3 (Effective oxide charge)
ton = 1200 cm?. (Electron mobility)

v-sec

Hop = 250 ;f::c (Hole mobility)
Viat = 1 10° 7 (Saturation velocity)
The path that was chosen shows the behavior of the functions in region I and

IT, the most commonly used regions, and in region IV.

==

5 Determining the model’s characteristics by measure-
ment

One major property that we expect models of physical devices to have is the
ability to measure experimentally the device characteristics from the device’s
terminals, and then to use the characteristics in simulation. The SPICE level
3 model, for example has this property. In this section we present a way of
measuring the model characteristics from the terminals.

Given a MOS transistor device, we would like to extract Q,, Qb, Qu, @
and Iy, as functions of V,, Vy,, and V;,s. Figure 4 shows some parasitic capac-
itors in addition to the capacitors of the intrinsic model. These capacitors
represent the capacitance of the source-bulk and drain-bulk pn junctions,
and the overlap capacitance between the gate and the source, and between
the gate and the drain.

When measuring the charge-voltage characteristics for each of the tran-

16



sistor’s terminal pairs, it is not possible to distinguish between the charge
that is supplied to the parasitic capacitor and the charge that is supplied to
the intrinsic capacitor that appears in parallel to it without prior assump-
tions on the behavior of the voltage-charge characteristics of each one of
these separately. Thus, in this paper we measure the two charges together.
The measurement can be done by either small signal capacitive measure-
ment (C-V measurement) or large signal charge voltage measurement. In
C-V measurement we get the incremental capacitance and, in the sequel, it
is assumed that this is the method used.
Let C;; be the total incremental capacitance between nodes i and j in the
the device. Thus, we get:
0
Cg.s - Cpgs + '8_82 )

98 Vbedes

where Cpg, is the parasitic capacitance between the gate and the source (the
overlapping capacitance);

ng = Cpgd )

where Cpgq is the parasitic capacitance between the gate and the drain (the
overlapping capacitance);

9Qa
Cas =
! a‘/ds Vgayvba
0
Che = Coe + 8—%

Cpbs 1s the source-bulk pn junction capacitance;
Csa = Cpap

Cpap 1s the drain bulk pn junction capacitance. We denote by 6’; the in-
cremental capacity measurement between terminals i and j when the other
terminals are connected to a constant DC level.

The measurement results for each set of Vi, V,, and Vj, are:

Cgs = Cgs + ng

Cbs = Cbs + Cha

17



Cas = Ca, +Ca + Cya
6’;1: Cgda + Cap + Cys

Cop = Cps + Ca

The matrix form of these results is:

1100 0]][Cy Cys
01001]|]|Cu Chs
01 110]|]|Ca|=|Cy (4)
00111|]|Cas Cua
0 0011 Chs @;}A

We would like to obtain the incremental capacitance vector vs. the measured
capacitance vector, hence we get:

Cys 1 -05 —05 05 0 Cys
Cya 0 05 05 —05 0 Chs
Cis |=]0 0 0 1 -1 Cy (5)
Cab 0 -05 05 -05 1 Ca
Chs 0 05 —05 05 0 Cop

Therefore, we can get the incremental capacitances of the model’s com-
ponents by measurements. In order to get the characteristics, charges vs.
voltages, we need one point on the characteristics in addition to the in-
crements. One such point is: For V, = Vj,, Ve = Vi = 0, Qs = —Qo,
Qd = Qb = Qs =0.

These measurements can be used to compare the theoretical derived
model with the actual behavior of the transistor, or to obtain the charac-
teristics of the model experimentally.

6 Some properties of the of the model

This section describes some qualitative properties of the model all of which
related to simulations. These properties are invertability, satisfiability of Lip-
schitz conditions, monotoneity of the model and the existence and uniqueness
of solution of networks containing such models as components.
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Is the model charge controlled? We are accustomed to expect the
model to be charge—controlled [4]. The expressions defining the charges and
currents in our model are all expressed in terms of the voltages Vg,,Vi,,and
Vis. Does the function which defines the charges in terms of the voltages
have an inverse?

Simple inspection of the intrinsic model yields that (a) the expressions
in regions I and II are too complicated for eye-ball conclusions, and (b) The
functions are “flat” on the other regions and, therefore, no inverse of the
intrinsic model can exist.

If, however, the parasitics are added to the picture and the model is
considered as a whole, the situation is not obvious. So, we consider the model
with its parasitics, i.e., the linear overlap capacitors Cpgs and Cpgq4, and the pn
junction capacitors C'pbs and Cppg. Since Cpps and Cppq are not define outside
regions I and II they were extended by a small linear capacitors defined over
the whole domain. Now, the answer is no longer obvious. The next step is
the use of a global inverse theorem and an experimental verification of the
conditions. Let us choose the source s as a reference node, and let @4, Qp,and
Q4 denote the node charges (cut-set charges associated with the nodes) which
include the charge of the parasitics. Let h be the mapping from the voltages
to the charges, 1.e.,

(an Qb’ Qd) - h(%s’ ‘/E)sa V;is)-

The model is charge-controlled if A has a global inverse. To prove that h has
the desired property we use the following theorem.

Palais’s Theorem [16]: Let h be a differentiable function from R" to R".
Then  is a diffeomorphism 2, provided that h satisfies the two conditions

(i) lim [A(e)] = oo

|||l =00

(i2) det Dh(z) # 0 for all z,

were Dh(z) is the Jacobian of h at z.

Our functions are continuous and differentiable inside the regions but are
not differentiable at the regions boundary. On one hand, this implies that
if an inverse exists, it would not be differentiable; On the other hand, (1)

3h has a continuous differentiable inverse over the domain
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provides local homoeomorphism and, therefore, we have to prove local ho-
moeomorphism on the boundaries some other way. Now, for each boundary,
derivatives on the “right” and the “left” exist. Thus, to insure local ho-
moeomorphism it is sufficient to show that, at each point on the boundary,
the corresponding partial derivatives have the same sign. Only the normal
derivatives have to be checked as continuity implies that derivatives along
the boundary are equal. This check was done experimentally; the derivatives
were found symbolically and evaluated numerically at various points on the
boundaries.

Let V' be the vector of voltages and () — the vector of charges. As ||[V]|
sufficiently increased, so does ||@||; While the charges of the the intrinsic
capacitors do not increase for any increase in V, the charges of the linear
capacitors do increase. Thus, condition (¢) above is satisfied.

Condition (47) inside the regions has been checked numerically. The par-
tial derivatives have been found symbolically and the determinant was cal-
culated at various points in space. The result is shown by figure 7.

Thus, strictly speaking, the above are numerical evidence that the model
is charge-controlled rather than mathematic proofs. A proof of (i7) can be
provided by the evaluation of the determinant in each region and showing
that it does not vanish.

The charges and I;; as functions of the voltages satisfy the Lip-
schitz conditions *.

Since all the above functions are continuous and, on each region, they are
defined as expressions, the above is determined by inspection.

The cutset charges are strictly monotonic functions of the volt-
ages.

A function f from R"™ to R" is called monotonic if for every z;,z, €
Rn’ I 7é T,

(z1 — 22, f(21) — f(22)) 2 0.

*A function f satisfy the Lipschitz conditions on some domain D if there exists a k,
k > 0, such that for every &; and z3 in D

| fz1) = flz2) I< k[l 21— 22 || -

Satisfiability of Lipschitz conditions by f implies existence and uniqueness of solution of
%x = f(z). For differentiable functions, a uniformly bounded derivatives implies that the
Lipschitz conditions are satisfied.
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THE JACOBIAN DETERMINANT

Z - Jacobian determinant
X -Vds (-10V - 10V)

Y - Vgs (OV - 10V)
region |l

Vbs = -5V
linear region IV
region |
saturation
region |

Figure 7: The jacobian determinant
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In the above, if the (>) is replaced by (>) the function is called strictly
monotonic. If the right handside is replaces by > ¢||z; — z2||* the function is
called strongly monotonic.

If f is one-dimensional and differentiable, the above means that the
derivative of f is positive if f is strictly monotonic and positive or zero
if it is monotonic.

Our interest in this property is motivated by certain fixed-point theo-
rems on monotonic operators [17, 18]. These theorems are used in [15] to
derive sufficient conditions for the existence and uniqueness of the solutions
of nonlinear networks containing transistors.

The characteristics of the intrinsic transistor are monotonic but not strictly
monotonic since their their derivatives in regions II IV and V are zero (see
figures 8 and 9). Here the parasitic capacitors help in the following way:
First, the overlap capacitors are linear and satisfy both the Lipschitz condi-
tions and the monotonicity conditions. However, the value of the pn junction
incremental capacitors is zero when the corresponding diode is conducting.
To correct that, we added a small linear capacitor in parallel with the pn
junction capacitor and consider the sum of these two capacitors as the par-
asitic capacitor. Now, if the transistor is considered as a whole, the intrinsic
model plus the parasitics, it is strictly monotonic. In fact, it is even strongly
monotonic with the coefficient ¢ determined by the parasitics.

7 Summary and Conclusions

We have presented a model which is defined for any value of the terminal
voltages, has continuous characteristics (no jumps) all of which satisfy Lip-
schitz conditions. The model is defined in terms of physical constants and
the device geometry. Basically, for region I, the model summarizes the phys-
ical model which appears in [3]. Some changes were introduced, however, to
make its characteristics continuous.

The model is summarized as a non-linear network with capacitors rather
than with incremental capacitors as in (4, 5, 6] or, in fact, SPICE [7]. The
translation of the physical model equations to capacitors is natural, although
the concept requires some getting used to. The same network approach can
be used to express the equations of the short channel transistor in network
terms. Another extension which is conceptually simple is the modeling for
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region lli

AV* AQ

Z-AV*AQ
X - Vgs (OV - 10V)
Y - Vbs (-10V - 2V)

Vds= 5V

saturation
region

linear

region

Y
sub
threshold

Figure 8: The result of AVAQ for each component of AV is 0.1V and

V;is:sv
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AV*AQ

Z-AV*AQ
Y - Vgs (0OV - 10V)
X - Vds (-10V - 10V)

Vbs = -5V

Figure 9: The result of AﬂVA_’Q for AV = 0.1V and Vbe = =5V
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higher frequencies by dividing the transistors to cross-sections, and modeling
each such section with a lumped network model similar to the network model
presented here.

The model is a “large signal model” and it suffices for simulation. More-
over, conditions for existence and uniqueness of response have been devel-
oped.

By taking appropriate partial derivatives small signal behavior can be
investigated around any operating point. These partial derivatives are the
incremental capacitors, incremental resistors and gains. The partial deriva-
tives are continuous everywhere but on the boundaries. l.e., as a result of
continuity, the same value is obtained for the derivative ‘along’ the boundary
when the derivative is evaluated on either side of a boundary. The normal
derivative, however, evaluated on one side of the is different from the deriva-
tive evaluated at the same boundary point, but which is considered to be on
the other side of a boundary. In all cases, we observed that the two deriva-
tives have the same sign, a feature used in the proof of the existence of the
inverse.

As a result of the discontinuity of the partial derivatives, the incremental
capacitors, etc., are discontinuous functions of the voltages. The technique
used in [8] can be used to smooth the derivatives at the boundaries.

It seems that transistors models with less jumps than in SPICE [7] are
available as proprietary models in industry [9]. Since these models are private
their exact properties are not clear to us. It seems that [8] and ours are the
only “smooth” models publicly available.

Symbolic analysis played a major role in our work. We used it to derive
the derivatives of the charges and the current and also to investigate the
properties that the model satisfies.

The model parameters can be measured from the terminals. Thus, the
model provides a framework for experimentally defined models. IL.e., the
topology and, maybe, some parameters are assumed as in the model, and
the device characteristics can be measured from the terminals (see [5]). We
have not conducted such measurements. This interesting work has yet to be
done. Its results are expected to shade light on the model’s accuracy, compare
it in detail with other models, and in particular, compare the multi-section
network model with a transistor operating at higher frequencies.
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8 Appendix A: Expressions for currents and charges
in region I

This appendix contains the expressions for the long channel device. Similar
expressions for Iy, of transistors with small dimensions can be found in [3].
We did not find in the literature expressions for the charges of small dimen-
sion transistors. We have looked at the expressions for small dimensions I,
and corrected the discontinuities on the boundaries. The resulting function
obeys the Lipschitz conditions and can be used in the model in the same way
as the long channel Iy,.

Some common physical relations:
Fermi level for p-type material: ¢ = % In 2a,

¢s :2¢F

Eox
Coz =
doa:

V2esqN,

")/ =
COQJ

Vin = Voo +7 (V& = Vi — /61

‘/tozvfb‘l’qss'i")’ ¢3

I4, in saturation and linear regions:

where Vg is:

w
Ids = IO + ﬁNOCom‘/dsat(‘/gs - V;h)(l - a2)(1 + /\‘/ds) (6)
where « is defined as:
Vs
a=1——2" for Vi < Vi
V;lsat
a= for Vis > Vyeat

I4, for the sub-threshold region, i.e., V, < Vi:
V;;s - V;h

Iy, = Ipexp T (7)
2q
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where W LT
Io = —L—pOCOI(?)("lbe_l

gy for the accumulation region, V,, < (Vi + Vi,):
Qg = WLCOJ:(‘/gs - %s - ‘/fb) - QO
Qg for (Vi + Vis) < Ve < Vi

Q, = WLcozq—f% Y/ Bs — Voo — Qo

where ¢ and quth are:

_ 2
q= 77+\/%+‘/gs—'%s—vfb

— 2
quth = 77-%-\/%4-‘/}/1—%3—‘/}17

Qg for the linear and saturation regions, Vs > Vip:

21+ a+o?
Qy = WLC,, (wmt(ﬂg—ﬁr—aa)ﬂ\/@ — Vhe ) ~ Qo

where
§= 1
2V ¢s - ‘/bs
Vqs - V;h
1+46
Qp for the accumulation region, Vy, < (Vy + Vis ):

V:isat =

Qb = “'WLCox(V;]s - I/bs - ‘/fb)

Qb for (Vi 4 Vi) < Vg < Vi

Qb = ""WLCox ai_)qt._h,yv ¢s - Vi)s
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Qp for the linear and saturation regions, V, > Via:

214+ a+o?
Qb= ~WLCop [Visar 5 (1 + 5—1%61—“) + 9By — Voo |

Qa:
Qa = 0 for Vs < Vin.

Qa for Vs > Vip:

4 + 8a + 12a2 + 6a3

Qd = —WLCox (%3 - Wh) 15(1 + a)3

Qs:
Q. = 0 for V,, < V.
Qs for V;]s > ‘/th:

6 + 12a + 8a? + 43

Qs = —WLCoa: (%3 - ‘/th) 15(1 T 01)2

an example of a region function (for I;,)

e Region I
Ids = f(‘/;]é;, %37 ‘/ds)
e Region II _ o
-[ds = _f(‘/;]sa %87 ‘/ds)
where:
‘N/gs = V_:]s - V;is
‘71)8 = %s - ‘/ds
‘7ds = _‘/;ls

e Region III ~
Ids = f (V;]s ) ‘;bregions—border 3 ‘/ds)
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e Region IV

Ids = _f(i;;]sa %sv ‘7:13)

where:

qus - V;)s + (bregions—border - %s
‘/;)s = ¢region3—-border

V;is = - ¢regions——border

e Region v 5
Idg = f (‘/gs, ércgions—bo‘rder ) 0)

An example of a derivative function (—“g{,gs
for Vg, < Vin

aId.f; ‘/gs - ‘/th V:qs - V;h 2/3 2/3 8‘/211
= Io w— exp( E — (5 — kt ) (16)
Vs 157 1.5% " Y Ve
for Vs > Vi
014, %4
= o pCo(1 4 AVy,) - 17
av,, = apHCe(l+AVa) (17)
Y (1 —a®)(Vgs = Vin)
{V:isat(l « )+ ( 1+5 (18)

Vas

—20Vieat (Vs — Vin) | 57—
oV = i) [

] — (1~ @)Vt 2—2"}(1%

9 Appendix C: Obtaining the Characteristics Derivative-
An Example

The following example illustrates how the derivatives of the charges have been
derived. The following is the scheme program specifying @, as a function
of the voltages and the physical parameters. It is followed by a program
that calculates the partial derivative of @}, with respect to V,, while all other
parameters are constants. The resulting program is the third item in this
appendix.
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(define v->Qg
(lambda ( Vgs Vbs Vds Vth mu-zero W L )
(let ((Basic-v->Qg
(named-lambda (Basic-v->Qg Vgs Vbs Vds Vth mu-zero W L )

(define (f1 vgs vbs vds)
(+ (* WL Cox
(let((q (+ (- (* 0.5 gamma))
(sqrt (+
(* gamma gamma 0.25) Vgs (- Vbs) (- V£b)))))
(qvth (+ (- (* 0.5 gamma))
(sqrt (+
(* gamma gamma 0.25) Vth (- Vbs) (- V£b))))))
(/ (* gamma (sqrt (- Phis Vbs)) q) qvth)))))

(define (f2 vgs vbs vds)
(let* ((delta (/ gamma (* 2. (sq-root (+ 1. (- Phis Vbs))))))
(Vdsat (/ (- Vgs Vth) (+ 1. delta)))
(alpha (if (and (<= Vds Vdsat) (> Vdsat 0.))
(- 1. (/ vds Vdsat));; Linear region
0. )));;saturation
(* WL Cox
(+ (* Vdsat
(+ delta (* 0.667 (/ (+ 1. alpha (* alpha alpha))
(+ 1. alpha)))))
(* gamma (sq-root (- Phis Vbs)))))
))

(cond ((< Vgs (+ Vfb Vbs)) (+ (* WL Cox (+ Vgs (- Vbs) (- V£b)))))
((< vgs Vth) (f1 Vgs vbs vds))
(else (f2 vgs vbs vds)))
)
(regions+ Basic-v->Qg Vgs Vbs Vds Vth mu-zero W L))))

The following is evaluated in the symbolic environment to yield the derivative needed.

A special utility function is used: ((pd i)f) finds the partial derivative of a scheme func-
tion f with respect to the i-th variable. Let f be a lambda expression of two variables,

(((pd 1)f)'a ’b) finds the function with respect to the first variable and then finds the
value of the derivative at the (symbolic) point a,b.

(define d/dvgs-Qg

‘(lambda ( Vgs Vbs Vds Vth mu-zero W L )
(let ((Basic-d/dvgs-Qg
(1ambda (Vgs Vbs Vds Vth mu-zero W L )
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(define f1
(lambda (vgs vbs vds)
(* WL Cox
(let*((q (+ (- (* 0.5 gamma))
(sqrt (+
(* gamma gamma 0.25) Vgs (- Vbs) (- V£b)))))
(qvth (+ (- (* 0.5 gamma))
(sqrt (+
(* gamma gamma 0.25) Vth (- Vbs) (- V£b))))))

,(let* ((q (lambda (vgs) (+ (- (* 0.5 gamma))
(sqrt (+
(* gamma gamma 0.25) Vgs (- Vbs) (- V£b))))))
(qvth ’qvth)
(exp (lambda (q)
(/ (* gamma (sqrt (- Phis Vbs)) q) qvth))))
(* (((pd 1) exp) 'q) (((pd 1) q) ’vgs))I))))

; cutoff 270

(define f2
(lambda (vgs vbs vds)
(let* ((delta (/ gamma (* 2. (sqrt (- Phis Vbs)))))
(vdsat (/ (- Vgs Vth) (+ 1. delta)))
(alpha (if (and (<= Vds Vdsat) (> Vdsat 0.))
(- 1. (/ Vds Vdsat));; Linear region
0. )));;saturation

(* WL Cox
(if (> vdsat 0.)
,(let* ((delta ’delta)
(vdsat (lambda(Vgs) (/ (- Vgs Vth) (+ 1 delta))))
(vdsatl ’(/ (- Vgs Vth) (+ 1 delta)))
(alpha (lambda{vdsat) (- 1 (/ Vds Vdsat))))
(exp (lambda (vdsat alpha)
(+ delta
(* 2/3
(/ (+ 1 alpha (* alpha alpha))
(+ 1 alpha))))))
(exp1
’(+ delta
(* 2/3
(/ (+ 1 alpha (* alpha alpha))
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(+ 1 alpha))))))
(+ (* expl (((pd 1) vdsat) ’vgs))
(* vdsat1l (((pd 2) exp) ’vdsat ’alpha )
(((pd 1) alpha) ’vdsat)
(((pd 1) vdsat) ’vgs))))
(/ 1. (+ 1. delta)))
1)

(cond ((< Vgs (+ Vfb Vbs)) (* W L Cox )) ;Accumulation
((< Vgs Vth) (f1 Vgs vbs vds))
(else (£f2 vgs vbs vds))))
))

(regions+ Basic-d/dvgs-Qg Vgs Vbs Vds Vth mu-zero W L))))
The result:

(define d/dvgs-qg
(lambda
(vgs vbs vds vth mu-zero w 1)
(1let
((basic-d/dvgs—qg
(lambda
(vgs vbs vds vth mu-zero w 1)
(define
f1
(lambda
(vgs vbs vds)
(*
W
1
cox
(let*
((q
(+
(- (*+ .5 gamma))
(sqrt (+ (* gamma gamma .25) vgs (- vbs) (- vfb)))))
(qvth
(+
(- (x .5 gamma))
(sqrt (+ (* gamma gamma .25) vth (- vbs) (- v£b))))))
(*
(/ (* gamma (sqrt (+ phis (* -1 vbs)))) quvth)
«/

32



1/2
(sqrt (+ (* .25 (expt gamma 2)) (* -1 vbs) (* -1 vfb) vgs))))))))
(define
£2
(lambda
(vgs vbs vds)
(let*
((delta (/ gamma (* 2. (sqrt (- phis vbs)))))
(vdsat (/ (- vgs vth) (+ 1. delta)))
(alpha
(if (and (<= vds vdsat) (> vdsat 0.)) (- 1. (/ vds vdsat)) 0.)))
(*
W
1
cox
(if
(> vdsat 0.)
(+
(*
(+ delta (* 2/3 (/ (+ 1 alpha (* alpha alpha)) (+ 1 alpha))))
(/ 1 (+ delta 1)))
(*
(/ (- vgs vth) (+ 1 delta))
(*
(*
/
(+ (* 2/3 (expt alpha 2)) (* 4/3 alpha))
(+ (expt alpha 2) (* 2 alpha) 1))
(/ vds (expt vdsat 2)))
(/ 1 (+ delta 1)))))
(/ 1. (+ 1. delta)))))))
(cond ((< vgs (+ vfb vbs)) (* w 1 cox))
((< vgs vth) (f1 vgs vbs vds)) (else (£f2 vgs vbs vds))))))
(regions+ basic-d/dvgs-qg vgs vbs vds vth mu-zero w 1))))

Acknowledgement

The cooperations of Project MAC (Mathematics and Computations) of the Al lab,
MIT is gratefuly acknowledged: H. Abelson and G. J. Sussman have written the scheme
circuit packages including the symbolic facilities; They also listened and commented on
the material. C. P. Hansen and G. J. Rozas have written the scheme compiler and always
extended help when needed.

Helpful discusions with Prof. A. Arbel, Dr. D. Lubzens, and Dr. L. Goldmintz of the
Technion and Dr. A. Kolodny of Intel (Israel) are gratefuly acknowledged. Thanks are
due also to Dr. Richard Zippel, Cornell University, for commenting on the manuscript.

33



This report describes research done at the Technion-Israel Institute of Technology
and the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology.
Support for this research is provided in part by the Technion Fund for the Promotion
of Research, by the USA-Israel Bi-National Science Foundation, the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Research contract
N00014-92-J-4097 and by the National Science Foundation under grant number MIP-
9001651.

References

[1] H. Abelson, A. Berlin, J. Katzenelson, W. McAllister, G. Rozas, and G.J.
Sussman, “The Supercomputer Toolkit and its Applications,” Proc. Of the

Fifth Jerusalem Conference on Information Technology, Oct. 1990. Also avail-
able as AI Memo 1249.

(2] H. Abelson, A. Berlin, J. Katzenelson, W. McAllister, G. Rozas, G. J. Suss-
man, and J. Wisdom, “The Supercomputer Toolkit: A General Framework
for Special-Purpose Computing,” AI Memo 1329, Artificial Intelligence Lab-
oratory, MIT, November 1991.

[3] Y.P. Tsividis, “Operation and Modeling of the MOS Transistor,” McGraw
Hill Book Co., 1987.

[4] D.E. Ward and R.W. Dutton, “A Charge-Oriented Model for the MOS Tran-
sistor Capacitances,” IEEE Journal of Solid-State Circuits. Vol sc-13, October
1978.

[5] B.J. Sheu, D. L. Scharfetter, and P. K. Ko, “BSIM: Berekeley Short-Channel
IGFET Model for MOS Transistor,” IEEE Journal of Solid-State Circuits. Vol
sc-22,no. 4 August 1987.

[6] B.J. Sheu, W-J Hsh and P. K. Ko, “An MOS Transistor Charge Model for
VLSI Design,” IEEE Trans. On Computer-Aided Design, Vol 7, No. 4, April
1988.

(7] P. Antognetti and G. Massobrio, “Semiconductor device modeling with
SPICE,” MCGraw-Hill, 1987.

(8] C.C. McAndrew, B. K. Bhattacharyya and O. Wing “ A Single-Piece C-
Continuous MOSFET Model Including Subthreshold Conduction,” IEEE
Electronic Device Letters, Vol 12, No. 10, October 1991, pp. 565-567.

[9] D. A. Antoniadis, private communication.

34



[10] L.O. Chua And P.M. Lin “Computer Aided Analysis of Electronic Circuits,”
McGraw Hill Book Co, 1975.

[11] R.L. Geiger, P.E. Allen, and N.R. Strader, “VLSI Design Techniques for Ana-
log and Digital Circuits,” McGraw Hill Book Co., 1990.

[12] A. Arbel, private communication.
[13] J. Williams, “Analog Circuit Design,” Butterworth-Heinemann, 1992.

[14] C. A. Desoer and J. Katzenelson, “Nonlinear RLC Networks,” BSTJ, vol 44,
pp- 161-198, January 1965.

(15] H. Abelson and J. Katzenelson, “Nonlinear N-terminals Networks,” in preper-
ation.

[16] R.S. Palais, “Natural Operations on Differential Forms,” Trans. of the Amer-
ican Math. Soc., 92, 125-145, 1959.

[17] G.J.Minty, “Monotone (Nonlinear) Operators in Hilbert Space,” Duke Math.
J., 29 (1962), 341-346.

(18] C. L. Dolph and G. J. Minty, “On Nonlinear Intergral Equations of the Ham-
merstien Type,” in “Nonlinear Integral Equations,” P. M. Ansloe, Ed., Uni-
versity of Wisconsin Press, Madison, Wisconsin, 1964.

35



Ids vs. Vds

2 T T T T ] T T T T T 1 T T | T T T i
Vbs=-5V
=
- Vgs=0V 1
8 N .
Vgs=2V
[mA] L 4
.o EVgs=4V —
Vgs=6V

-Vgs=8V E

4 regionlV, , |regipnl] |, | "egiO’J TSR R S T

-10 -5 0 5 10
Vds
Figure 10: Ids for Vbs=-5V
Qg vs. Vds
GX1 0-3 T T T Ll I T ¥ T T T T T T | T T T T
- Vgs=8V Vbs=-5V ]
. Vgs=6V _
4x10° [~ -
Vgs=4V _
Cb B =
> — \

2x10 |/9s=0V -

o region IVI Ay regior’\ It , Iregionll Ly

-10 -5 (o] 5 10

Vds
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Qb vs. Vds
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Qs vs. Vds
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gmb vs. Vds
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